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Trifactorizable groups

B. Amberg

In the investigation of factorized groups one often has to consider groups G of
the form G = AB = AC = BC where A, B and C are subgroups of G. It is
therefore of some interest to study such trifactorized groups independently and for
their own sake. Around 1960 O.H. Kegel considered finite groups G = AB, where
the subgroups A and B are nilpotent. Among others he proved that G is nilpotent,
if the third subgroup C is nilpotent. Later it was shown that G is contained in some
saturated formation F containing all nilpotent subgroups, if the subgroup C is an
F -group. Here some recent extensions of these results are presented, in particular for
soluble groups with minimum condition and more general group classes.

The structure of thin Lie algebras up to the second diamond

M. Avitabile

Thin Lie algebras are graded Lie algebras L =
⊕∞

i=1 Li with dimLi ≤ 2 for
all i, and satisfying a more stringent but natural narrowness condition modeled on
an analogous condition for pro-p groups. The two-dimensional homogeneous com-
ponents of L, which include L1, are named diamonds. Infinite-dimensional thin Lie
algebras with various diamond patterns have been produced, over fields of positive
characteristic, as loop algebras of suitable finite-dimensional simple Lie algebras, of
classical or of Cartan type depending on the location of the second diamond. In this
talk we present a description of the initial structure of a thin Lie algebra up to the
second diamond, obtained in joint work with G. Jurman and S. Mattarei. Specifically,
if Lk is the second diamond of L, then the quotient L/Lk is a graded Lie algebras of
maximal class. In odd characteristic p, the quotient L/Lk is known to be metabelian,
and hence uniquely determined up to isomorphism by its dimension k, which ranges
in an explicitly known set of possible values: 3, 5, a power of p, or one less than twice
a power of p. However, the quotient L/Lk need not be metabelian in characteristic
two. We describe all the possibilities for L/Lk up to isomorphism in the case of even
characteristic. In particular, we obtain that k + 1 equals a power of two.



Soluble products of finite groups

J. Cossey

Suppose A and B are subgroups of a group G. We say that G is the product
of A and B if G = AB = {ab : a ∈ A, b ∈ B}. A natural question to ask is
whether properties of G can be deduced from properties of A and B. There is an
extensive literature on this question. Many properties have been considered- see for
example the book of Amberg, Franciosi and de Giovanni- and further restrictions on
the products have also been considered. I will concentrate on one particular property.
Suppose that G is soluble. Then A and B are certainly soluble but A and B soluble
is not enough to ensure that G is soluble and so we may ask the following questions:

What further conditions on A and B will
ensure that G = AB is soluble?

If G is soluble, can we bound the derived length d(G) of G in terms of invariants
of A and B?

If d(G) is bounded, can we find the best possible bound?

I will concentrate on the second and third questions. There is quite a lot known
about possible bounds but except in some special cases very little is known about
best possible bounds. I will survey what is known and discuss some of the problems
that we still know little about.

Monotone p-groups

E. Crestani

In the paper The number of generators of finite p-groups, A.Mann introduces two
classes of p-groups: the class of the monotone p-groups and the class Ms. We recall
the definition (here d(G) is the number of generators of G): a p-group G is said to
be in Ms, where 1 ≤ s ≤ p, if it satisfies the following condition if H ≤ K ≤ G,
KH = p and K is not cyclic then d(H)− 1 < s(d(K)− 1). Also, a p-group is said to
be monotone if for every H and K with H ≤ K, we have that d(H) ≤ d(K).
We point out that the origin of these classes dates back to 1985, when, during a Saint
Andrews Conference, Mann gave a talk on this subject. Mann studies and classifies
completely, except for some uncertainty for exponent p2, the monotone p-groups when
p 6= 2. During this talk, we present the complete classification of finite monotone
2-groups.



Some results on the probability of mutually commuting n-tuples
and n-th nilpotency degree of groups

A. Erfanian

Let G be a finite group, then the probability that a randomly chosen pair of
elements of G commutes is defined to be the number of pairs (x, y) ∈ G×G = G2 with
xy = yx divided to |G|2. Two usual ways to generalize this probability is to consider
n-tuples (x1, x2, . . . , xn) of elements in group G with the property that xixj = xjxi for
all 1 ≤ i, j ≤ n or (n+1)-tuples (x1, x2, . . . , xn+1) such that [x1, x2, . . . , xn+1] = 1. We
denote them by PrnCom(G) and d(n)(G), and are called the probability of mutually
commuting n-tuples and n-th nilpotency degree of G, respectively. In this talk, we
will give some results concerning the above two probabilities and state some relations
between these and the notion of the isoclinism. Furthermore, we give one more way
of generalization of the probability for infinite groups at the end.

Polynomial Identities and Representations of the Symmetric Group

A. Giambruno

The polynomial identities satisfied by an algebra over a field of characteristic zero
are studied through the theory of Young diagrams. One associates to an algebra A
an integral sequence measuring the polynomial identities satisfied by A. I will discuss
a characterization in terms of Young diagrams in case such sequence is polynomially
bounded and A is a non necessarily associative algebra.



Constructing generators of unit groups of group algebras of finite
commutative groups

W.A. de Graaf

Let G be a finite abelian group, and ZG its integral group algebra. We describe
an algorithm for constructing generators of the group of units U(ZG) of ZG. The
strategy is to split QG as a sum of field extensions of Q, then use algorithms for finding
generators in unit groups of orders in number fields (corresponding to the Dirichlet
unit theorem). Like this we find a group of which the group we are looking for is a
finite index subgroup. We describe a method to find this subgroup. To illustrate the
algorithm we will give generators of U(ZG) for several abelian groups G. We also
indicate how this algorithm can be extended to yield generators of arithmetic groups
corresponding to diagonalisable algebraic groups.

Fitting core and supersolvable groups

H. Heineken

A class A of groups will be exhibited with the following property: If G is a
group of the class A and H a supersolvable group, then the normal product GH is
supersolvable (equivalently: A belongs to the Fitting core of the class of supersolvable
groups). Joint work with J.C.Beidleman

Groups and Set Theoretic Solutions of the Yang-Baxter equation

E. Jespers

In recent years there has been quite some interest in the “simplest” solutions
of the Yang-Baxter equation. Such solutions are involutive bijective mappings r :
X ×X → X ×X, where X is a finite set, so that r1r2r1 = r2r1r2, with r1 = r× idX

and r2 = idX × r. In case r satisfies some non-degeneracy condition, Gateva-Ivanova
and Van den Bergh, and also Etingof, Schedler and Soloviev, gave a beautiful group
(monoid) theoretical interpretation of such solutions. Such groups (monoids) are said
to be of I-type. In this lecture we give a survey of recent results on the algebraic
structure of these groups (monoids) and their group (monoid) algebras.



On some infinite dimensional linear groups

L.A. Kurdachenko

Let F be a field and A a vector space over F . Denote by GL(F,A) the group of
all F -automorphisms of A. The subgroups of GL(F,A) are called the linear groups.
Linear groups have played a very important role in algebra and other branches of
mathematics. If dimF (A) (the dimension of A over F ) is finite, n say, then a subgroup
G of GL(F,A) is a finite dimensional linear group. The theory of finite dimensional
linear groups is one of the best developed in Group Theory. However, the study of
the subgroups of GL(F,A) in the case when A has infinite dimension over F has
been much more limited and normally requires some additional restrictions. We
consider here some approaches to the study of infinite dimensional linear groups.
More concretely, we consider the linear groups with boundedly finite G-orbits of
elements, the linear groups with boundedly finite dimensional G-orbits of elements,
the linear groups with finite G-orbits of subspaces and also some generalization of
finitary groups.

On some properties of nilpotent groups of class at most 2

D. Lenzi

We examine some interesting properties of nilpotent groups of class at most 2.
Among the other things, we see that a sufficient condition for a group (G,+) to be
nilpotent of class at most 2 is that the following property (j’) holds. In particular, if
for any x ∈ G there is a unique y ∈ G such that 2y = x, then property (j’) is also
sufficient.
(j’) The operation → defined by putting, for any x, z ∈ G, x → z = z − x + z,
coincides with the analogous operation →′ defined on G by a suitable commutative
group operation +′.
Moreover we prove that a group (G,+) of a prime exponent is nilpotent of class at
most 2 if and only if the set χ+ of the cosets associated with the cyclic sub-groups
of G coincides with the set χ+′

of the cosets determined by a commutative group
operation +′ on G.



Reversible and Duo Group Rings

Y. Li

Let R be an associative ring with identity. R is called reversible if αβ = 0 implies
βα = 0, and it is called symmetric if αβγ = 0 implies αγβ = 0 for all α, β, γ ∈ R. The
reversibility property, a natural generalization of commutativity, has been exploited
by various authors over the years; but apparently the name was introduced by Cohn
in 1999, who noted that the Köthe conjecture holds for the class of reversible rings.
An associative ring R is called left (right) duo if every left (right) ideal is an ideal,
and R is said to be duo if it is both left and right duo. In this talk, we present some
recent results on reversible group rings, duo group rings, and graded reversible group
rings; and we mention several open problems.

On decompositions of the longest element of Sn and the
combinatorics of certain Kazhdan-Lusztig cells

C. Pallikaros

We study certain decompositions of the longest element of Sn and investigate
their relation with increasing and decreasing subsequences occurring in the row form
of some elements in Sn and the Kazhdan-Lusztig cells to which these elements belong.
We discuss how this is related to the representation theory of the symmetric group.

On n-uniqueness of amalgams

E. Pastori

We discuss when certain systems of structures can be amalgamated together and
when the result is unique in the light of the recent paper of Hrushovski “Groupoids,
imaginaries and internal covers”. In particular, we analyze a specific combinatorial
structure and we show how to translate the n-uniqueness problem in a group theoretic
language in order to solve it.



On the (non) contractibility of the simplicial complex associated to
the coset poset of a classical group

M. Patassini

Let G be a finite group. Let ∆ be the simplicial complex associated to the coset
poset of G. Let χ(∆) denote the Euler characteristic of ∆ and let χ̃(∆) := χ(∆)− 1
be the reduced Euler characteristic. In [1] Brown noted that

PG(−1) = −χ̃(∆)

where PG(s) is the Dirichlet polynomial associated to G. It is a well-known fact
that if ∆ is contractible, then its reduced Euler characteristic χ̃(∆) is zero. In [1],
Brown proved that if G is a finite soluble group, then PG(−1) 6= 0. So, in this
case, the simplicial complex ∆ is not contractible. Moreover Brown conjectured that
PG(−1) 6= 0 for each finite group G. In our work, we prove the Brown conjecture
for the classical groups which do not contain a graph automorphism, with some
exceptions.

[1] K. S. Brown, The coset poset and the probabilistic zeta function of a finite group, J.
Algebra 225 (2000), 989-1012.

Strong Forms of Residual Finiteness - Graphs of Groups and
Generalized Baumslag-Solitar Groups - Quotients of Generalized

Baumslag-Solitar Groups

D.J.S. Robinson

Lecture 1: Strong forms of residual finiteness.

We discuss strengthened forms of residual finiteness, including the property of being
extended residually finite (ERF), i.e., each subgroup is closed in the profinite topol-
ogy. We will review recent work which classifies the nilpotent groups, locally finite
groups and FC-groups which are ERF.

Lecture 2: Graphs of groups and generalized Baumslag-Solitar groups.

After reviewing graphs of groups and their fundamental groups, we concentrate on
the case where all the vertex groups are infinite cyclic, when the fundamental groups
are called generalized Baumslag-Solitar (GBS-)groups. A survey of the properties of



GBS-groups is given. Then we consider their homology in low dimensions. A method
for computing the Schur multiplier is described.

Lecture 3: Quotients of generalized Baumslag-Solitar groups.

We consider what can be said of various quotient groups of a GBS-group and define
the concept of a geometric GBS-quotient. A classification is given of the GBS-free
groups, i.e., GBS-groups which have no proper geometric quotients other than infinite
cyclic groups.

On a generalization of the minimal non-nilpotent groups

F. Russo

I will discuss a joint work with N. Trabelsi in which it is extended the classic
description of minimal non-nilpotent groups of

[1] M. F. Newman and J. Wiegold, Groups with many nilpotent subgroups, Arch. Math.
15 (1964), 241-250;

[2] L. A. Shemetkov, O. Yu. Schmidt and finite groups, Ukr. Math. J. (5) 23 (1971),
482-486;

[3] H. Smith, Groups with few non-nilpotent subgroups, Glasgow Math. J. 39 (1997),
141-151.

L10-free groups

R. Schmidt

If L is a lattice, a group is called L-free if its subgroup lattice has no sublattice
isomorphic to L. It is easy to see that L10, the subgroup lattice of the dihedral group
of order 8, is the largest lattice L such that every finite L-free p-group is modular.
Therefore the finite L10-free groups form an interesting class of groups lying between
the modular groups and the groups with modular Sylow subgroups. We shall see that
they are still near to the modular groups and we shall study more closely L10-free
{p, q}-groups (p and q primes).



Group rings and their group of units

S.K. Sehgal

I. Lie Properties in Group Rings

We begin with a survey of some classical results classifying Lie nilpotent, Lie solvable
and Lie n-Engel group algebras FG.
Then we discuss the relationship between the Lie nilpotency class of FG and the
nilpotency class of its unit group, U(FG). In this framework, we present results of
Shalev and the activity that followed.
Lastly we study when the symmetric elements (the skew-symmetric elements), (FG)+

((FG)−, respectively) of FG with respect to the classical involution of FG, namely
that induced on FG from the map g 7→ g−1, g ∈ G, satisfy the above Lie properties.
Generalization of these results to other kinds of involutions will be reviewed.

II. A Conjecture of Brian Hartley

Let U(FG) be the group of units of the group algebra FG. Around 1980 Hartley
made the following
Conjecture Assume that F is infinite and G is a torsion group. If U(FG) satisfies
a group identity, then FG satisfies a polynomial identity.
We shall speak of the solution to this conjecture and the extensive activity that
ensued.

III. Generic Units

The question we discuss is:
When is an element f(x) =

∑s
i=0 aix

i ∈ ZCn, where Cn = 〈x〉, a unit for many
values of n?
We shall present results as to when various type of units (Bass cyclic, bicyclic or
generic) generate a free group.



On groups admitting a fixed-point-free elementary 2-group of
automorphisms

C. Sica

Consider first locally finite groups G admitting a fixed-point-free four-group of
automorphisms. A theorem of Bauman tells us that if G is finite, then G′ is nilpotent.
A simple inverse limit argument shows that in general G′ is locally nilpotent. The
first author showed in [2] that in fact the normal closure of any element of G′ is
hypercentral. Lie algebras admitting a fixed-point-free four-group of automorphisms
have been studied in [3]. One of the results obtained there is that if a locally soluble
Lie algebra L admits a fixed-point-free four-group of automorphisms, then the derived
subalgebra [L,L] is a sum of nilpotent ideals. The authors in [4] proved a similar
result for locally finite groups:

Theorem 1. Let G be a locally finite group admitting a fixed-point-free four-group
of automorphisms. Then the derived group G′ is a product of normal in G nilpotent
subgroups.

Consider now the action of an elementary abelian 2-group on a finite group G. First
author in [1] proved the following:

Theorem 2. There exists a function f(x, y) of x and y with the following property.
Let A be the elementary group of order 2n acting fixed-point-freely on a finite group
G that is solvable with derived length k. Then G has a normal series 1 = Nn ≤ · · · ≤
N1 ≤ N0 = G all of whose quotients are nilpotent and the class of Ni−1/Ni is at most
f(k, i) for i = 1, . . . , n.

The proof of the previous result given in 1988 was rather long and somewhat com-
plicated; we present a new, much shorter, proof.

[1] P. Shumyatsky, Groups with regular elementary 2-groups of automorphisms, Algebra
and Logic 27 (1988), 447457.

[2] P. Shumyatsky, Locally finite groups with Carter subgroup which is with a fixedpoint-
free four-group, (Russian) Investigations of algebraic systems, Sverdlovsk, (1989), 131-
133.

[3] P. Shumyatsky, Groups and Lie algebras with a fixed-point-free four-group of automor-
phisms, Comm. Algebra 24, No.12, (1996), 3771-3785.

[4] P. Shumyatsky and C. Sica, On groups admitting a fixed-point-free four-group of auto-
morphisms J. Group Theory, to appear.



Fixed-point-free elements in p-groups

P. Spiga

In this talk we prove that there exists no function F (m, p) (where the first ar-
gument is an integer and the second a prime) such that, if G is a finite permutation
p-group with m orbits, each of size at least pF (m,p), then G contains a fixed-point-free
element. In particular, this gives an answer to a conjecture of Peter Cameron.

Minimal algebras with respect to their *-exponent

E. Spinelli

Let (A, ∗) be a ∗-PI algebra with involution over a field of characteristic zero and let
cm(A, ∗) denote its m-th ∗-codimension. Giambruno and Zaicev proved that, if A
is finite dimensional, there exists the limm→+∞

m
√
cm(A, ∗), and it is a non-negative

integer, which is called the ∗-exponent of A ([2]). As a consequence of the presence
of this invariant, in a natural manner in [1] the definition of minimal algebras with
respect to their ∗-exponent (or simply ∗-minimal) was introduced and the question of
characterizing ∗-minimal algebras was studied. In particular, it was proved that for
any finite dimensional ∗-minimal algebra with involution A there exists an m-tuple,
(A1, . . . , Am), of finite dimensional ∗-simple algebras allowing to construct a block
triangular matrix algebra with involution, UT∗(A1, . . . , Am), which is ∗-PI equivalent
to A.
Motivated by a conjecture of [1], in the present talk we discuss (and solve) the
“converse” problem, namely whether the algebra UT∗(A1, . . . , Am) is ∗-minimal for
any choice of the algebras Aj . In this framework a fundamental role will be played
by the representation theory of the symmetric group. This is a joint work with O.M.
Di Vincenzo.

[1] Di Vincenzo, O.M., La Scala, R.: Minimal algebras with respect to their ∗-exponent, J.
Algebra 317 (2007), 642-657.

[2] Giambruno, A., Zaicev, M.: Involution codimension of finite dimensional algebras and
exponential growth, J. Algebra 222 (1999), 471-484.



Quasinormal subgroups of finite p-groups

S.E. Stonehewer

The problem of finding the (interesting) quasinormal subgroups of finite groups
reduces easily to p-groups. Here the systematic search begins with many positive
results and continues for some way. But then suddenly something very strange seems
to occur . . .

Totally inert simple groups

A. Tortora

Let G be a group. A subgroup H of G is called inert if |H : H∩Hg| is finite for all g
in G. Obviously normal subgroups, finite subgroups and subgroups of finite index are
inert. It is less obvious that permutable subgroups are inert (see D. J. S. Robinson,
On inert subgroups of a group, Rend. Sem. Mat. Univ. Padova 115 (2006), 137–
159.). If every subgroup of G is inert, then G is said to be totally inert, briefly TIN .
It is easy to see that the class of FC-groups is properly contained in the class of
TIN -groups. Soluble TIN -groups were studied in [3], whereas in [1] it was proved
that are no locally finite simple TIN -groups. Since there exist locally (abelian-by-
finite) simple groups which are not locally finite and with numerous infinite inert
subgroups (see [2]), it is reasonable to wonder if locally graded simple groups can be
TIN . Clearly, simple TIN -groups exist: the groups constructed by Olshanskii are
simple and quasi-finite. In this talk we show some properties of simple TIN -groups
and answer to the above question.

[1] V. V. Belyaev, M. Kuzucuoğlu and E. Seçkin, Totally inert groups, Rend. Sem. Mat.
Univ. Padova 102 (1999), 151–156.

[2] M. R. Dixon, M. J. Evans and H. Smith, Embedding groups in locally (soluble-by-finite)
simple groups, J. Group Theory 9 (2006), 383–395.

[3] D. J. S. Robinson, On inert subgroups of a group, Rend. Sem. Mat. Univ. Padova
115 (2006), 137–159.



Soluble minimal non-(finite-by-Baer)-groups

N. Trabelsi

If X is a class of groups, a group G is said to be a minimal non-X-group if it is not
an X-group but all of whose proper subgroups are X-groups. We will denote minimal
non-X-groups by MNX-groups. In [1] a complete description of AN∗-groups, that
is infinitely generated MNN-groups having a maximal subgroup, is given, where N

denotes the class of nilpotent groups. In [2] locally graded MNFA-groups are char-
acterised, where F and A denotes respectively the class of finite and abelian groups.
In [3], the class B of Baer groups is considered and it is proved that if G is an infinite
soluble MNB-group, then G/G′′ is an AN∗-group and an example of an infinite sol-
uble MNB-group which is not a MNN -group is given. Here we generalise the result
of Xu by proving that if G is a soluble MNFB-group (respectively, infinite soluble
MNB-group), then for all integer n ≥ 2, G/γn(G′) is a MNFA-group (respectively,
an AN∗-group).

[1] B. Bruno and R. E. Phillips, On minimal conditions related to Miller-Moreno type
groups, Rend. Sem. Mat. Univ. Padova 69 (1983) 153-168.

[2] M. F. Newman and J. Wiegold, Groups with many nilpotent subgroups, Arch. Math.15
(1964) 241-250.

[3] M. Xu, Groups whose proper subgroups are Baer groups, Acta. Math. Sinica 40 (1996)
10-17.

Profinite and Residually Finite Groups

J.S. Wilson

Lecture 1 will be an ab inition introduction to profinite groups but it will arrive
quickly at topics in which there has been recent progress. Lecture 2 will be con-
cerned with branch groups (abstract and profinite), and examples and an internal
characterization will be described. Lecture 3 will be concerned with the existence of
well-placed free subgroups in finitely presented groups, and is partly motivated by
elementary linear algebra.



Limits and laws with parameters of the Thompsons group F

R. Zarzycki

Let F be the (Thompson’s) group
〈
x0, x1|[x0x

−1
1 , x−i

0 x1x
i
0], i = 1, 2

〉
. Let

Gn =
〈
y1, . . . , ym, x0, x1|[x0x

−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0], y−1

j gj,n(x0, x1), 1 ≤ j ≤ m
〉
,

where gj,n(x0, x1) ∈ F , n ∈ N, be a family of groups isomorphic to F and marked
by m + 2 elements. If the sequence (Gn)n<ω is convergent in the space of marked
groups and G is the corresponding limit we say that G is an F -limit group. We prove
that a non-trivial free product of groups cannot be an F -limit group in the space
of groups marked by three elements. The same statement holds for HNN-extensions
of F over finitely generated subgroups. On the other hand we find an infinitely
generated H < F such that the centralized HNN-extension of F over H occurs as an
F -limit group. The results above are based on some theorems concerning laws with
parameters in F . In particular we have found several constructions of such laws. On
the other hand we formulate some very general conditions on words with parameters
w(y, a1, . . . , an) over F which guarantee that the inequality w(y, ā) 6= 1 has a solution
in F . This generalizes a theorem of M. Abert that F does not satisfy any law without
parameters.


