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Abstract. In this paper we present a specialized matrix factorization procedure for computing the dual step
in a primal-dual path-following interior point algorithm for solving two-stage stochastic linear programs with
restricted recourse. The algorithm, based on the Birge-Qi factorization technique, takes advantage of both the
dual block-angular structure of the constraint matrix and of the special structure of the second-stage matrices
involved in the model. Extensive computational experiments on a set of test problems have been conducted in
order to evaluate the performance of the developed code. The results are very promising, showing that the code
is competitive with state-of-the-art optimizers.
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1. Introduction

Stochastic linear programming with restricted recourse is an approach proposed recently in
[20] to control the robustness of recourse solutions in stochastic programming models. The
need to have a solution that is not very sensitive to varying values of stochastic parameters,
is particularly significant in real-world applications for which changes in decisions are
often difficult to implement (problems of capacity planning, manufacturing, personnel
management, economic dispatch of power systems, etc.).

The stochastic linear program with restricted recourse can be viewed as an extension
of the classical two-stage stochastic program. In this latter model, the decision variables
are partitioned into two distinct setx € R™, the set of first-stage variables represents
decisions made before observing the values of uncertain parameterg, an@"™, the
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vector of second-stage, oontrol, decisions that can be viewed @Eourseactions taken
once a specific realization of the uncertain parameters has been observed. Uncertainty is
incorporated in terms of random variables defined in some discrete probability $pace (
F, P) and represented by a setsafenarios2 = {1, ..., N} with associated probabilities
{pP1,.... PN}

The two-stage stochastic linear program can be posed in the following deterministic
equivalent form:

N
(SLP min  ¢ix+ > pg'y
1=1

st.  Agx = by,
Tix+Wy =h, I=1...,N,
Ix < X < uy,

ly<yi<uy, I=1...,N,

whereAq is amy x ny matrix, by is am; vector,cy is an; decision vector, andy, |, € R™
represent an upper and a lower bound on the first-stage vector, respectively. Furthermore,
g € R, T ¢ R™™m W, € R™*™ andh, € R™ represent a particular realization of the
cost vector and the constraint coefficients corresponding to each sckratio Finally,
uy andly € R™ represent upper and lower bound vectors on the second-stage variables,
respectively.

From the above formulation, it is evident that the overall constraint matrix denoted by
A € R™" (m = m; + Nnmp, andn = n; + Nny) has a dual block-angular structure, that
can be exploited in the development of efficient solution algorithms:

Ao
T W
A= Tz W,
Tn Wi
Inthe classical (SLP) model, the first-stage variaklase scenario-invariant, but different

recourse decisiong are allowed corresponding to each scenasd?. Since no restriction
is imposed on the variability of the recourse decisions across scenarios, large dispersion of
the recourse vectorg, | € 2, may be observed. The restricted recourse approach [20]
limits the variablity of the recourse actions by directly adding a “dispersion” constraint to
the (SLP) model. The approach uses similar ideas to those of the robust optmization [16],
which represents the first attempt to force the stochastic solution to obey to some desidered
characteristics. However, robust optimization is concerned with solution robustness (i.e.

optimality) and model robustness (i.e. feasibility), and it does not examine the recourse
robustness (in effect, the two approaches cannot be considered equivalent or alternative).
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In this paper, we develop a specialized interior point method for the solution of the
restricted recourse model. The method specializes the linear algebra involved in the com-
putation of the dual step, which is by far far the most time consuming part in the whole
procedure. Ourapproachis based onthe exploitation of both the dual block-angular structure
of the two-stage stochastic program and the special structure of the second-stage matrices
involved in the model.

The paper is organized as follows. In Section 2, we introduce the restricted recourse
stochastic program and we describe the specialized interior point procedure developed for
its solution. In Section 3, we investigate the effect of the restricted recourse on the two-
stage stochastic programs. Section 4 is devoted to the discussion of the experimental results.
Finally, the last section presents concluding remarks.

2. The restricted recourse stochastic program

The general two-stage stochastic model with restricted recourse (SLPRR for short) is ob-
tained from the (SLP) model by adding a constraint that limits the variability of the recourse
decisions across the scenarios. Such a constraint can be formulated, for example, by using
the mean values computed on the basis of the recourse variables.

More specifically, given a sef, | € 2, of second-stage variables with a corresponding
probability p;, themean recourse vectois defined as:

Py (1)

\ﬁl
M=

I
i

The mean dispersion of the recourse varialyleb € 2, from the mean recourse vectpr
can be expressed, can be expressed by using a suitable norm. In the sequel, the Euclidean
norm is considered:

N
p=>Y ply -yl @)
1=1

Thus, the (SLPRR) model can be formulated as follows:

N
(SLPRR  min cIx+ Y poy
1=1

st Agx = by,
TIx+Wy=h, |=1...,N,

N
doplv Yl <e, ©)
1=1

[x <X <uy,

ly<y<uy, |I=1...,N.
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By reducing parametrically the toleranee- 0, a sequence of recourse solutions with a
controlled degree of variability is obtained. Naturally, more stringent robustness conditions
cause an increase in the objective function value. Therefore, the goal is to identify a solution
strategy with a relatively low dispersion that, on the other hand, does not imply an excessive
increase in the expected cost.

The introduction of the “dispersion constraint” (3) in the model makes the problem very
difficult to solve because the constraint is nonlinear and nonseparable. In order to overcome
this difficulty, three different approximation procedures to the general model have been
proposed and analyzed in [20]. They are based on a linearization of the dispersion constraint,
but differ in the choice of the point around which the search of a solution with an acceptable
degree of dispersionis confined. Inthis paper, on the basis of the computational experiments
carried out in [20], we consider the most appropriate scheme in terms of cost-robustness
tradeoff. It consists of restricting the variablity among all recourse vectors from a common,
but arbitrary poinz € R™.

Before formalizing the method for solving the (SLPRR) model, we recall from [20] the
following concepts and notation.

Given an optimal solutiofix*, y;, ys, ..., yy} of the (SLP) problem, the maximum and
the minimum values for each recourse comporigwoter all recourse vectong', | € €,
are defined as:

U = rITl?ZX(yfk)i s i = 1,...,Nny (4)
ﬂ:mg\(}ﬁ*)l, i:l,...,nz, (5)
anddy = (0y, . . ., Un,), andly = (I, ..., I,) represent theirtual upper boundandvirtual

lower boundvectors, respectively.
Thus, thevirtual rangevectorw is defined as:

o= Uy —ly. (6)

The components of the virtual range represent the coordinate dimensions of the smallest
np-dimensional hyper-rectangle that contains all the current recourse solytions .

The dimensiors of the smallesh,-dimensional hypercube containing all current recourse
solutions is defined as:

§= max {w}, (7)

whereas the hypercultee R™ is:
d=41, (8)

wherel is then,-dimensional vector of ones.
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At this point, we are able to present a formal description of the procedure for enforcing
restricted recourse on (SLP).

Restricted recourse procedure

1. Setk = 0. Select atolerange> 0, and the restriction factar e (0, 1). Find an optimal
solution{xX, yX, ... yX} of problem (SLP).

2. Compute the mean recourgg(Eg. (1)), and the recouse dispersigi(Eq. (2)). If ok <
¢, the solution is robust within the prescribed tolerance, and the procedure terminates.
Otherwise, the virtual bounds, I (by Egs. (4) and (5)), the virtual rangé (by Eq. (6))
and the rangdX (by Egs. (7) and (8)) are computed.

3. Solve the following linearized restricted recourse stochastic program:

N
(RRSB  min ¢/x+ Z TlY
=1

st.  AgX = by,
TX+Wy=h, I=1...,N,
—%d"sm—zs%dk, l=1,...,N,
lx =X = uy,
ly<yi<uy, I=1...,N,
ly <z<uy,

to obtain a new solutiofx*+1, Z<+1 yk+1 Kl "if the problem is infeasible for the
current settings of the robustness bound no further robustness can be achieved and the

procedure terminates. Otherwise, ket k 4+ 1 and return to Step 2.

The vectorz € R™ represents the cluster point around which all recourse decisions are
confined. The determination of the optimal coordinates of this point is left to the model.
This freedom in the choice of the positionzdllows a high flexibilty of the method, but, on
the other hand, leads to an increase of the size of the corresponding probledditional
variables).

By setting slack variables = yi — z,1 € , the linearized dispersion constraints in the
(RRSP) model can be replaced by:

yi—z—s5=0, 1=1...,N,

A A
—Zd¢<g<Zd¥, I=1,...,N.
20 =9=3
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Consequently, the constraint new matdx e R™" (m = m; + N(m, + n,), and
N = n; + (2N + 1)n,) takes the form:

Z X % S Y2 & - YN SN
Ag
T W
—1 | —1
A— T2 W,
-1 | —1
Tn W

It is easy to see that, by setting

Ao = (0 Ag),

and, for each scenarios Q,

_ W o0 - 0 T
W = , T = ,
) B A )
the matrix A maintains a dual block-angular structure such as the one of the constraint
matrix A in the (SLP) model.

The method developed for solving the (RRSP) model relies on the same primal-dual
path-following method used in LOQO [18]. The two methods differ only in the way they
solve theNewton equation§.e. the system of equations that represent first-order optimality
conditions for the primal and dual logarithmic barrier problems) to determine the dual search
direction At. The solution of this system represents the major computational effort in any
interior point algorithm. While LOQO solves augmented systeaf Newton equations,
our method solves theormal system Mt = y, whereM = ADAT, D € R™"is a
diagonal positive definite matrix depending on the current estimate of the solutiof and
is a specific vector computed from the current iterate.

It is important to note thaM is much denser than the original matxand, thus, a
straightforward implementation of an interior point method that directly solves systems
with matrix M is quite inefficient. Several approaches have been proposed either to reduce
the number of dense columns [15] or to separate them from the other (nondense) columns
[2] (see [4] for a detailed comparison). One of the most efficient strategies is based on an
explicit factorization of the dual block-angular matrix. The main result in this respect is due
to Birge and Qi [6] and it is based on the Shermann-Morrison-Woodbury formula, reported
in the following lemma.

Lemma2.1. Forany matrices SU, V such that Sand G= | + VTS U are invertible
(S+uvhHl=st_stlycgtlvis? 9)
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In the case of the (RRSP) model, the general formula can be exploited to comptite
as stated in the following theorem.

Theorem 2.1. Let D = diag{Do, Dy, ..., Dy}, and S= diag(S,, S, ..., Sv}, where
Do € RMm+tm)x(mtN2) - corresponds to the iterate of the first-stage variablBs is the
diagonal2n; x 2n, submatrix corresponding to the Ith block of(De. to the iterates of the
second-stage variablgsS = | € R™*™  and for each scenariok 2, § = W, D|V_\/,T
e R(M2+n2)x(Ma+n2)

Furthermore let

N
H =Dy’ + A A+ TS,

_ _ 10
A | A I (10)
H AT B -|_—1 0 _ -|_—1 0
G: — AO s U: , V:
—-Ay O 0 0
Tv O Tn O

If ApandWi, | € ©, have full row rank then M and L= —AgH 1A} are invertible and
Mt=st_stUcvTst (11)

Proof: By settingD :=diag(Do, |}, U := UD andV := VD, the matrixM can be written
asM = S+UVT. In order to apply Lemma 2.1, we observe that ®nd(l +VTS1U)
must be invertible.

For each scenaribe €, the matrixD, is invertible and, in addition\j has full rank;
consequently§ = Wi D;W and, thereforeSis also invertible.

The matrix] +VTSU = | + DVTSIUD = D(D~2 + VTS 1U)D is invertible if
and only if (D=2 + VT S~1U) is invertible (sinceD is not singular). We note thabD—2 +
VTS1U) is equal toG. This result is an immediate consequence of what follows:

o [PP+ AAT LTS T A
-A [ —1
_[Do 07, A Ao+ YL TS A
Lo Ao —
=D?+VTsU.
We can now show thaG is not singular. BothD,? and A} Ay are symmetric and
definite positive. T, ST, is definite positive for eache €, since§ is definite positive.

Therefore,H is symmetric and definite positive and, consequently, invertible. The inverse
H~! has rank equal to; and can be decomposed irth ! = H~Y2H~1/2 whereH ~1/2
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is symmetric. We have assumed th&f has full rank and as a consequence the product
AgH Y2 gives a full rank matrix and. = —AqH ~*A] is invertible. The matrxG has
rank equal tan; + n; and, therefore, is invertible.

Once we have demonstrated that the matrix V™ S~*U) is not singular, we can apply
Lemma 2.1 to inverM:

M~t=(s+uvh!
=st-s'ud+Vvistu)tvist
=S!'-sWDD YD 2+VT'siU) D DVTS?
=St1-_sW(D?+V'siU)yvis?
=St'-stuGcvist

|

Directly applying Theorem 2.1 to explicitly compuké—? is not an efficient way to deter-
mine At. However, the dual step can be obtained\as= p — r, wherep is the solution
of Sp= v andr is obtained by solving the following systems:

Gg=VTp, (12)

The vectorp can be computed component-wise by solviggy = vy, for eachl =
0,..., N. Exploiting even further the special structure of the matrices involved in the
definition of § in the (RRSP) model we can rewrigp, = vy, forl =1,..., N, as:

(e o) (-

ow™ D+ \p/) " \y )

whereD/, D/ e R"™*" are the submatrices @, such thatD, = diag{D/, D;’}. Conse-
quently, the vectorg, € R™ andp’ € R™ can be found by solving:

S = vl - ST (14)
and
o= (D[ + D) 'y’ — ", (15)
where the matrice§ € R™*™, §" ¢ R™*™ and§”, e R"2*™ are given by:
§ = WID/W" — W D/(Df + D) DWW, (16)
§' = WD{(D/ + D)%, (17)
§" = (D/+ D{)'D/W. (18)
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These matrices can be now used to comdt& T, and then to formH in order to
proceed with the calculation gfandr.
The procedure for doing so is developed next.

If we set
S_l-l_—' = Rl = (R/I// F\ji///)’
R" R
the submatrice® € R™*™ andR" e R™*™ can be found by solving:
SR =9, (19)
SR =T, (20)
from which the submatriceR” € R"*"™ andR"" € R"*™ are derived:
R/// — _(DI/ + Dl//)—l _ S/// Rllv (21)
RI//H — _S/H R'”. (22)
Thus, multiplyingR, by the transpose of the matrix, we get the matrix:
TS~ (o) @3
TR TR

These matrices should be summed over all scenbrog and then added B, + Aj Ag
to form H (Eq. (10)).
At this point, the block structure of matri@ can be exploited to find:

so- (G D))= () @

7

where(”,) = VTp,q1 € R™*™), andg, € R™. Hence, we get:
G =—L"'x" + AgH 7)), (25)
G =H (7' — Aj). (26)
Onceq is known can be computed component-wise by solving the sys&ms- T,qy,
| =1,..., N. By exploiting again the structure of the matfix we have:

WIDIWT - WD\ (1 (0 Ty e _ Ty
DW" D/ +D//\r/ -1 0/\af —q; /)’
wherer/ € R™, 1" € R™, q; € R™, andg; € R™, or equivalently:

Sr{ =T + S'a;, (27)
1/ = —(D + D/)a} — S"r/. (28)
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The implementation of the strategy proposed in Theorem 2.1 requires, at each iteration
of the primal-dual path following method, the Cholesky factorization of matr§els =
1,..., N, H,andL. As shown above, the special structure of the matrices involved in the
(RRSP) modelis further exploited in the computation of the dualAtepMore specifically,
instead of factorizing, for each scenakia 2, the larger matrixg e RM+M2)xMAN2) the
smaller matrix§ € R™*™ s considered, with a consequent reduction of the computational
effort. Problems with a large number of second-stage variables are likely to benefit most
from this implementation.

The procedure for solving the systdvhAt = v can be now summarized as follows:

1. (SolveSp= v)

(a) SolveSpo = vro.

(b) Form, for eachh € 2, §, §’, andS” (Egs. (16)—(18)).

(c) Solve, foreach e 2, §p = ¢ — §'y," for p/ (Eq. (14)).
(d) Compute, for eache 2, p{’ using (15).

2. (SolveGqg=VTp)

(a) Solve,foreache , §(u); = (§)jfor(u)j,j =1,...,ntoformR (Eq. (19))
and computeR” (Eq. (21)).

(b) Solve, foreach € @, §(v)i = (Ty); for (v)i, i =1,...,ng, toformR’ (Eq. (20))
and to obtairR"” (Eq. (22)). Thus, compute the columns of the ma&h%‘ﬁ.

(c) Multiply, for eachl € €, (T)(u);,i =j,...,nzand(T,")(w)i,i =1,...,n;to
form T, ST, (Eq. (23)). FormH (Eg. (10)). Computer’ andx".

(d) SolveHu = 7’ for u and sev = 7” + Agu (Eq. (25)).

(e) FormL by solving (H)w; = (A}); for wi,i = 1,...,m; and by setting. =
—Ao[wl, ey wml]. _

(f) SolveLdg, = —v for gy, then solveHa; = =’ — Al d, for g; (Egs. (25) and (26)).

3. (SolveSr =UQq)

(a) Setro = AoQ1 + g and, for each = 1,..., N, solveSr|/ = Tiq; + S'q; for r/
(Eq. (27)).
(b) Compute, foreach=1,..., N, /" (Eq. (28)).
4. (FormAt =p—r)
SetAtg = pg—ro, and, foreach =1, ..., N, setAty = p —r.

The procedure described above is well suited for parallel implementation since most of

the steps involve individual scenarios, and, thus, the computational workload can be easily
splitted among processors by using trivial scenario based decomposition.

3. The effects of restriction on recourse solution

In this section, we illustrate the effect of the introduction of robustness conditions on the
variability of the recourse solutions across scenarios. In particular, we show how restriction
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Table 1  Size charateristics of test problems.

Original problem (SLP) Extended problem (RRSP)

First stage Second stage First stage Second stage

Problem Rows Columns Rows Columns Rows Columns Rows Columns

scagr7 15 20 38 40 15 60 78 80
scsd8 10 70 20 140 10 210 160 280
sctapl 30 48 60 96 30 144 156 192
scrs8 28 37 28 38 28 75 66 76

limits the dispersion of the recourse solutions, while it causes an increase in the objective
function value. It is beyond the scope of this paper to investigate how to identify the
acceptable parameters, since their choice is problem dependent. Our objective istoillustrate
the corresponding increase in the optimal objective value when a considerable increase is
imposed on the dispersion of the recourse variables (i.e. very small vat)ie of

A detailed assessment of restricted recourse models is given in [20]. Here we illustrate
the behaviour on a set of test problems from the SLP library of Holmes [12]. The same
problems are used in the next section to analyze the computational efficiency of our matrix
factorization technique. In these problems the uncertain parameters are the right-hand-side
vectorsh of the second-stage constraints.

In the following tables we report the size characteristics of the test problems. In particular,
Table 1 describes the size of the first- and second-stage problems for both the original SLP
and the extended version of RRSP (after the cluster veetod the slack variables, | € Q
are added).

Table 2 summarizes the sizes of the deterministic equivalent programs of the original and
the extended versions of each test problem with an increasing number of scenarios.

In Table 3 we report the values of the recourse dispergiand the euclidean norm of
the virtual rangev before and after imposing robustness conditions. In addition, we report
the optimal objective values of the objective functifg p and frrsp in both the original
and the restricted recourse cases.

On the basis of these values, the relative increasa the objective value is computed
as follows:

_ frrsp — fsip
fsLp

We also report the relative reductiepin the recourse dispersion defined as:

PSLP — P(RRSH
P(SLP

o=

The results of Table 3 have been collected by using LOQO as optimizer (but any code
could be used for this purpose) with a fixed maximum number of iterative restriktiers0
and a value ok = 1.
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Table 2 Size characteristics of the deterministic equivalent of the SLP and RRSP problems.

Original problem Extended problem

Problem Scenarios Constraints Variables Constraints Variables
scagr7.4 4 167 180 327 380
scagr7.8 8 319 340 639 700
scagr7.16 16 623 660 1263 1340
scagr7.32 32 1231 1300 2511 2620
scagr7.64 64 2447 2580 5007 5180
scsd8.4 4 90 630 650 1330
scsd8.8 8 170 1190 1290 2450
scsd8.16 16 330 2310 2570 4690
scsd8.32 32 650 4550 5130 9170
scsd8.64 64 1290 9030 10250 18130
sctapl.4 4 270 432 654 912
sctapl.8 8 510 816 1278 1680
sctapl.16 16 990 1584 2526 3216
sctapl.32 32 1950 3120 5022 6288
sctapl.64 64 3870 6192 10014 12432
scrs8.4 4 140 189 292 379
scrs8.8 8 252 341 556 683
scrs8.16 16 476 645 1084 1291
scrs8.32 32 924 1253 2140 2507
scrs8.64 64 1820 2469 4252 4939

As shown in Table 3 and in figures 1-4, the reduction in the dispersion of recourse
solutions and the consequent increase in the objective value depend on the problem and its
flexibility to achieve robust solutions. Three cases can be distinguished here.

Inthefirst case (such asagr7, sctapl), we observe that the restricted recourse solution
is characterized by a very limited increase of the objective value and a considerable reduction
of the recourse dispersion. In the second case (see, for examphks), the reduction of
the recourse dispersion is payed for by a considerable increase of the objective value.
In this case, it is up to the user to balance the required dispersion reduction with the
acceptable increase of objective value. In the last case, the problem exhibits inflexibility in
its solution leading to infeasibility when robustness conditions are introduced in the model
(this behaviour was observed in some problems suelktfisx1 [12]).

4. Computational results

We have implemented@ code (hereafter referred to as RRSP) for the restricted recourse
procedure that takes advantage of both the dual block-angular structure of the constraint
matrix and of the structure of the matricdsandT arising in the (RRSP) model.
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Table 3 Effect of the restricted recourse on the objective function and the dispersion value.

227

Problem SLP Problem RRSP
Problem 12]] o(sLP fsLp loll  pRRSH fRRSP € (%) €, (%)
sctapl.4 2.77 1.36 280.50 0.011 0.005 299.77 6.86
sctapl.8 27.07 13.43 360.50 0.308 0.130 393.38 9.12
sctapl.16 27.65 13.80 359.00 0.414 0.158 389.59 8.52
sctapl.32 27.88 13.91 354.00 0.583 0.208 382.84 8.14
sctapl.64 42.09 14.03 344.00 1.141 0.347 370.53 7.71
scagr7.4 800.72 338.82 —83273800 5.724 2.447 —83205170 0.08 98
scagr7.8 801.86 335.61 —83273780 5.567 2.372 —83205160 0.08 99
scagr7.16  800.87 306.15 —83273810 5.567 2.118 —83205160 ‘0.08 98
scagr7.32 808.61 237.46 —83273780 5.463 2.027 —83205580 0.08 97
scagr7.64 802.93 222.09 —83273780 5.424 2.016 —83205570 0.08 97
scrs8.4 141.71 70.55 690.21 4.370 2.185 1296.97 87.90
scrs8.8 141.71 70.02 1122.97 4.452 2.093 1674.46 49.10
scrs8.16 141.71 52.83 879.22 4.452 1.771 1669.81 89.91
scrs8.32 141.71 52.01 834.61 4.452 1.591 1597.57 91.40
scrs8.64 141.71 52.07 669.54 4.453 1.668 1437.63 114.71
scsd8.4 0.70 0.35 1550 0.417 0.184 17.94 15.74
scsd8.8 1.00 0.50 16.00 0.595 0.253 18.06 12.87
scsd8.16 1.00 0.47 15.99 0.582 0.241 17.86 11.69
scsd8.32 1.00 0.43 15.99 0.596 0.231 17.69 12.32
scsd8.64 1.00 0.36 15.84 0.615 0.206 17.16 8.33
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Figure 1L  Effect of restricted recourse on the objective value: probdesus.
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Figure 2 Effect of restricted recourse on the objective value: probiems.

-83.22

~83.24 -

Objective function value (e+4)

-83.26

-83.28 - -
0 100 200 300

Recourse dispersion

Figure 3 Effect of restricted recourse on the objective value: prokdeagr7.

The restricted recourse procedure iteratively reduces the dispersion bounds on the re-
course variables (by reducing the hypercabeand calls the primal-dual path-following
interior point solver to obtain a solution of the restricted recourse program. Thus, the RRSP
procedure can be seen as a sequence of outer iterations in which we solve the (RRSP)
problem by a sequence of interior point (inner) iterations. The number of outer iterations
depends on the problem to be solved and the choice of the tolerance parameter

In order to evaluate the performance of the RRSP code, we report in Table 4 the average
number of inner iterations, and the average CPU time needed per outer iteration (with a
small value ofe andk = 50). We also report in the same table, the results collected by
using ROBOpT [21] and LOQO [19] as solvers; RRSP uses the same default accurancy
parameters as defined in LOQO and ROBOpT.
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Table 4 Average interior point iterations and solution time (in CPU seconds) per outer restriction iteration.

ROBOpT RRSP LOQO
Problem Iterations Time Iterations Time Iterations Time
scagr7.4 20.0 7.84 20.0 4.60 19.5 1.00
scagr7.8 22.0 15.53 20.4 7.92 20.5 3.27
scagr7.16 22.4 30.05 225 15.50 23.8 28.41
scagr7.32 23.0 62.40 25.0 33.50 26.4 954.17
scagr7.64 27.0 140.36 31.0 78.38 28.6 22.55
scsd8.4 13.0 71.20 13.0 14.85 17.9 3.33
scsd8.8 14.0 148.41 14.0 23.70 17.6 10.03
scsd8.16 13.0 268.41 13.0 37.70 171 58.86
scsd8.32 14.0 574.18 14.0 73.40 18.4 57.15
scsd8.64 15.0 1217.93 15.0 151.33 215 128.69
sctapl.4 135 41.64 12.8 14.93 16.5 1.71
sctapl.8 14.9 86.93 14.0 25.96 17.7 6.80
sctapl.16 16.0 181.60 16.0 50.32 19.8 62.09
sctapl.32 17.6 389.64 17.0 98.76 24.7 27.61
sctapl.64 21.1 879.48 20.0 227.22 27.3 61.45
scrs8.4 16.0 7.48 16.0 4.66 18.0 0.72
scrs8.8 18.0 14.08 18.0 7.66 18.3 1.92
scrs8.16 19.0 26.13 19.0 13.56 19.4 10.98
scrs8.32 23.0 59.55 23.0 28.10 21.6 5.48
scrs8.64 27.0 135.36 26.0 59.80 22.3 12.94
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Figure 4  Effect of restricted recourse on the objective value: protdeatpi.
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All these codes are implementations of the same interior point algorithm, and they differ
only in the way they calculate the dual step. In particular, LOQO is a general purpose code
and does not exploit the block structure of the constraint matrix. ROBOpT exploits the dual
block-angular structure of SLP, while our code goes a step further than ROBOpT and it
exploits the special structure of the blocks that is observed in the (RRSP) model.

All the computational experiments have been carried out on a DEC 4000 Alpha worksta-
tion with a 175 MHz Alpha processor and 64 Mb RAM. Tae compiler with the default
optimization level was used.

The results in Table 4 and in figures 5-8, show that RRSP is competitive with LOQO and
significantly faster than ROBOpT.

The results deserve some interpretation. LOQO is a general purpose solver that exploits
sparsity, but it does not take advantage of the block structure.
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Figure 5 Solution time with increasing number of scenarios: probiemds.
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Figure 6. Solution time with increasing number of scenarios: probiemgr7.
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Figure 7. Solution time with increasing number of scenarios: probterapi.
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Figure 8 Solution time with increasing number of scenarios: probiemss.

From the results reported here it appears that the exploitation of sparsity by LOQO
is efficient, and our method does not have remarkable advantage. However, our method
enjoyes the appealing feature to be well suited for parallel implementation [3]. In addition,
references [13] and [21] report very promising results with parallel implementations of the
special matrix factorization procedure implemented in ROBOpT (i.e. exploiting the dual
block-angular structure of two-stage stochastic SLP problems).

The advantage of RRSP over ROBOpT can be explained in the way they exploit structure.
ROBOpT employs a matrix factorization technique similar to ours, but does so for two-
stage problems, assuming that the first-stage coupling variables and the scenario blocks are
relatively dense. The restricted recourse reformulation (RRSP model) creates larger blocks
for both first- and second-stage constraints that are very sparse. ROBOpT does not exploit
the added sparsity, while it suffers from the enlarged problem size. Our code exploits the
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Figure 9 Computational performance of the RRSP code.

internal structure of the blocks in addition to the overall dual block angular structure of the
problem, and therefore it is much more efficient than ROBOpT.

As shown in [21] one of the most attractive features of ROBOpT concerns the ability
to implement a very efficient parallel version when solving large scale problems. A key
charecteristic of parallel ROBOpT is issalability.

The scalability of a parallel code is its ability to maintain efficiency at a fixed value
by simultaneously increasing in constant proportion the number of processors and the
size of the problem. Jessup et al. [13], show that this feature derives from the Birge-Qi
factorization of the dual block-angular structure of the constraint matrix. Hence, a parallel
implementation of RRSP seems very promising since it computes the dual step by using
the same factorization procedure in ROBOpT taking further advantage of the special block
structure of the matrices in the (RRSP) model.

Furthermore, it is clear from Table 4 that the number of interior point iterations is only
marginally affected by the increasing problem size (i.e. the number of scenarios). The
above observation is made even more relevant by the results in figure 9, which shows how
the average execution time of an inner iteration in RRSP increases linearly with the number
of scenarios.

For all test problems considered here, the RRSP code compares favorably especially
with LOQO, which exhibits fluctuations in solution time for all the test problems (see
figures 5-8).

We have mentioned that our code should be better suited for solving problems in which
the number of second-stage columns is greater than the number of rows. This observation is
confirmed by the computational results. RRSP exhibits its best relative performance in the
solution of problenscsd8 which has the largest proportion of second-stage variables. In
this case, RRSP is very competitive with LOQO and is up to 8 times faster than ROBOpT.

5. Conclusion

We have proposed an algorithm to solve restricted recourse stochastic programs. The model
is a classical two-stage stochastic programming problem that, in order to ensure robustness,
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includes linear constraints on recourse decisions. We have shown that the considerable
increase in the size of the problem, caused by the inclusion of the linearized dispersion
constraints, is balanced by a suitable factorization that exploits both the block-angular
structure of the constraint matrix and the special structure of the mathicasdT arising

in the (RRSP) model. The extension of the matrix factorization method to exploit the inner
structure of the blocks represents the main contribution of this paper with respect to previous
works.

The computational results show that RRSP is significantly faster than the serial imple-
mentation of ROBOpT and is competitive with the state-of-the-art optimization software
LOQO. A parallel implementation of the RRSP code seems to be very promising for the
solution of large scale problems with a very large number of scenarios.
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