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ABSTRACT

This paper aims at defining a dynamic and flexitdeff structure for a
distribution company that protects the retail cansts against the excessive
fluctuations of the wholesales market prices. Weppse a two-stage pricing
scheme that sets in a first-stage a time-of-us# that is corrected later by a
dynamic component once the real-time demand has lmdmserved. A
personalized tariff scheme may be offered by aidigion company to each
dynamic customer by allowing him to choose the appate robustness level
expressed in terms of variability between the firahd the second-stage
decisions. The arising limited recourse model hesnhtested on realistic test
problems, by using a slight modification of a rateproposed interior point
solution framework.
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1. Introduction

The liberalization of electricity markets has beeom worldwide concern, involving many
countries. As a result, many challenges are beirgegted and consequently new
optimisation models are being developed since nafsthe old models used by the
monopolistic utilities are not useful anymore. Heee since the first deregulation of the
electricity market in England, a lot of interestshibeen devoted to the enhancement of
competition from the generation side ignoring tloéeptial role that the retail market can have
to ensure the efficiency of the restructured markéflore specifically, regulators and
distribution companies have always assumed retitathd as inelastic and thus unable to
influence the market clearing price or to prevegdiast market power. This assumption can
damage the success of competitive markets espetiatiase of generation shortage or entry
barrier for suppliers.

The most significant signal of alarm received iis tirection arrived in 2000 with the
crisis of the Californian electricity market whemetwholesale prices increased remarkably



and retail revenues were not sufficient to coverdrstribution companies’ expenses. Several
analysis, sometimes contradictory, have been diwethe causes of that crisis but it seems
that most of the researchers agreed on at leaspané the lack of demand responsiveness
mechanisms in the retail market was one of the f@aitors that had contributed in the failure
of the Californian experience (see Faruqui and Ge8002, Wolak 2001, Borenstein 2004).

Since that time, many works have focused on thenigoes that can force the demand
to be responsive to wholesale prices. It is wicgalgepted that real-time pricing for the retail
market is an efficient tool to achieve demand alagtin the electricity systems (Wolak 2001,
Borenstein and Holland 2003). The idea is to awbadic tariffs in the retail market and offer
new schemes based on the effective energy costhwbllows the wholesale prices. This
objective, however, is often contrasted with thewiof the regulators whose mission is to
protect retail customers against the volatilitykrend who prefer traditional tariffs such as
flat-rates, time-of-use or critical peak pricing oizet and Kleit 2003). Reaching a
compromise by defining dynamic tariffs that do retpose retail customers to prices
volatility seems to be a real challenge towardsciapletion of the deregulation process in
the electricity business.

This paper wants to be a contribution in this diget It deals with the use of the two-
stage stochastic programming framework to formudatiynamic pricing scheme for the retail
market. The main idea is the following: the customeffered a first-stage static tariff that is
then followed by a recourse dynamic price once difective demand is observed. The
volatility risk is hedged by limiting the varialiji between the static and the dynamic
components of the tariff. According to this stratethe dynamic pricing process can be
schematised as shown in Figure 1.

First-Stage Decision Observation Second-Stage Decision

Effective Demand

Static Tariff |]:> & |]::> Dynamic Tariff

Market Clearina Price

Figure 1: Sequence of events in the two-stage decisionegsoc

The stochastic demand is represented explicitlp @sndom variable with a known
probability distribution and is incorporated inteetmodel by means of a setlofscenarios.

To each scenario(with | = 1,..., L) is associated a probability valpesuch thatZlL=1 p, =1.

The literature on this topic is quite rich. Manytlaars (most of them are economists)
have discussed the importance of real-time retalng and some of its effects, for example,
on the investment efficiency (Borenstein and Hall&©03) and on the long-term operation
(Borenstein 2004). However, to the best of our Keodge only very few tariff definition
models based on real-time pricing have been prapoBer example, Petterssen 2004
describes in his thesis a model of a domestic ddrsale response and proposes a game
theory approach to the strategic interaction betwaeretailer and an “active” consumer.
Another contribution is due to thEFFLOCOM project in which the researchers have
developed, tested and evaluated a set of econonmcanhtives whose aim is to improve
flexibility in the consumption-side.

The optimisation model we are proposing here shbeldonsidered as a support tool
for a distribution company (DISTCO) to define aiffastructure that, while maximising its



profit, satisfies the regulatory rules and givegdglines to customers on how to choose the
real-time tariff, that are sensitive to the priggnals.

The paper is organised as follows: before intragigiche optimisation model we will
discuss the advantages of dynamic pricing and dhafly its superiority with respect to the
static tariffs (section 2). Our dynamic pricingat&gy is described then in section 3. While the
development of our model does not depend on articpkar market structure, the regulatory
rules have been formulated for the specific casthefrecently deregulated Italian market.
Section 4 will be thus devoted to the translatiérth@ Italian profit ceiling constraints in
mathematical terms to fit the dynamic pricing sckenthe definition of a robustness
framework will be the subject of section 5 and tkemputational results will be presented in
section 6 and some remarks will conclude the paper.

2. TimeVarying Pricing Methods

Unlike other commodities, the pricing of electycitas been characterised for long time by a
flat-rate tariff without obeying the offer-demandle. This tariff structure clearly distorts
reality. Generation cost varies substantially dherhours of the day, the weeks of the month
and even the seasons of the year. The first impnewés for the pricing strategies consists in
applying static time varying tariffs such as tinfedse, critical peak pricing and demand
reduction programs (Doucet and Kleit 2003). Themabjective behind these methods is to
offer some economic incentives for the consumeetyease their demand during peak-load
periods in order to avoid the use of high cost gatien units. A further improvement is the
use of real-time pricing in such a way that retailffs reflect the variations of the wholesale
prices. In this way, the demand responsivenessicamjust faster to the price signals. It is to
be noted that the application of real-time methoetpuires the availability of sophisticated
measuring instruments and not just the traditi@margy accumulating meters used for flat-
rate tariffs. In what follows we describe brieflhese methods and we discuss their
characteristics.

2.1. Static Pricing M ethods

Pricing methods belonging to this category areedalitatic because they are composed of
price components that are known a priori even neohtfore their application (Borenstein et
al. 2002). Among these methods we cite:

» Time-of-use method (TOlWnder this method prices vary in a pre-set wahiwicertain
blocks of time during the day. Three prices in gahécalled peak, shoulder, and off-
peak prices) are used to capture the macroscopestf the wholesale prices. The main
disadvantage of the TOU is related to the infregyeaf prices adjustments and also to its
inability to capture the price variation within théocks.

= Critical peak pricing (CPP)it is based on a TOU scheme with an additionalajig
price that applies only to some critical peak pasidt is up to the DISTCO to decide the
periods in which the penalty is applied providedttthe frequency of application should
agreed by contract. Even though the CPP representsiprovement to the TOU it has
the disadvantages that the penalty price is setivance and that the number of occasions
in which it can be applied is limited a priori.

= Demand reduction programs (DRPynder these programs the customer receives a
reward following a reduction in demand. In othesgrams (better known as interruptible
rates) the customer gives the right to the DISTGGnterrupt the service during some



critical periods and receives a price discounthim dther periods. These methods share,
however, the precedent methods in their shortcosning

It is also worthwhile noting that both the flatedariffs and the static pricing methods
have a common drawback of penalizing flexible tetastomers who, despite their limited
consumption during critical periods, are forcegé&y the high rates caused by the customers
with high demand during the peak systems, i.e. wiistantial contribution to the high prices
(Wolak 2001).

2.2. Real-TimePricing

Tariffs based on Real-Time Pricing (RTP) do notrgkapreset components but apply
different retail prices for different hours of thday and for the different days in order to be
frequently aligned with wholesale prices. RTP pangs have the advantages of increasing the
demand responsiveness and of improving the mafieieacy. Many experts, indeed, made
clear declarations in favour of RTP. One of thepsufers is Ray Gifford (chairman of the
Colorado Public Utility Commission) who observed retail electricity prices reflected the
cost of power, a demand-side response would brireg harket back to equilibrium,
dampening both high prices and volatility” (see Ugai and George 2002). Severin
Borenstein (director of University of California &gy Institute) argued that “electricity
markets will suffer from chronic difficulties untdnd-users become more active participants”
(reported in Bushnell and Mansur 2002). RTP hageed, many attractive features (Wolak
2001, Borenstein and Holland 2003, Doucet and KIe@3). For instance, RTP:

» encourages the demand side to be more active bingpthe DISTCOs to be more
careful in their purchasing decisions;

= dampens price volatility and reduce the possibiityolackouts in case of generation
shortage;

= avoids the inadequate investment in production @gpaince demand responsiveness
reduces demand at high price periods and thus makescessary the installation of
new peak generating units.

Nevertheless, these alleged advantages have bbewed by just a few empirical
studies. Most of them are based on the use of T&lates to predict the retail demand
responsiveness to RTP signals (Faruqui and Ged@@2)2According to an EPRI (Electrical
Power Research Institute) report, a 2.5 % redudtio@alifornia’s electricity demand could
reduce wholesale prices by 24 % (reported in JahrZa91). Yusta and Dominguez 2002
have presented a model to measure the industmnahie response to RTP that shows how the
reduction of load can reach 38% during the moseegpe hours compared with the TOU
rate in the same hours. Wolak 2001b argued thaC#tiéornian system could count on 10000
MW capacity savings (the equivalent of 10 huge gladuring the summer peak periods by
simply applying RTP strategies. Another significavaluation reported in Johnson 2001
stated that according to a recent analysis, théedr$tates could save $14.8 billion annually
through the implementation of real-time electrigitycing.

Despite these advantages, RTP has not been widegptd or implemented. One
reason has been the belief that small customelrsetikhift usage in response to price signals
(Faruqui and George 2002). A second reason isitmalementing RTP may not be cost-
effective in light of the incremental billing andghisticated metering costs (Borenstein and
Holland 2003). Indeed, Yusta and Dominguez 2002ewMes that in the short term the



reduction of the consumption in peak hours deceettse retail revenues and thus DISTCOs
do not appear to have incentive to encourage RT®veMer, they affirm that RTP can
produce long term benefits derived from the deliagapacity investment.

3. Dynamic Pricing M odel

Dynamic Pricing (DP) is a general term to indicatey electricity tariff that recognizes the
inherent uncertainty in supply costs (Faruqui ami@e 2002). In the literature the DP term
has been used to indicate RTP and sometimes ewenvarying methods. The model we are
proposing in this paper is composed of two diffemmponents: the first one is based on a
TOU scheme and the second one follows the real\thm@esale price. Moreover, in order to
be general, the model even provides a flat-ratéf far customers who prefer time-invariant
prices. Our pricing strategy is, thus, a hybridftahat takes into account the stochastic
conditions of the system and consequently fits wedl general term of DP. This approach is
very attractive since we believe that it will presethe advantages of the RTP discussed
above and at the same avoids one of the main sinoirigs of the static pricing methods, i.e.
that of exposing retail customers to excessiveepnmlatility.

The problem to be solved by the DISTCO consistaaximising, over a time horizon
T, its profits resulting as the difference betwebe tevenues deriving from serving the
customers and the costs of buying energy. The horezon may be chosen to be several
months (in Italy, for example, retail prices chargeery two months by regulation) but
usually it is possible to consider shorter horiagithout significant loss in the solution
quality.

The model that we are proposing here is composdd@ikinds of tariffs. The first
one is a flat-rate tariff that does not change wiitee and with the market conditions. The
second is a dynamic tariff that follows partialhetwholesale market price. Any customer can
choose the tariff that fits better its consumpti@imaviour and is also allowed to change tariff
at any time.

We suppose that, for time period= 1,..., T, the DISTCO buys part of the needed
energy, sayQ', by means of bilateral contracts at a unit pft@and the remaining required

quantity, sayq' corresponding to scenaripfrom the wholesale market at the stochastic rate
of A'. While Q' is set by means of a long-medium term energy [anaf the DISTCO and

will be thus considered as input data in our moithel,stochastic quantitieg, fort =1, ..., T

andl =1, ..., Lrepresent decision variables in our model.
The revenues derive from servihNg customers , say; of them are on flat-rate tariff
and the remaining customers are on dynamic t&dth customer is characterised by his

reserved capacity that we denote @y for the flat tariff and byC® for the dynamic tariff,

whereb represents the TOU block<£1, 2 or 3 for the three blocks: peak, shoulder, and off-
peak prices). The reserved capacity, to be defimgedcontract, is the maximum instant

capacity, expressed in KW, that the customer maatl to reach. In addition, each customer
is characterised by his energy demand. We distanghere, for each time periog 1,..., T,

between two demand quantities: a baseline detestiirdemandD; to be agreed by contract
with the customer and the random demartd, that represents the additional load required

by customer under scenarib In the following we will deal first with the casé# nonnegative
realizationsd; | .

The idea of baseline load is a recently introducedcept to indicate the maximum
quantity that a DP customer is allowed to consuntleout applying DP prices (Borenstein et



al. 2002). In the context of RTP, in Wolak 2001dr, éxample, the author proposed to fix the
baseline load to 85 % of each hour usage from dke\lear the customer was on flat-rate
tariff.

The flat-rate tariff is time-invariant and has thrariables:

» FPF (in €): fix price applied to each flat-rate cus@maluring the time horizom;
= CPF (in €/ KW): price of each capacity unit reservedttbat-rate customer;
= EPF(in €/ KWh): price of each energy unit to be consdrbg a flat-rate customer.

The overall cost for the flat-rate customeunder any specific scenarlocan be
expressed as follows:

FC,, =FPF+CPF*C, + EPF* Y (D +d! )

tar

While flat-rate tariff customers will be chargedeteame energy price for both the
baseline load and the random demand, the DP customik pay the price corresponding of
the TOU block for the baseline load and a real-tpnee for the random component. The
resulting DP tariff has thus four set of variables:

= FPD (in €): fix price applied to each DP customer dgrihe time horizof;
= CPD" (in €/KW): price of a capacity unit reserved tBB customer during blodi,

= EPD" (in €/KWh): TOU price of a baseline energy uninsomed by a DP customer

during the TOU bloclb;
= EPD' (in €/ KWh): real-time price of a random energytwonsumed by a DP customer
under scenaribduring the time periotl

Similarly, the overall cost for the dynamic tagfistomel under any specific scenario
| is the following:

3 b
DC, = FPD+Y | CPDP*C?* N+ 3" (EPDP * D! + EPD! * di, )
b=1 2 taT,
As explained above the key of success of our gfyate order to be accepted by the
control market operator, is to limit the volatiliisk for retail customers even though such
restriction may introduce some increase in the TQ@idep and a decrease in the objective

function. This restriction is included into the mbbg limiting the variability betweerEPD"

and EPD' to a DISTCO-defined parametaras will be explained in section 5.

By referring to the stochastic programming termagyl, our DP tariff consists in two-
stage decisions: the first-stage flat and TOU ratesch are scenario-invariant and the
second-stage (recourse action) energy rate thagéndspon the time period and on the
observed scenario as well. The mathematical fornomlaif the DP model can be represented
as follows:
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tam, 1=1
0.5* CPD"* < CPD’ <0.8* CPD"™ b=23 (7)
0.5* EPD"" < EPD’ <0.8* EPD"™ b=23 (8)
FPF,CPF,EPF,FPD>0 (9)
CPD°,EPD° 20 b=123 (10)
EPD =0 t=1.T;1=1..L (11)

Constraints (2) ensure the supply-demand equilibrai each time period and under
whatever scenario observed. Constraint (3) impaga®fit ceilingPC on the objective value
M in order to respect eventual regulatory constsaaitning at protecting the consumers
against volatile retail prices. In the next sectiwa will describe an example of real profit
ceiling application as ordered by the electriciiglian Authority. The set of constraints (4)
limit the variability between first- and secondgeadecisions. Constraint (5) ensures that the
flat-rate energy componem will at least cover a fraction of the relative cqstid by the
DISTCO. The coefficien®, in the right hand side is defined on the basithefquantity of

energy consumed by flat-rate customers. Similaapatersd? are used in the analogous
constraints (6), referring to the three blockshaf TOU energy prices, to be applied to the DP
customers. The choice of the parameters’ value8 @nd 82 depends on the attitude of the



DISTCO to move the cost coverage on the energyuwopson tariff components rather than
on the fixed components. This is clearly a strategioice that depends on the DISTCO’s
managers and that influences directly the numbeustomers.

In (6) Ty, represents the set of time periods in which tlelbtariff b is used and\, is
its cardinality, i.e. the number of periods in whiglockb applies. This last parameter is also

used in the objective function in order to consideery capacity valu€’ with its effective

weight. Constraints (7) and (8) impose an acceetdidtinction between the blocks of the
TOU prices on the basis of user-defined paraméiertswe set here to the values of 0.5 and
0.8. The remaining constraints impose non-neggtosit all the decision variables.

Even though we have supposed till now that all ializations ofd;, are non-

negative, the model can be generalized to inclvée eegative values af;, provided some

slight modifications. Indeed, the DISTCO may dedidgromote energy savings behaviours
by means of incentives consisting in allowing dyiaoustomers to have some realizations of
the total energy that are less than their baselereand (specially during peak-load periods).

In this case the ternZIL:l p, * EPD *d;, in the objective function will have a negativersig

which represents a further advantage for the dynamnsumer. Such a policy will be also
advantageous for the DISTCO as long as the savdegs/ing from not buying the
corresponding quantity of energy in the wholesatesket is bigger than the relative lack of
profit. However, in this case it is reasonable fiplg a discount price on negative realizations
of demand that is a fraction, sdy of the dynamic energy price. In this way, theyonl
modification to be reported to the model is limitecthe objective function, and in particular
in the term corresponding to the revenues fdymamiccustomers that becomes:

N, 3 L
Lt {FPD+Z(CPDb%CP +Z(EPDb* Df +> . p *EPD ¥ d, m—
b=1 =1

i=N;+1 T,

with the parameteg, to be chosen by the DISTCO, that equals to 1nonnegative
realizations of the random demand and” €% otherwise.

4. Profit Ceiling Constraints

The DP model has included a profit ceiling limitatirepresented in the general form (3). In
this section we will discuss the profit ceiling straint and give an example of its
implementation for a real-life market.

From the economical point of view, profit ceilingrstraints may be necessary as long
as the market is not perfectly competitive. Thefgmrcompetition term in the electricity
context is a complex issue that includes many ¢mmdi such as inexistence of market power
and generators collusion, absence of supply shortagl entry barriers, developed retail
competition, etc. The dissatisfaction of one ofstheonditions can represent a fatal risk
leading to the failure of the electricity marketctdally, restructured markets worldwide are
far to be perfectly competitive since the deregakaprocess in most of the countries is still
either not completed or in an experimental phase.

Before describing the Italian regulatory constmimn retail tariffs it is worth
mentioning that the introduction of profit ceilimgnstraints is not a recent issue but has been
used even in the monopoly context before dereguiat real example is reported by Sheen



et al. 1994 who described the TOU pricing modelliadpby the Taiwan power company at
the end of the eighties. The model includes a poeiiing constraint formulated as a function
of the installed capacity.

In the recently restructured Italian market, thecticity Authority has introduced,
through the Order 204/99 (AEE 1999), a profit egjlimechanism for the retail market (see
also AEE 2001 and AEE 2004). According to thesemdISTCOs have to offer at least one
basic tariff but are also allowed to propose addai special tariffs based, for example, on
TOU or DP structure. The profit ceiling mechanismofe appropriately indicated in the
Italian context as revenue cap) introduces two kioidconstraints: V1 to be applied to all the
DISTCO’s customers under any tariff structure andstochastic settings, under whatever
scenario observed and V2 to be respected forljesbasic tariff applied by the DISTGO

According to Order 204/99 constraint V1 limits #wenual revenues that the DISTCO
can have by serving all the customers belonginthéosame consumption category. On the
basis of the customer’s voltage level the Italianth®rity defines six different consumption
categories. While V1 is a set bfconstraints, one for each scenario, for each copsan
category, V2 applies to every single customer dmetet will be consequently as much
constraints as the number of customers following @frthe tariffs proposed by the DISTCO
and again under whatever scenario that materializes

In order to incorporate the regulatory constrainte our pricing model we assumed
as basic tariff the flat-rate tariff and the DP estie as a special tariff. In this case, constraint
(3) will be replaced by constraint V1 of the form:

N,
Z[FPF +CPF*C, +EPF*Y (D! +di, )}
i=1 t=1
N,
_Z FPD+ZS:(CPDbﬁC?+EPDb*ZDJ+ZEPqt*diﬁlj (12)
i=N,;+1 b=1 24 taT, tT,
N, T
s[N2p1+pBZZ(D; +diﬁ|)} |=1....L

i=1 t=1

by L*N; constraints V2 to impose a maximum payment to bygpsrted by a flat-rate
customer (V2_F):

T

FPF +CPF*C, +EPF* Y (D! +d!,)

. (13)
< [elwzci +&,Y (D! +d, )j I=1...,Lii =1.,N,
t=1

and byL*(N, — Ny) constraints V2 to impose a maximum payment to hgpeded by a
dynamic customer, whenever the flat rate tariffajgplied for his consumption profile
(considering that he always has the option to ce®ts stay on flat tariff) (V2_D):

! The introduction of such constraints has represeatserious difficulty for most of the Italian 0ISOs who
proposed tariff schemes that have been rejecteldeoguthority because they violated the revenue cap



FPF +23:CPF%CP +EPF Y Y (Dr+dy ) <
b=1

b=1 T,

3 N 3 (14)
(£1+£222—2Cib +£3ZZ( D! +d, )j | =1..,L;i=N,+1.,N,
b=1

b=1 T,

where all the parameters defined on the right rsidd of all the expressions are Authority
defined coefficients that depend on the customeategory and are frequently updated to
capture the energy cost variations.

We should note how in both the sets of constrafi2tsF and V2_D the same variables
and parameters are used for both flat and dynanstmers. This is due to the fact that the
regulator ensures a cap only on the basic tarigaoe the customers who choose other tariffs
on their own risk. These constraints do not affeetdynamic tariff's components but just the
flat tariff's ones, taking into account the poskipithat also dynamic customers could choose
this kind of tariff.

5. Robustness Framewor k

The formulation proposed above is a two-stage sttah linear model including a set of
constraints that limit the variability between tfiest- and second-stage decisions. The
resulting problem belongs to the family of stoclaBhear programs with limited recourse
and can take advantage from the modelling appr8&éh LR proposed in Beraldi et al. 2003.
This is a specialised framework that supports tleeision maker in determining the
acceptable dispersion limitation paramaietarting from the solution of the classical two-
stage model, i.e. without recourse limitation, vaeability between the two stage decisions is
then reduced progressively until the limitation ci@es too aggressive and the corresponding
problem results to be infeasible.

In order to apply this approach to our pricing modee need to report a slight
modification to the SLP_LR framework by imposing thariability limitation on a subset of
the decision variables. Indeed, instead of thelprolsetting considered in Beraldi et al. 2003
in which all the decision components are subjeatesiriction, in our case only the energy
components of the DP tariff should respect thealmlity limitation. This can be carried out
by using a recursive approach whose iterationsisbimsupdating the parameteias follows

u=max |EPF"°-EPD/| - min [EPF°-EPD | (15

I=1,.L =
b=l,2,3 bD—Tl,Z,g
tOT, tT,

in order to enforce tighter limiting conditions dhe two stage variables. The iterative
procedure can be summarized as following:

Limited Recourse Procedure

/* solve the classical two-stage problem without any variability limitation */
solve_problem (solution, is_feasible, limitation_level);
while (is_feasible) do
/* update u according to the expression (15) */
update_u ();
/* solve the limited recourse problem with the new value of u */
solve_problem (solution, is_feasible, limitation_level),;
end do

10



As a further consequence to the above modificatashould adapt the variability
measure in order to suit our model specification:

0 = ZL p|HEPD ! - EPF "H for tOT,.  (16)
I=1

This measures will be used in the sequel of theep&p analyze the model behaviour. It
represents thmeandistance of the recourse decisions from the fiasges ones.

The limited recourse iterative approach representselevant advantage to the
DISTCO since it allows to find the acceptable traffebetween the variability limit and the
(possible) resulting decrease in the objective tionc Moreover, the adoption of this
framework can be motivated by the opportunity toe DISTCO to define several dynamic
tariff schemes by choosing different values of akility parameteu, that, however, represent
different attitudes to risk. In this way, the DISOCould take a competitive advantage by
offering to the customers a very flexible rangéaoiff solutions.

6. Computational Results

The dynamic pricing model has been tested on sewestances of a test problem generated
by simulating input data representing some realistienarios of the Italian market. The
number of customers chosen refers to a rather dIM&8TCO with 300 customers 200 of
which are on flat-rate tariff and the others aretloe dynamic tariff. The required input data
have been extracted from the data available onvite site of the Italian market and grid
operators and the Authorftynd refer to the month of June 2004. On the hafsikese data
10 different scenarios with the same likelihoodoturrence have been generated to model
the random clearing price and the dynamic demanydssing the bootstrapping technique
(Efron and Tibshirani 1993). The quantity of enefychased by bilateral contrac has
been set to a value close to the sum of the baselrergy of all the customers. All the
parameters present in the right hand side of tbBtfmeiling constraints are Authority defined
values that depend on the category of the consumerdation to the consumption voltage
(AEE 2004). In our experiments we have considelnedallowing parameters defined for the
category of non-residential users with low voltage(€/year) = 176.36p3 (€/kWh) = 0.015;

g1 (Elyear) = 19.26¢, (E/KW year) = 30.77¢3 (€/kWh) = 0.001.

The test problem considered here is specific to 808tomers belonging to the
category of non-residential users with low voltdge other test problems for other categories
have been considered showing the same behaviailneakesults presented below. The time
horizon has been fixed to one day divided intor#érivals and the number of four blocks of
the TOU tariff has been assumed in order to meetlthlian regulations. The resulting
problem has a dual block-angular structure with 288ables, 3501 constraints and 12895
non-zeros.

Several instances of our test problem have beeeddly varying the limited recourse
parameteru. We also solved the unconstrained version of thablpm, i.e. without any
limitation on the variability between the first-atlde second-stage decisions (that we will
improperly call unconstrained model).

Our experiments have also included the case intwbhpper and lower bounds are
imposed on the decision variables. Imposing sualmds is usual in any industrial pricing
process in order to express the preferences ofmiumieting manager. Several appropriate

2 hitp://www.autorita.energia. it
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bounds that are compatible with the Italian makepecifications have been tested. In all the
cases a similar behaviour has been observed congjriine robustness of our model.

Table 1: Flat-rate and TOU tariff

Block
Variable 1 | 2 | 3 | 4
FPF (€) 0.30
CPF (€/kW) 0.05
EPF (€/kWh) 0.082
FPD (€) 0.03
CPD" (E/kW) 0.05 0.04 0.032 0.026
EPD" (€/kWh) 0.1 0.068 0.055 0.044

Our emphasis here is twofold: from one side tedtmegvalidity of the dynamic pricing model
and from the other side showing the importancéheflimited recourse technique in defining
an efficient two-stage tariff scheme. In order tscdss the validity of the model we report in
Tables 1 and 2 an example of a resulting tariff tfeer particular value ofi = 20%. More
specifically, Table 1 reports the values of thé-fite and those of the TOU variables (block 1
refers to the most loaded periods and block 4Herléss loaded periods) and Table 2 reports
the real-time variables for the 10 defined scersaend one representative time period for
each block (only slight variation is observed amding periods of the same block). These
results show that the model’'s output offers reatenfiat and dynamic tariff structures that
are comparable with real tariffs actually appliedthe Italian market (a commercial tariff
example is reported in EAM 2004). Moreover, we cate some interesting features in the
proposed tariff. First the model “penalizes” that ftustomers by a tariff having a higher fix
rate with respect to the corresponding TOU compbnrBms can be seen as a risk aversion
behaviour of the DISTCO in front of the demand a&sicity of flat customers. Second, it is
worth noting in Table 2 how the real-time priceigarfor the different scenarios in the loaded
periods and tends to stabilize in off-peak periddss is reasonable since the real-time tariff
component should follow the profile of the clearipgce that increases remarkably only
during the peak periods.

Table 2: Real-time tariff (in €/kWh)

Block

Scenario 1 2 3 4

1 0.087 0.055 0.044 0.035
2 0.1 0.055 0.044 0.035
3 0.1 0.055 0.044 0.035
4 0.1 0.055 0.044 0.035
5 0.099 0.055 0.044 0.035
6 0.08 0.071 0.044 0.035
7 0.096 0.055 0.044 0.035
8 0.094 0.055 0.044 0.035
9 0.08 0.055 0.044 0.035
10 0.08 0.055 0.044 0.035
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The effect of the limited recourse is discussec herterms of variation of both the
objective function and the variability measuravith the parameten (we consider here the
valuesu = 5%, 10%, 20% and 30%). The results are reportetabie 3. In our case, while
the value ofp increases with the, as depicted in Figure 2, the objective functiemains
unaltered for any value afi and for the unconstrained case as well. This is @uthe
achievement of the maximum profits imposed by th&fipceiling constraints. Indeed, by
eliminating the profit ceiling constraints the otijge value observes a different behaviour
since it takes higher values with respect to thevipus case and it also varies with the
parameten, as shown in Figure 3.

Table 3: Effect of limited recourse

With profit ceiling Without profit ceiling
u(%) Objectivevalue Mean distance Objectivevalue Mean distance
0 38874,3 15,34 91167,85 15,34
5 38874,3 1,66 87264,33 1,38
10 38874,3 3,40 87744,33 2,76
20 38874,3 6,80 88704,34 5,52
30 38874,3 10,71 89342,34 7,39

Mean distance
value

O Limited recourse model
B Unconstrained model

5% 10% 20% 30%

Limited recourse parameter

Figure 2: Mean distance values vs. limited recourse paramet
(with profit ceiling constraints)

The defined structure has a particular attracteature that offers a real advantage for the
DISTCO. It can offer a dynamic tariff having whagewalue of the parameter without
causing any reduction in its profits. This mearat tiny DP customer can choose whatever
variability valueu which will produce different values of the firgtrd second-stage decisions
but without influencing the DISTCO'’s profits.

7. Concluding Remarks

With the deregulation of the electricity marketsnyaew optimisation models and solution
algorithms are to be developed. This paper proptsesise of stochastic programming to
define a retail tariff structure in the contexttbé open market. The structure offers a flat-rate
tariff but also proposes an attractive DP schena¢ tontributes to the efficiency of the
market by including a component that depends omti@esales price of the energy. The DP
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tariff charges, in a first-stage, a TOU rate fdnaseline demand and then makes a recourse
action by applying a real-time stochastic priceday additional energy consumed. To avoid
remarkable real-time price volatility the model ludes variability constraints between the
two stages decisions. In the paper we formulatea @dofit cap constraints as proposed by the
recently restructured Italian market and we disedg¢be model’s validity and the effect of the
limited recourse approach by solving some instan€esrealistic test problem.

Future research in this field can be developed calanvariety of directions. A
particular attention may be given to the studyhef ¢ffect of dynamic tariffs on the behaviour
of the customers and the way they are forced toorbecresponsive. Moreover, the
introduction of a risk aversion component into thedel may make it more realistic and
effective for real word applications. Another paddly is to extend the dynamic model to
other tariff structures such as those based omitim@nial rates. Another useful development
may be the application of our model to solve reabfems referring to a large DISTCO by (i)
collecting firm-specific data, (ii) considering aniger time horizon, and (iii) performing a
more sophisticated and realistic scenarios gemeranalysis. These extensions should be
computationally intensive since they introduce @ehmumber of additional variables and
constraints and the limited recourse algorithm igpghere should be unable to deal with such
complexity. The development of specialized algonishbased on a combination of row and
column generation methods, combined with some &&agjeographical splitting, could be a
key issue to explore in this context. Moreoverwill be necessary to include some of the
advanced techniques, typically used in stochastagramming, to limit the number of
scenarios such as the scenario reduction algoothiime constraint aggregation principle.

92000+

900001

Objective value 88000+

OLimited recourse model

86000+ B Unconstrained model

84000+
5% 10% 20% 30%

Limited recourse parameter

Figure 3: Objective function vs. limited recourse parameter
(without profit ceiling constraints)
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