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Abstract

In this paper we present a parallel method for solving two-stage stochastic linear programs

with restricted recourse. The mathematical model considered here can be used to represent

several real-world applications, including ®nancial and production planning problems, for

which signi®cant changes in the recourse solutions should be avoided because of their di�culty

to be implemented. Our parallel method is based on a primal-dual path-following interior

point algorithm, and exploits fruitfully the dual block-angular structure of the constraint

matrix and the special block structure of the matrices involved in the restricted recourse

model. We describe and discuss both message-passing and shared-memory implementations

and we present the numerical results collected on the Origin2000. Ó 2000 Elsevier Science

B.V. All rights reserved.

Keywords: Stochastic programming; Restricted recourse; Interior point methods; Numa multiprocessor

system; PVM; OpenMP

1. Introduction

Uncertainty is pervasive in several real-world applications. For example, in ®-
nancial planning, uncertainty a�ects the term structure of interest rates, in¯ation,
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currency exchange rates, and, thus, it has remarkable e�ects on the risk and the
evaluation of the ®nancial instruments of the investment portfolios. Other typical
applications, where ignoring uncertainty can lead to inferior or wrong decisions, are
airline scheduling, power management and so forth [5].

Stochastic programming represents a powerful tool to treat problems under un-
certainty [5,8,16].

In this paper we focus our attention on a speci®c class of stochastic programming
models: two-stage stochastic linear models with restricted recourse (RRSLP for
short) [30].

Before presenting the mathematical formulation of the RRSLP model, we in-
troduce some notation. Let (X;I; P ) be a discrete probability space and consider
X � f1; . . . ;Ng as the set of scenarios with associated probabilities fp1; . . . ; pNg such
that

PN
l�1 pl � 1.

RRSLP models are de®ned starting from the most fundamental two-stage sto-
chastic linear model (SLP for short) which can be posed in the following deter-
ministic equivalent form:

�SLP�min cT
0 x�

XN

l�1

plcT
l yl

s:t: A0x � b0;

Tlx� Wlyl � hl; l � 1; . . . ;N ;

x P 0; yl P 0; l � 1; . . . ;N :

Here x 2 Rn1 is the vector of the ®rst-stage variables, i.e. decisions made before
observing the values of uncertain parameters, whereas yl 2 Rn2 ; l 2 X, is the vector
of second-stage variables, i.e. recourse actions taken once a speci®c realization l of
the uncertain parameters has been observed. Furthermore,
A0 2 Rm1�n1 ; b0 2 Rm1 ; c0 2 Rn1 represent the ®rst-stage coe�cients, while
cl 2 Rn2 ; Tl 2 Rm2�n1 ; Wl 2 Rm2�n2 , and hl 2 Rm2 represent, for each scenario l 2 X, a
particular realization of the cost vector and the second-stage constraint matrices,
respectively.

The RRSLP model is obtained by adding to SLP the constraint:

XN

l�1

plkyl ÿ �yk6 �; �1�

where �y is the mean recourse vector and � > 0 is the user-de®ned level of the recourse
robustness.

Constraint (1), referred to as robustness constraint, is used to control the disper-
sion of recourse decisions, in such a way to obtain solutions that are not very sen-
sitive to the observed values of the uncertain parameters. This restriction may be
required in many real-world applications where a high variance of the recourse so-
lutions re¯ects di�culty of use. A nonexhaustive list of applications which can
bene®t from the restricted recourse formulation is given in [19,29].
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It is worthwhile noting that RRSLP models are much more di�cult to solve
than the corresponding SLP ones because of the nonlinearity and nonseparability
of the robustness constraint. Furthermore, the number of scenarios considered to
fully represent uncertainty is typically very high and thus, well-tailored methods,
that can take further advantage of the computational power of parallel systems,
are required.

In this paper we present a parallel method speci®cally designed for the solution of
the RRSLP model. The method is based on a primal±dual path-following interior
point algorithm, and exploits fruitfully the special structure of the constraint matrix
involved in the model.

This is the ®rst proposal of a parallel method for the class of stochastic pro-
gramming models incorporating robustness constraints: other existing approaches,
based on the use of general purpose codes, perform poorly.

The remainder of the paper is organized as follows. In Section 2 we present the
relevant aspects related to the solution of RRSLP models. In Section 3 we introduce
the parallel method and discuss some implementation issues. Section 4 is devoted to
the discussion of the experimental results carried out on the Origin2000. Finally,
Section 5 presents concluding remarks.

2. Solution methods for restricted recourse models

As pointed out in Section 1, the main di�culty to face when solving the RRSLP
model is the nonlinearity and nonseparability of the robustness constraint. Di�erent
approximation schemes have been proposed and analyzed in [30] in order to over-
come these di�culties. Here we consider the most e�cient scheme in terms of quality
of the solution obtained. According to this scheme, we restrict the dispersion of all
the second-stage decisions around a common cluster point z 2 Rn2 of the recourse
space. Thus, constraint (1) is replaced by its linearized counterpart de®ned as:

ÿ k
2

d 6 yl ÿ z6 k
2

d; l � 1; . . . ;N :

Here k 2 �0; 1� is a prespeci®ed parameter, whereas the vector d 2 Rn2 contains the
coordinates of the smallest hypercube including all the recourse decisions. It is
computed according to the following formula:

d � d1 and d � max
i�1;...;n2

fui ÿ lig;

where 1 is the n2-dimensional vector of ones, and ui and li represent the ith com-
ponent of the virtual upper and lower bounds computed as the maximum and
minimum components of the recourse vector across the scenarios, respectively.

The solution of the RRSLP problem can be carried out by using an iterative
scheme. Given a speci®ed tolerance � > 0, the linearized model is iteratively solved
for di�erent values of d. At each iteration, one of the two cases can occur:
· the current RRSLP problem is infeasible, that is the degree of restriction is too ag-

gressive and we stop;
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· an optimal solution is found, and tighter degree of robustness restriction can be
imposed; in this case we check if constraint (1) is satis®ed by the current setting;
if so we stop, otherwise we compute the vector d and the process is repeated.
Fig. 1 shows the e�ect of the restricted recourse procedure on a typical test

problem (see Table 1). The point corresponding to the highest dispersion value
(without any restriction imposed) represents the solution of the SLP model. As we
impose further restriction on the solution, an increase of the objective function value
is recorded (up to 7:7% over the starting value). The ®gure shows, however, that it is
possible to achieve considerable decrease in the dispersion of the recourse decisions
without any increase in the objective value during the ®rst iterations. The e�ect of
restriction on other test problems has been analyzed and discussed in [3].

All the methods proposed in literature for the solution of SLP problems exploit
the special block angular structure of the constraint matrix. In the RRSLP model
this structure cannot be recognized anymore unless a speci®c decomposition scheme
is applied. By properly reorganizing the constraint matrix, once introduced slack
variables, and by setting

�A0 � �0A0�;
and, for each scenario l 2 X,

�Tl � 0 Tl

ÿI 0

� �
and �Wl � Wl 0

I ÿI

� �
;

we regain the dual block angular structure of the constraint matrix �A of the RRSLP
model.

Fig. 1. E�ect of the restricted recourse on problem sctap1 (64 scenarios).
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To solve the linearized RRSLP model, we have designed and implemented a
primal±dual path-following interior point algorithm (PF). The computation of the
dual search direction Dt is performed through the solution of a symmetric linearized
system called Newton equation:

MDt � w: �2�
Here w is a given coe�cient vector, and M � �AD �A T (D 2 R�n��n is a diagonal positive
de®nite matrix depending on the current recourse solution).

The computation of the dual step represents, as in any interior point algorithm,
the bottleneck of the entire solution procedure (up to 90% of the total time). Fur-
thermore, matrix M is much denser than the original matrix �A and thus speci®c
approaches have to be applied in order to overcome these di�culties (interested
readers are referred, for example, to [2,4]).

We have implemented the strategy proposed by Birge and Qi [6] which is based on
the generalized Shermann±Morrison±Woodbury formula. The idea is to decompose
the matrix M into the sum of a matrix S and the product of two similar matrices �U
and �V . More speci®cally, the matrix S � diagfS0; S1; . . . ; SNg, where S0 � Im1

and, for

each scenario l 2 X, Sl � �WlDl
�W T

l 2 R�m2�n2���m2�n2�, whereas the matrices �U and �V
are de®ned as:

�U �

�A0D0 I
�T1D0 0

..

. ..
.

�TN D0 0

0BBB@
1CCCA and �V �

�A0D0 ÿI
�T1D0 0

..

. ..
.

�TN D0 0:

0BBB@
1CCCA:

By using the Shermann±Morrison±Woodbury formula and the above matrices, the
inverse of M can be computed as:

Mÿ1 � �S � �U �V T�ÿ1 � Sÿ1 ÿ Sÿ1 �UGÿ1 �V TSÿ1;

where

G � H �A T
0

ÿ �A0 0

 !
and H � Dÿ2

0 � �A T
0

�A0 �
XN

l�1

�T T
l Sÿ1

l
�Tl:

Table 1

Characteristics of the test problems

Problem SLP model RRSLP model

First stage Second stage First stage Second stage

Rows Columns Rows Columns Rows Columns Rows Columns

scagr7 15 20 38 40 15 60 78 80

scsd8 10 70 20 140 10 210 160 280

sctap1 30 48 60 96 30 144 156 192

scrs8 28 37 28 38 28 75 66 76
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In what follows we describe how the computation of the dual step can be e�ciently
carried out in the case of the RRSLP model. A more detailed description is reported
in [3]. Here, for the sake of completeness, we present only the basic steps that will be
useful in the description of the parallel implementation.

First of all, we point out that the computation of Dt is not carried out by explicity
computing Mÿ1, but as the di�erence of two vectors Dt � p ÿ r. Here p is the solution
of

Sp � w; �3�
whereas r is obtained by solving

Gq � �V Tp; and then Sr � �Uq:

By exploiting the block-diagonal structure of S, we can explicitly rewrite system (3)
for each scenario and solve for p0l 2 Rm2 and p00l 2 Rn2 , subvectors of p, the following
set of systems:

S 0lp
0
l � w0l ÿ S00l w

00
l ; �4�

where the matrices S0l 2 Rm2�m2 and S00l 2 Rm2�n2 are de®ned as:

S0l � WlD0lW
T

l ÿ WlD0l�D0l � D00l �ÿ1D0lW
T

l ; �5�
S00l � WlD0l�D0l � D00l �ÿ1; �6�

and

p00l � �D0l � D00l �ÿ1w00l ÿ S000l p0l �7�
with S 000l 2 Rn2�m2 given by:

S000l � �D0l � D00l �ÿ1D0lW
T

l ; �8�
where

wl � w0l
w00l

� �
and D0l;D

00
l 2 Rn2�n2 are submatrices of Dl such that Dl � diagfD0l;D00l g.

Submatrices S 0l; S
00
l , and S000l are also used to compute �T T

l Sÿ1
l

�Tl. These components
are then summed up, for each scenario l 2 X, and added to Dÿ2

0 � �A T
0

�A0 to form H.
The solution of Sr � �Uq can be e�ciently carried out by exploiting the block

structure of G. Let

V Tp � p0

p00

� �
;

then q1 2 R�n1�n2� and q2 2 Rm1 , subvectors of q, can be determined as:

q1 � Hÿ1�p0 ÿ �A T
0 q2�; �9�

q2 � ÿ Lÿ1�p00 � �A0Hÿ1p0�; �10�
where L � ÿ �A0Hÿ1 �A T

0 .
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Once q is known, r is computed component-wise by solving the system Slrl � �Tlq1.
Here, the special structure of Sl can be again fruitfully used to ®nd r0l 2 Rm2 and
r00l 2 Rn2 , subvectors of rl, as follows:

r0l � S0
ÿ1

l �Tlq001 � S00l q01�; �11�
r00l � ÿ �D0l � D00l �q001 ÿ S000l r0l; �12�

where q01 2 Rn2 , and q001 2 Rn1 are subvectors of q1.
To summarize, we notice that the special structure of the matrices involved in

the RRSLP model, can be e�ciently exploited in the computation of the dual step
Dt. In e�ect, instead of factorizing the matrix Sl 2 R�m2�n2���m2�n2� for each scenario
l 2 X, we consider the smaller matrix S0l 2 Rm2�m2 . The achievable advantage is
particularly remarkable for problems involving a high number of second-stage
variables.

3. Parallel implementations of the path following interior point method

As mentioned in Section 2, the major computational cost of the PF algorithm is
due to the factorization of M which has to be executed at each iteration in order to
determine the dual step. With the aim of reducing the computational time, we
propose a parallel implementation of such factorization. The procedure seems to be
particularly well-suited to be implemented on parallel computers since the relevant
matrix computation can be executed upon independent blocks.

The parallel implementation proposed here is based on the computational model
de®ned by the message-passing paradigm. Our approach implements the stand-alone
technique: each process executes the same set of instructions, working on di�erent
subset of the data domain (SPMD mode), without the supervision of any master
process.

Data distribution and load balancing represent two main issues to address in
order to design e�cient parallel implementations.

Data distribution. Input data for each process are represented by a subset of
second-stage coe�cients and a copy of ®rst-stage problem data. This distribution
allows each process to perform (concurrently) computations involving second-stage
data and (redundantly) calculations concerning the ®rst-stage problem. The repli-
cation of ®rst-stage data does not require a remarkable extra memory space since
they are typically little; on the other hand, it avoids frequent communication re-
quired if data were available on a unique process.

Load balancing. Our parallel implementation is scenarios-oriented, i.e. it is per-
formed by exploiting independent blocks of the constraint matrix. A good balancing
of the workload could be obtained simply by splitting equally scenarios among the
available processors: remaining scenarios could be then assigned arbitrarily to some
of the processors. Since the total number of scenarios is typically very high, the slight
di�erence in the number of the scenarios assigned to each processors cannot cause
any relevant unbalance of the workload.
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For the sake of simplicity, we assume in the sequel that the number of available
processors coincides with the number of scenarios.

The parallel scheme of the proposed technique is as follows:

Parallel scheme for the dual step computation

Step 0. The ®rst-stage problem data A0;D0; S0 and w0 are available to all the gen-
erated processes. The second-stage problem data Wl; Tl;Dl and wl, corresponding
to scenario l 2 X, are assigned to process l.
Step 1. (Parallel computation of Sp � w)

All the processes solve S0p0 � w0. Process l:
(a) Forms S0l; S

00
l eS 000l , (Eqs. (5), (6) and (8)).

(b) Solves S0lp
0
l � w0l ÿ S00l w

00
l and determines p00l (Eq. (7)).

Step 2. (Parallel computation of Gq � �V Tp)
(a) Process l solves S0l�ul�j � �S00l �j to ®nd �ul�j; j � 1; . . . ; n2, and solves
S 0l�ûl�i � �Tl�i for �ûl�i; i � 1; . . . ; n1. Determine the columns of the matrix
Sÿ1

l
�Tl.

(b) Process l multiplies �T T
l ��ul�i, i � 1; . . . ; n1 and �T T

l ��ûl�j; j � 1; . . . ; n2 to
®nd �T T

l Sÿ1
l

�Tl. All-to-all communication to determine H and to compute
p0 and p00.
(c) Process l solves Hu � p0 to ®nd u and sets û � p00 � �A0u.
(d) Process l forms L by solving �H�wi � � �A T

0 �i for wi; i � 1; . . . ;m1 and by set-
ting L � ÿ �A0�w1; . . . ;wm1

�.
(e) Process l solves Lq2 � ÿû for q2, and ®nds q1 (Eq. (9)).

Step 3. (Parallel solution of Sr � �Uq)
All the processes set r0 � �A0q1 � q2. Process l:
(a) Solves S0lr

0
l � Tlq001 � S00l q01 to ®nd r0l (Eq. (11)).

(b) Determines r00l (Eq. (12)).
Step 4. (Parallel solution of MDt � w)

All the processes compute Dt0 � p0 ÿ r0.
Process l computes Dtl � pl ÿ rl.

The proposed algorithm also exploits parallelism for the computation of the
components of w and the primal direction of the PF algorithm.

Communication issues. In the parallel scheme introduced above, the only com-
munication occurs at Step 2(b) in order to exchange the terms �T T

l Sÿ1
l

�Tl to form the
matrix H and to compute p0 and p00. At the end of the procedure, an additional data
communication is needed in order to collect the components of the dual direction
vector on one processor.

An alternative parallel scheme for the computation of the dual step based on a
master±slave paradigm has been proposed in [15]. In this case, computations in-
volving dense scenarios-coupled matrices are carried out by the master, whereas
independent tasks corresponding to scenarios are performed with full parallelism.
Within this scheme, communication occurs in three di�erent points. An all-to-one
communication at Step 2(b) in order to collect the terms �T T

l Sÿ1
l

�Tl; a one-to-all
communication to broadcast the matrix H and p0 and p00 computed by the master
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and needed to the slaves to perform the remaining calculation in parallel (Step 2(c));
a ®nal communication to collect the dual step components on the master process.

The proposed stand-alone scheme seems to be more suitable because of the lim-
ited communication required compared to the master±slave scheme. Moreover, the
redundant calculation on ®rst-stage data (actually not very computationally de-
manding) does not cause any additional cost since slaves should remain anyway in
an idle state waiting for information from master to be able to continue their work.

The parallel scheme introduced above, is also suitable to be implemented by using
the standard shared-memory interface OpenMP [21,22]. Indeed, OpenMP is based
on a task distribution and communication is replaced by access to the common
memory.

In Section 4 we will present the computational results for both message-passing
and shared-memory implementations.

4. Computational experiments

This section is devoted to the presentation and the discussion of the parallel path-
following method developed for the solution of the RRSLP model. The core of the
solution process, that is the computation of the dual step, requires the factorization
of both dense (H and L) and sparse matrices (S0l; l 2 X). To this aim, we have used
LAPACK library and Cholesky factorization, respectively. More speci®cally, we
have used a sequential version of the supernodal Cholesky factorization of Ng and
Peyton [20] since our code relies on a scenarios-oriented parallelization rather than a
functional one.

Roughly speaking, our code (RRSP for short) can be viewed as an iterative
process based on outer iterations that progressively reduce the dimension of the
hypercube containing the recourse solutions. Within each outer iteration, we solve
the restricted recourse linear program by using the PF algorithm (inner iterations).
The number of outer iterations depends not only on the considered problem, but also
on the choice of the parameter � that traces the cost-robustness tradeo�. For this
reason, in order to evaluate the performance of RRSP, we will not consider the
number of outer iterations, but the execution time per outer iteration (to), the av-
erage number of inner iterations (ni), and the average execution time per inner it-
eration (ti).

4.1. Numerical results

The performance of parallel RRSP have been evaluated on a set of test problems
selected from the collection of Holmes [14]. The characteristics of the test problems
are shown in Tables 1 and 2, where we report, respectively, the size of the ®rst- and
second-stage problems and the size of the deterministic equivalent form for an in-
creasing number of scenarios.

All the computational results have been collected on the Origin2000, a SGI su-
percomputer composed of four nodes, each with 128 Mb of memory. Each node is
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characterized by two R10000 processors clocked at 195 MHz with a cache memory
of 4 Mb. The nodes are connected via two routers that control the data ¯ow ex-
change between nodes, and, in addition, allow to address to the distribute memory as
a unique logically shared memory (Numa machine). The operating system is IRIX
6.5 and the compilers used are cc and f77 with the default optimization level.
Moreover, we have used the following options -mips4, -r10000,

-OPT:roundoff�3, -OPT:IEEE arithmetic�3 in the compilation and
linkage phases.

The numerical results of the message-passing version of the parallel code are
summarized in Table 3. The library used is PVM 3.3.10, developed and tuned for the
Origin2000 at the Oak Ridge National Laboratory. In particular, we have reported
the average wall clock time per inner iteration and the relative speed-up values

Table 2

Characteristics of the deterministic equivalent problems

Problem Scenarios SLP model RRSLP model

Constraints Variables Constraints Variables

scagr7.8 8 319 340 639 700

scagr7.16 16 623 660 1263 1340

scagr7.32 32 1231 1300 2511 2620

scagr7.64 64 2447 2580 5007 5180

scagr7.108 108 4119 4340 8439 8700

scagr7.216 216 8223 8660 16863 17340

scagr7.432 432 16431 17300 33711 34620

scagr7.864 864 32847 34580 67407 69180

scsd8.8 8 170 1190 1290 2450

scsd8.16 16 330 2310 2570 4690

scsd8.32 32 650 4550 5130 9170

scsd8.64 64 1290 9030 10250 18130

scsd8.108 108 2170 15190 17290 30450

scsd8.216 216 4330 30310 34570 60690

scsd8.432 432 8650 60550 69130 121170

sctap1.8 8 510 816 1278 1680

sctap1.16 16 990 1584 2526 3216

sctap1.32 32 1950 3120 5022 6288

sctap1.64 64 3870 6192 10014 12432

sctap1.108 108 6510 10416 16878 20880

sctap1.216 216 12990 20784 33726 41616

sctap1.480 480 28830 46128 74910 92304

scrs8.8 8 252 341 556 683

scrs8.16 16 476 645 1084 1291

scrs8.32 32 924 1253 2140 2507

scrs8.64 64 1820 2469 4252 4939

scrs8.128 128 3612 4901 8476 9803

scrs8.256 256 7196 9765 16924 19531

scrs8.512 512 14364 19493 33820 38987
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(`f'' indicates failure because of numerical di�culties). The speed-ups for each test
problem are also depicted in Figs. 2±5.

In Table 4 we report the numerical results of the OpenMP version of the code.
When using SPMD mode in a shared-memory environment, computation can be
carried out by exploiting either orphaning or loop-level OpenMP directives. In the
®rst case, N threads are spawned, one for each scenario; once created, they continue
working similarly to PVM processes. Loop-level directives seem to be more obvious-
to-use since parallelization can be performed across scenarios loops. However, in our
case, it is not enough to rely on the automatic parallelization because the compiler
fails in performing some loops in parallel and usually successes only with very simple
loops. Hence, it is required to check the independencies in each loop and force ``by
hand'' the parallelization of those for which the compiler fails.

Table 3

Speed-ups on the Origin2000 ± PVM implementation

Problem Execution time ti (s) Speed-up

1 proc 2 proc 4 proc 8 proc 2 proc 4 proc 8 proc

scagr7.8 0.24 0.14 0.09 0.07 1.71 2.66 3.42

scagr7.16 f f f f f f f

scagr7.32 0.90 0.52 0.33 0.24 1.73 2.73 3.75

scagr7.64 1.80 1.00 0.63 0.41 1.80 2.86 4.39

scagr7.108 3.22 1.75 1.02 0.70 1.84 3.16 4.60

scagr7.216 7.20 3.32 1.94 1.18 1.87 3.20 5.25

scagr7.432 12.90 6.57 3.88 2.35 1.89 3.22 5.32

scagr7.864 25.23 13.20 7.81 4.38 1.91 3.23 5.76

scsd8.8 1.08 0.69 0.50 0.46 1.57 2.16 2.35

scsd8.16 1.99 1.12 0.90 0.62 1.78 2.21 3.21

scsd8.32 4.02 2.17 1.53 1.01 1.90 2.63 3.98

scsd8.64 7.80 4.15 2.60 1.70 1.88 3.00 4.59

scsd8.108 13.10 7.28 4.35 2.78 1.80 3.01 4.71

scsd8.216 25.90 14.17 8.48 4.66 1.83 3.05 5.56

scsd8.432 52.90 28.30 14.99 7.94 1.87 3.53 6.66

sctap1.8 1.16 0.65 0.44 0.34 1.78 2.63 3.41

sctap1.16 2.30 1.20 0.71 0.51 1.92 3.24 4.51

sctap1.32 4.48 2.33 1.36 0.83 1.92 3.29 5.40

sctap1.64 8.70 4.53 2.63 1.48 1.92 3.34 5.92

sctap1.108 14.80 7.65 4.30 2.36 1.93 3.44 6.19

sctap1.216 29.42 15.22 8.24 4.00 1.93 3.57 7.36

sctap1.480 66.25 34.20 18.35 8.66 1.94 3.61 7.65

scrs8.8 0.23 0.16 0.11 0.08 1.44 2.10 2.88

scrs8.16 0.43 0.27 0.20 0.12 1.59 2.15 3.58

scrs8.32 0.82 0.48 0.35 0.20 1.71 2.34 4.10

scrs8.64 1.60 0.80 0.60 0.36 1.78 2.77 4.44

scrs8.128 3.30 1.75 1.09 0.68 1.89 3.03 4.79

scrs8.256 6.67 3.43 2.10 1.35 1.94 3.18 4.94

scrs8.512 12.94 6.60 4.00 2.52 1.95 3.24 5.13
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Fig. 4. Speed-ups of test problem sctap1 on the Origin2000.

Fig. 2. Speed-ups of test problem scagr7 on the Origin2000.

Fig. 3. Speed-ups of test problem scsd8 on the Origin2000.
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Table 4

Speed-ups on the Origin2000 ± OpenMP Implementation

Problem Execution time ti (s) Speed-up

1 proc 2 proc 4 proc 8 proc 2 proc 4 proc 8 proc

scagr7.8 0.26 0.15 0.11 0.10 1.73 2.36 2.60

scagr7.16 0.48 0.29 0.22 0.16 1.66 2.18 3.00

scagr7.32 0.93 0.54 0.36 0.29 1.72 2.58 3.21

scagr7.64 1.83 1.08 0.69 0.53 1.69 2.65 3.45

scagr7.108 3.07 1.80 1.15 0.87 1.71 2.67 3.53

scagr7.216 6.19 3.56 2.30 1.73 1.74 2.69 3.58

scagr7.432 12.54 7.28 4.67 3.50 1.72 2.69 3.58

scagr7.864 25.10 14.35 9.11 6.59 1.75 2.76 3.81

scsd8.8 1.23 0.77 0.58 0.50 1.60 2.12 2.46

scsd8.16 2.16 1.30 0.88 0.71 1.66 2.45 3.04

scsd8.32 4.03 2.34 1.49 1.13 1.72 2.70 3.57

scsd8.64 7.78 4.43 2.77 2.01 1.76 2.81 3.87

scsd8.108 12.99 7.34 4.53 3.22 1.77 2.87 4.03

scsd8.216 25.65 14.43 8.86 6.23 1.78 2.90 4.12

scsd8.432 51.62 29.31 18.00 12.44 1.76 2.87 4.15

sctap1.8 1.27 0.74 0.52 0.41 1.71 2.44 3.09

sctap1.16 2.33 1.34 0.85 0.62 1.73 2.74 3.75

sctap1.32 4.47 2.52 1.52 1.06 1.77 2.94 4.21

sctap1.64 8.76 4.85 2.90 1.93 1.80 3.02 4.53

sctap1.108 14.70 8.08 4.75 3.19 1.82 3.09 4.60

sctap1.216 29.26 16.10 9.52 6.10 1.81 3.07 4.80

sctap1.480 66.28 36.48 21.50 13.30 1.82 3.08 4.98

scrs8.8 0.25 0.17 0.13 0.12 1.47 1.93 2.08

scrs8.16 0.44 0.27 0.20 0.17 1.62 2.20 2.59

scrs8.32 0.82 0.50 0.33 0.27 1.64 2.48 3.04

scrs8.64 1.58 0.94 0.61 0.46 1.68 2.59 3.43

scrs8.128 3.19 1.82 1.16 0.85 1.75 2.75 3.75

scrs8.256 6.36 3.60 2.27 1.62 1.77 2.80 3.93

scrs8.512 12.76 7.30 4.67 3.14 1.75 2.73 4.06

Fig. 5. Speed-ups of test problem scrs8 on the Origin2000.
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4.2. Discussion

On the basis of the results reported in Tables 3 and 4, the following remarks can
be drawn.

The performance of the parallel code are strongly a�ected by the problem di-
mension and the number of processors used. More speci®cally, better speed-up
values are obtained as soon as we increase the number of scenarios. This can be
explained by the fact that, as the number of scenarios increases, the sequential part
of the code, mainly corresponding to the ®rst-stage problem, becomes insigni®cant
with respect to the computational burden due to the second-stage problem. Fur-
thermore, the availability of more processors leads to a reduction of the time needed
to solve an inner iteration, and, consequently, we obtain higher speed-up values. This
con®rms the e�ciency of our parallel implementation and shows that a sophisticated
load balancing procedure is not required, since the workload can be e�ciently splited
among the processors by using even a simple scenarios-based decomposition. We
expect that this property is maintained even if the number of scenarios is not exactly
a multiple of the number of processors.

Another factor that partially a�ects speed-ups is the structure of the problem. In
general, better speed-up values are obtained for problems with higher number of
second-stage variables with respect to the ®rst-stage. This often happens in the case
of multiperiod two-stage problems in which second-stage decisions are duplicated
for each period of the time horizon. Such observation is con®rmed by the speed-up
values obtained in the solution of test problems scsd8 and sctap1. However,
scsd8 seems to be very well structured to exploit our factorization procedure even
on sequential settings. As a consequence, the execution time on a single processor
is very low and the speed-up values achieved are less than those obtained for
sctap1.

4.3. PVM vs OpenMP on the Origin2000

The analysis of the computational results clearly points out that the PVM im-
plementation outperforms the OpenMP one at least on the Origin2000. This be-
havior can be explained by the following main issues:

Architecture of the machine. The Origin2000 is a distributed shared memory
machine, i.e. there is no common shared memory, but harwdare and software allow
the physically distributed memory of the system to be shared. This characteristic
does not guarantee a uniform memory access time, but it varies depending on how
far away the memory to be accessed in the system. This leads to considerable ov-
earhead in the OpenMP implementation.

On the other hand, PVM implementation takes advantage from the tightly con-
nected architecture since communication time is reduced with respect to conven-
tional distributed systems. Furthermore, the PVM version used is, as mentioned
above, tuned for the speci®c architecture of Origin2000 ensuring more e�ciency of
the message-passing implementation.
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Con¯icts in memory access. Due to the shared data distributed among the nodes,
there exist access memory con¯icts in the OpenMP implementation. This is con-
®rmed by a reduction in the e�ciency as the number of processors increases. For
example, for the test problem scsd8.432, the e�ciency of the OpenMP imple-
mentation varies from 88% on two processors to 51:8% on eight processors with a
loss of e�ciency of 36:2%. This loss is reduced to only 10:23% in the PVM imple-
mentation.

Data placement in OpenMP. Data placement control guarantees that data are
located in such a way that local memory accesses are always favored over re-
mote accesses. The lack of data placement directives in the standard OpenMP
makes the task of controlling and tuning the memory access painful. The ``®rst
touch'' scheme cannot guarantee good performance especially if the operating
system swaps the tasks among processors during the program execution. Indeed,
there is no way to ensure that, after executing parallel loops, the spawner
process will be executed on the same processor. This causes additional migration
of data among local memories that could be avoided if data placement directives
were available.

PVM implementation does not su�er from this problem since task-processor as-
signements are scheduled at the beginning and not altered during the overall exe-
cution.

Ease of implementation. At ®rst glance, message-passing paradigm seems to be
more di�cult to use: inserting shared-memory directives is much easier than dealing
explicitly with data exchange and barriers. However, this is not true if one is looking
for good performance. Indeed, tuning and optimizing an OpenMP code is much
more di�cult than optimizing a PVM code, and, in addition, there are more pa-
rameters to tune up.

4.4. Scalability on the Origin2000

In this section we discuss the scalability of parallel RRSP, that is, its ability to
maintain the same e�ciency when we progressively increase both the dimension of
the problem and the number of processors. The e�ciency of a parallel algorithm
on a parallel system is de®ned as the ratio between the speed-up value and the
number of processors used. Analyzing again the results reported in Table 3 (we
concentrate here on the PVM results), we can note that parallel RRSP seems to
scale well when both the number of scenarios and the number of processors are
increased. This observation is made even more clear by examinating the curves
plotted in Figs. 6 and 7. They represent the values of the e�ciency that parallel
RRSP achieves when solving two signi®cant test problems (namely, scagr7 and
scrs8). From these ®gures, it is easy to verify that if we ®x the e�ciency to a
constant value, it is possible to solve di�erent instances of the problem with in-
creasing number of scenarios by using more processors. This means that parallel
RRSP is able to solve problems with higher number of scenarios, whenever mas-
sively parallel system is available.
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Fig. 6. Scalability for problem scagr7 on the Origin2000.

Fig. 7. Scalability for problem scrs8 on the Origin2000.
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4.5. Comparison with the state-of-the-art

On serial settings, the performance of RRSP have been compared with ROBOpT
of Yang and Zenios [31] and with LOQO of Vanderbei [24]. ROBOpT is the state-of-
the-art PF solver for two-stage stochastic linear programs with recourse and LOQO
is the state-of-the-art of linear and quadratic programming general purpose interior
point algorithms. Both methods implement the primal-dual path following algorithm
with the Predictor±Corrector technique of Mehrotra [18]. They di�er in the way of
solving Newton equation: LOQO solves the augmented form of Newton system as
described in [25±27]. ROBOpT solves the compact form by using Birge-Qi factor-
ization, but it does not exploit the particular block structure of the matrices involved
in the restricted recourse model.

Table 5

Comparison between parallel RRSP and LOQO

Problem LOQO Parallel RRSP

to ni ti to ni ti

scagr7.8 1.65 21.0 0.07 1.60 22.0 0.07

scagr7.16 14.45 24.7 0.56 f f f

scagr7.32 460.14 27.5 1.57 6.50 27.0 0.24

scagr7.64 10.37 29.7 0.29 12.80 31.0 0.41

scagr7.108 21.36 35.0 0.49 23.35 33.0 0.70

scagr7.216 54.10 36.6 1.05 46.18 39.0 1.18

scagr7.432 146.37 40.3 2.27 89.99 38.2 2.35

scagr7.864 436.93 40.3 5.06 203.79 46.3 4.38

scsd8.8 3.30 15.3 0.18 6.97 15.1 0.46

scsd8.16 16.46 15.3 0.95 9.51 15.3 0.62

scsd8.32 26.50 16.5 1.30 16.70 16.5 1.01

scsd8.64 59.80 18.7 2.50 31.79 18.7 1.70

scsd8.108 130.42 24.5 4.20 68.31 24.5 2.78

scsd8.216 282.12 28.2 8.77 109.89 23.5 4.66

scsd8.432 586.58 28.3 18.45 184.00 23.1 7.94

sctap1.8 3.07 15.0 0.17 5.20 15.0 0.34

sctap1.16 28.51 16.3 1.61 8.61 16.7 0.51

sctap1.32 11.01 20.0 0.48 15.92 18.1 0.83

sctap1.64 26.45 25.0 0.90 31.47 21.2 1.48

sctap1.108 50.32 30.5 1.39 62.83 26.2 2.36

sctap1.216 124.55 33.2 2.94 106.19 26.4 4.00

sctap1.432 365.28 37.5 7.10 271.73 31.2 8.66

scrs8.8 0.73 18.0 0.04 1.48 18.0 0.08

scrs8.16 4.37 19.0 0.21 2.30 19.0 0.12

scrs8.32 2.21 20.1 0.10 4.02 20.0 0.20

scrs8.64 5.14 22.0 0.20 7.95 22.0 0.36

scrs8.128 11.75 24.0 0.40 16.36 24.0 0.68

scrs8.256 28.55 26.0 0.83 35.20 26.0 1.35

scrs8.512 75.29 27.6 1.81 69.60 27.5 2.52
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The analysis of the computational results, reported in a previous paper [3], has
shown that our method is remarkably faster than ROBOpT and competitive with
LOQO. This behavior can be explained by the fact that ROBOpT has been designed
for solving the general SLP model, and, consequently, without taking advantage
from the subsequent sparsity of each sub-block of the constraint matrix of the
RRSLP model. As far as LOQO is concerned, we have observed that solving the
augmented Newton system leads to more e�ciency on sequential machines with
respect to the normal system. Consequently, even though LOQO is a general purpose
method, it seems to be extremely competive with RRSP, and in some cases even
superior. However, the key point is that our method, in spite of LOQO, is partic-
ularly well suited for parallel implementation and this advantage is remarkable es-
pecially when we have to solve large-scale problems.

Here we analyze empirically this issue by comparing the performance of parallel
RRSP vs LOQO. In Table 5 we report, for each test problem, the average execution
time of the outer iteration (to), the average number of inner iterations (ni) and the
average execution time of the inner iteration (ti). The results of parallel RRSP refer
to the performance of the message-passing implementation on eight processors of the
Origin2000.

The results show that parallel RRSP is faster than LOQO as soon as the number
of scenarios becomes higher than a threshold value depending on the test problem.
The threshold value needed for the outer iteration time di�ers from that of the inner
iteration. In general, higher number of scenarios is needed in order to have an inner
iteration of the parallel RRSP outperforming a LOQO inner iteration. This is due to
the pre-processing phase executed by LOQO at the beginning of each outer iteration
before starting the inner iterative process which requires relatively long time.

5. Conclusions

In this paper we have proposed a parallel method for solving two-stage stochastic
linear programming models with restricted recourse. Several applications fall into
the considered model. The method proposed in this paper is based on a primal-dual
path-following interior point algorithm that takes advantage from the block struc-
ture of the constraint matrix. We proposed two di�erent implementations: one based
on the message-passing paradigm and the other one using the standard shared-
memory interface. Both implementations have been tested on the Origin2000 by
using a set of standard test problems. Numerical results have shown the superiority
of the message-passing implementation with respect to the shared-memory coun-
terpart. Moreoever, message-passing implementation has shown: (1) signi®cant
speed-up values, especially for problems with higher number of scenarios or/and
second-stage variables; (2) the superiority of our method with respect to the state-of-
the-art codes for large-scale problems; (3) good scalability skills.

These observations candidate our parallel message-passing method to be con-
sidered as an e�cient tool to solve real-world large-scale applications on parallel
Numa machines.
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Possible developments towards the direction of parallel implementations of our
method include the combination of message-passing standard (MPI) with OpenMP.
We believe that such a hybrid approach could be very promising in order to take full
advantage from the Numa architecture.

6. For further reading

[1,7,9±13,17,23,28].
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