
Computers & Operations Research 32 (2005) 219–228
www.elsevier.com/locate/dsw

A heuristic for the periodic rural postman problem
Gianpaolo Ghiania ;∗, Roberto Musmannob, Giuseppe Palettac, Che) Trikid

aDipartimento di Ingegneria dell’Innovazione, Universit�a degli Studi di Lecce, Lecce 73100, Italy
bDipartimento di Elettronica, Informatica e Sistemistica, Universit�a degli Studi della Calabria,

Rende (CS) 87030, Italy
cDipartimento di Economia e Statistica, Universit�a degli Studi della Calabria, Rende (CS) 87030, Italy

dDipartimento di Matematica, Universit�a degli Studi di Lecce, Lecce 73100, Italy

Abstract

The periodic rural postman problem (PRPP) is variant of the classical rural postman problem whose appli-
cations arise in garbage collection and street sweeping. In the PRPP each required arc/edge of a graph must
be visited a given number of times over an m-day planning period in such a way that service days are equally
spaced. The PRPP amounts to select a service day combination for each required arc/edge and to determine
a postman tour for each day of the planning period. The objective is to minimize the total distance travelled.
In this paper a simple but e3ective heuristic for the undirected PRPP is presented. Extensive computational
results indicate that the algorithm is capable of providing high quality solutions. To our knowledge this is the
)rst methodological paper devoted to a periodic arc routing problem.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The purpose of this article is to present a heuristic for the undirected periodic rural postman
problem (PRPP) de)ned as follows: Let G = (V; E) be an undirected graph, where V is the vertex
set, E is the edge set, cij is the cost of traversing edge (vi; vj) ∈E, and R ⊆ E is a set of required
edges. Each required edge e∈R must be serviced ne times over an m-day planning period in such
a way that service days are equally spaced. The PRPP amounts to deciding on which days each
required edge has to be serviced and to design a postman tour for each day of the planning period.
The objective is to minimize the total distance travelled over the m-day period.

The PRPP is NP-hard as it contains the rural postman problem (RPP) as a special case. Indeed,
once a service day combination is chosen for each required edge, a PRPP solution can be obtained
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by determining an RPP route for each day of the planning period. Exact algorithms and heuristics
for the RPP have been presented recently in [1–3].

The PRPP arises in the design of garbage collection and street sweeping routes whenever streets
do not require to be serviced every day (see, e.g., [4–6]). At present the literature devoted to periodic
arc routing problems is quite poor and disorganized, in spite of the economic importance of these
problems [7–9]. This is in contrast to periodic node routing problems which have been intensively
studied (see, e.g., [10–13]). To our knowledge this is the )rst methodological paper devoted to a
periodic arc routing problem.

The remainder of this article is organized as follows. In Section 2, we describe a heuristic for
the PRPP. This is followed by a computational assessment of the performance of the algorithm in
Section 3 and by conclusions in Section 4.

2. A heuristic

We have developed a heuristic that )rst selects the same service day combination for all the edges
e having a given service frequency ne and then performs a local search in the attempt to obtain a
cost saving. The local search phase makes use of an innovative neighborhood structure.

Let S be the set of divisors of m and let N ⊆ S be the set of feasible service frequencies. Also
denote, for each k ∈N , Rk = {e∈R: ne = k} as the set of edges that are required to be serviced k
times and Vk the set of vertices such that an edge e exists in Rk . Given a PRPP solution, R[t] denotes
the edges serviced on day t and RPP(R[t]) a rural postman tour including edges R[t]. At each step k
the heuristic tentatively assigns required edges Rk to service days t = 1; m=k + 1; : : : ; (k − 1)m=k + 1.
Then the algorithm tries to achieve a cost reduction by servicing a subset of edges F ⊆ Rk on days
t (t= u; m=k+ u; : : : ; (k− 1)m=k+ u) for some u∈ 2; : : : ; m=k. Such a step is performed through three
procedures: Path Transfers, Cycle Transfers and Component Transfers. A formal description of
our heuristic is presented in Algorithm 1.

Algorithm 1. Outline of the heuristic.

Sort N in non ascending order: Let succ(k) be the successor of k in N ;
Set R[t] = Rm; t = 1; : : : ; m;
Determine RPP(R[t]); t = 1; : : : ; m;
Set k = m;
while (k ¿ 1) do begin
k := succ(k);
R[t] := R[t] ∪ Rk ; t = 1; m=k + 1; : : : ; (k − 1)m=k + 1;
Determine RPP(R[t]); ∪Rk ; t = 1; m=k + 1; : : : ; (k − 1)m=k + 1;
repeat
Call Path Transfers(k ∈N ) procedure;
Call Cycle Transfers(k ∈N ) procedure;
Call Component Transfers(k ∈N ) procedure;
until (no additional cost saving can be obtained)
end:
end:
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Both Path Transfers(k ∈N ) and Cycle Transfers(k ∈N ) procedures attempt to remove dead-
headed edges by suitably moving paths of serviced edges e∈Rk from a service combination to
another (Algorithms 2 and 3). On the other hand, Component Transfers(k ∈N ) subroutine veri)es
whether a cost saving can be obtained by assigning a di3erent service combination to a connected
component induced by Rk (Algorithm 4).

Algorithm 2. Outline of Path Transfers procedure.

Procedure Path Transfers (k ∈N )
begin
for i∈Vk ; j∈Vk do begin
Determine whether there exists a path Pij in RPP(R[t]); t = 1; m=k + 1; : : : ;
(k − 1)m=k + 1; between i and j made up of serviced edges e∈Rk :
Determine whether there exists a path FPtij in RPP(R[t]); t = 1; : : : ; m;
between i and j made up of deadheaded edges:
if ∃Pij
if ∃ FPtij ; t = 1; u; m=k + 1; m=k + u; : : : ; (k − 1)m=k + 1; (k − 1)m=k + u
for some u∈ {2; : : : ; m=k} then
begin
Remove paths FPtij ; t = 1; u; m=k + 1; m=k + u; : : : ; (k − 1)m=k + 1;
(k − 1)m=k + u:
Move paths Pij from days t = 1; m=k + 1; : : : ; (k − 1)m=k + 1 to days
t = u; m=k + u; : : : ; (k − 1)m=k + u:
end: end:

Algorithm 3. Outline of Cycle Transfers procedure.

Procedure Cycle Transfers (k ∈N )
begin
for i∈Vk ,jVk do begin
Determine whether there exist two edge-disjoint paths Pij and FPij in RPP(R[t]); t = 1;
m=k + 1; : : : ; (k-1)m=k + 1; between i and j made up of serviced edges eRk :
Determine whether there exists a path P̂tij in RPP(R[t]); t = u; m=k + u; : : : ; (k-1)m=k + u
for some u2; ; m=k; between i and j made up of deadheaded edges:
Determine whether there exists a path Ptij in RPP(R[t]); t = u′; m=k + u′; : : : ; (k-1)m=k + u′

for some u′{2; : : : ; m=k}; uu′; between i and j made up of deadheaded edges:
if Pij and FPij
if P̂tij ; t = u; m=k + u; : : : ; (k-1)m=k + u
if Ptij ; t = u′; m=k + u′; : : : ; (k-1)m=k + u′ for some u; u′{2; : : : ; m=k}; uu′ then begin
Remove paths P̂tij ; t = u; m=k + u; : : : ; (k-1)m=k + u:
Remove paths Ptij ; t = u′; m=k + u′; : : : ; (k-1)m=k + u′:
Move paths Pij and FPij from days t = 1; m=k + 1; : : : ; (k-1)m=k + 1 to days t = u; m=k
+u; : : : ; (k-1)m=k + u and t = u′; m=k + u′; : : : ; (k-1)m=k + u′; respectively:
end: end:
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Fig. 1. Sample graph showing edge service frequencies. Edge travel costs are equal to one.
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Fig. 2. Sample graph showing edge service frequencies. Edge travel costs are equal to one.

Algorithm 4. Outline of Component Transfers procedure.

Procedure Component Transfer (k ∈N )
begin
Verify whether a cost saving can be obtained by moving a connected component
induced by Rk from RPP(R[t]) (t = 1; m=k + 1; : : : ; (k − 1)m=k + 1) to
RPP(R[t′]) (t′ = u; m=k + u; : : : ; (k − 1)m=k + u) for some u∈ 2; : : : ; m=k:
end:

We now illustrate Path Transfers and Cycle Transfers procedures through the following two
examples (Figs. 1 and 2). In both examples the value of m is six. Consider the )rst sample problem
depicted in Fig. 1. At the )rst iteration our procedure determines an RPP route servicing edges e
with ne = 6 (Fig. 3). Then, at the second iteration, edges e with ne = 3 are allocated to the )rst
service combination and the RPP routes are updated (Fig. 4). Finally, Path Transfers procedure is
applied (Fig. 5). The second example (Figs. 2) is similar, except that at the second iteration Cycle
Transfers procedure is applied (Figs. 6, 7, 8).



G. Ghiani et al. / Computers & Operations Research 32 (2005) 219–228 223

t=1 t=2 t=3 t=4 t=5 t=6

1 2 

4 5 

1 2 

4 5 

1 2

4 5

1 2

4 5

1 2

4 5

1 2

4 5

Fig. 3. Partial solution after the insertion of edges having service frequency equal to six. Serviced edges are shown in
bold lines.
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Fig. 4. Partial solution after the insertion of edges having service frequency equal to three. Serviced edges are shown in
bold lines.
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Fig. 5. Partial solution provided by Path Transfer procedure. Serviced edges are shown in bold lines.
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Fig. 6. Partial solution after the insertion of edges having service frequency equal to six. Serviced edges are shown in
bold lines.
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Fig. 7. Partial solution after the insertion of edges having service frequency equal to two. Serviced edges are shown in
bold lines.
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Fig. 8. Partial solution provided by Cycle Transfer procedure. Serviced edges are shown in bold lines.

3. Computational results

The heuristic was coded in C and run on a PC with a Pentium III processor clocked at 700 MHz.
Rural postman problem tours RPP(R[t]) were obtained through the exact algorithm presented in [2].

The main goal of our computational tests was to assess the quality of solutions produced by
the heuristic. For this purpose we generated a set of PRPP instances (with m = 6, as is customary
in garbage collection applications) whose optimal solution is known a priori. Such problems were

Table 1
p= 0:1

|V | Instance Gap (%) Time (s)

100 1 2.46 62
2 2.06 25
3 0 23
4 0 22
5 0 24
Average 0.90 31.2

150 1 0 114
2 0 115
3 0 122
4 0 114
5 0 114
Average 0 115.8

200 1 1.27 407
2 0 388
3 0.62 398
4 0 385
5 0.63 406
Average 0.50 396.8

250 1 2.93 952
2 0 910
3 0 1048
4 0.68 1065
5 1.03 1066
Average 0.92 1008.2
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Table 2
p= 0:2

|V | Instance Gap (%) Time (s)

100 1 1.99 56
2 2.04 27
3 0.53 30
4 0 25
5 0.64 26
Average 1.04 32.8

150 1 0 116
2 0 118
3 0.78 122
4 0 115
5 0 118
Average 0.15 117.8

200 1 0.92 411
2 0.57 402
3 0.61 409
4 0.39 404
5 0.63 401
Average 0.62 405.4

250 1 2.80 1086
2 0.58 1079
3 0 1061
4 1.61 1072
5 2.62 1100
Average 1.52 1079.6

obtained as follows: First, we generated a set of type 3 Eulerian random graph as in [2,14]. Then we
set ne = 6 for each edge. Finally, we randomly selected a subset F of edges with probability p and
each edge e∈F was substituted for a subset of parallel edges according to the following scheme:

(a) edge e is substituted for a pair of parallel edges e1; e2 with ne1 = ne2 = 3;
(b) edge e is substituted for a triple of parallel edges e1; e2; e3 with ne1 = ne2 = ne3 = 2;
(c) edge e is substituted for four parallel edges e1; e2; e3; e4 with ne1 = 3 and ne2 = ne3 = ne4 = 1;
(d) edge e is substituted for four parallel edges e1; e2; e3; e4 with ne1 = ne2 = 2 and ne3 = ne4 = 1;
(e) edge e is substituted for )ve parallel edges e1; e2; e3; e4; e5 with ne1 =2 and ne2 =ne3 =ne4 =ne5 =1;
(f) edge e is substituted for six parallel edges e1; e2; e3; e4; e5; e6 with ne1 =ne2 =ne3 =ne4 =ne5 =ne6 =1.

The resulting PRPP instance is easily proved to have an optimal solution with no deadheaded edge,
i.e. an optimal solution cost equal to

∑
(i; j)∈ FE cene, where FE is the edge set of the multigraph

produced by the above procedure.
Five graphs were considered for |V |=100; 150; 200; 250 and for p=0:1; 0:2; 0:3; 0:4. Computational

results and average statistics over all instances are reported in Tables 1–4. The meanings of the
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Table 3
p= 0:3

|V | Instance Gap (%) Time (s)

100 1 2.03 40
2 3.91 27
3 1.70 28
4 0.94 27
5 2.68 28
Average 2.25 30

150 1 0 121
2 1.54 129
3 0.50 124
4 0 121
5 2.13 126
Average 0.83 124.2

200 1 2.38 422
2 2.29 417
3 2.93 418
4 1.21 419
5 2.38 491
Average 2.23 433.4

250 1 3.18 1091
2 1.17 1082
3 1.03 1082
4 2.71 1090
5 3.65 1090
Average 2.34 1069

column headings are as follows:

• |V |: number of vertices of the graph;
• Instance: instance number;
• Gap: gap between the heuristic solution value and the optimal solution value;
• Time: CPU time in seconds.

Computational results show that our heuristic provides a solution whose cost exceeds the optimal
solution cost by 0.58%, 0.83%, 1.91% and 2.92% on the average for p = 0:1; 0:2; 0:3 and 0:4,
respectively. Instances and solutions are available on the web site http://persone.dii.unile.it/ghiani/.

4. Conclusion

We have developed a simple but e3ective heuristic for the undirected PRPP. Extensive compu-
tational results indicate that the algorithm is capable of providing high quality solutions. To our
knowledge this is the )rst methodological paper devoted to a periodic arc routing problem.

http://persone.dii.unile.it/ghiani/
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Table 4
p= 0:4

|V | Instance Gap (%) Time (s)

100 1 4.03 28
2 5.09 29
3 2.62 30
4 2.42 28
5 3.08 29
Average 3.44 28.8

150 1 0.35 125
2 1.54 129
3 3.34 134
4 0.50 126
5 3.81 132
Average 1.90 129.2

200 1 3.50 426
2 3.87 425
3 3.48 417
4 3.31 429
5 3.33 432
Average 3.50 428

250 1 4.00 1095
2 2.2 1088
3 1.30 1102
4 2.78 1089
5 4.18 1096
Average 2.85 1095.2
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