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Abstract

The advent of competitive markets confronts each producer with the problem of optimally allocating his
energy/capacity so as to maximize his pro$ts. The multiplicity of auctions in electricity markets and the non-
trivial constraints imposed by technical and bidding rules make the problem of crucial importance and di/cult
to model and solve. Further di/culties are represented by the dynamic and stochastic natures that characterize
the decision process. We formulate the problem as a multi-stage mixed-integer stochastic optimization model
under the assumption that the seller is a price taker. We validate the e2ectiveness of the proposed model on
a representative test problem.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

It is widely believed that opening electricity markets for competition is the preferred way to reduce
the costs and improve the service quality. In this direction, several countries around the world have
proposed various restructuring processes aimed at liberalizing their electricity business. In addition,
there are countries that are still in the phase of de$ning the normative and operative framework
for the progressive liberalization of their electricity markets. Di2erent market models have been
adopted with the aims of attaining economic e/ciency and optimizing social welfare. In the model
we are considering in this paper, a key role is played by the independent grid operator (IGO) whose

∗ Corresponding author. Fax: +39-0832-297410.
E-mail address: che$.triki@unile.it (C. Triki).

0305-0548/$ - see front matter ? 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0305-0548(03)00211-9

mailto:chefi.triki@unile.it


202 C. Triki et al. / Computers & Operations Research 32 (2005) 201–217

energy
price

 supply curve

demand curve

energy
quantitymarket clearing quantity

clearing
market

price

Fig. 1. Market clearing price de$nition.

principal goal is to provide non-discriminatory open access transmission services while ensuring the
security and the reliability of the system. The IGO carries out his job in close collaboration with
the electricity market operator (EMO) whose role is to manage the short-term forward electricity
markets that make use of auction mechanisms. 1 Speci$cally, the EMO collects the o2ers and bids
submitted by the various players and determines the market clearing equilibrium for each market
and each time period. The o2ers and bids are used to construct the aggregated market supply and
demand curves, respectively. Fig. 1 shows examples of these curves. The EMO is responsible for
disseminating the market clearing information to all market participants and interested parties.

The EMO may operate markets of di2erent forward horizons. In this paper, we focus on the
day-ahead and successive markets with each operating day divided into hourly periods. For each
period, there are separate auctions for energy and the di2erent types of reserves/capacity-based
ancillary services. All the auctions are run independently and their clearing prices, for the same
operating period, may di2er considerably. Consequently, the decisions on the quantities to o2er in
each market become a critical issue in the desire of each seller of maximizing his pro$ts [1].

A supplier must determine in which markets and in what quantities to o2er his energy and/or
capacity. We refer to this as the capacity allocation problem. This problem has two salient charac-
teristics. It is dynamic such that decisions are time period dependent. The problem is also stochastic
such that the most important data—the clearing prices and quantities for each period—are not known
in advance. Mathematical programming under uncertainty represents an e2ective tool to solve a prob-
lem with these characteristics.

Power production under uncertainty has been the subject of intensive research for the solution
of short-, mid- and long-term planning problems. Most of the literature deals with the well-known
unit commitment or capacity expansion problems for the vertically integrated utility structure that
preceded liberalization [2–4]. The restructuring has created the necessity for revised models and for

1 In certain jurisdictions, the IGO assumes the EMO responsibilities; one such example is the PJM interconnection
(www.pjm.com).
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the development of appropriate solution procedures. Indeed, new formulations for the unit commit-
ment problem have been proposed for the di2erent market models adopted [5,6]. The nature of the
assumptions used, such as deterministic vs. stochastic and oligopoly vs. a perfectly competitive mar-
ket, leads to the main di2erences among the proposed formulations. Unit commitment-based models
have also been formulated to determine bidding strategies that support the seller in the de$nition of
his supply function [7–10]. In this context, most of the papers consider a single electricity market
environment and, at most, include the consideration of long–term contracts but ignore the sequential
opportunities for o2ering the generators’ output for the di2erent markets that may exist. Little atten-
tion has been paid to the de$nition of capacity allocation models for supply o2ers in multi-auction
and/or multi-market environments. In Marmiroli et al. [11] have solved the generation scheduling
problem in a deterministic environment under multiple electricity markets. The resulting capacity
allocation model is a quadratic programming problem with explicit representation of the status of
each generation unit.

In this paper, we construct an integrated framework within which we can explicitly consider
the multiple interrelated markets for electricity. We present an optimization model that de$nes a
multi-auction capacity allocation strategy which is optimal with the explicit representation of uncer-
tainty. Speci$cally, we include the on–o2 unit decisions, technical/physical limitations and market
constraints to formulate a multi-stage stochastic model that supports a seller in determining the quan-
tities to allocate to each auction so as to maximize his pro$ts. This work solves a very real and
important problem; it constitutes an e2ective application—possibly the $rst—of stochastic program-
ming techniques to the capacity allocation problem for the restructured electricity markets. A salient
characteristic of the proposed approach is the choice of the decision moments of the multi-stage
model. Unlike in previous works which use decision stages to correspond to the quantities to o2er
to the same market over the time periods of the decision horizon, each stage in our model corresponds
to the quantity o2ered to each auction for the same operating period. We refer to this choice as
an auction-wise formulation to di2erentiate it from the conventional period-wise multi-stage models.
The market clearing information of each auction represents the uncertain data that, once observed,
will constitute the basis for the decisions to adopt in the next auction. All the decision stages refer to
the same operating period, and the inter-temporal constraints in the model arising from the minimum
up/down restrictions of each unit are explicitly represented.

We formulate the problem under the fundamental assumption that the seller is a price taker and
has no possibility/intention to exercise market power to a2ect the auctions’ prices. This assumption is
realistic for markets with many small sellers and without collusion and barriers to entry. As a natural
consequence, each seller has incentives to o2er the units’ output at its marginal costs [12] excluding
any pure $nancial interest behind his participation. Therefore, the problem considered here does not
concern the de$nition of a supply function characterized by complex price-quantity combinations.
Rather, it addresses the way of formulating the o2ers of a seller to each of the auctions in order to
maximize pro$ts.

The paper is organized as follows. The next section is devoted to the description of the struc-
ture and the main features of the electricity market that we consider as a setting for the problem.
We then introduce the scenario tree formulation and we present a mathematical model for the
stochastic capacity allocation problem in Section 3. Section 4 is dedicated to the experimental
results to illustrate the model’s performance. We conclude with some remarks and discuss
future work.
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2. Market structure overview

We provide a description of the basic market structure in which the sellers submit their o2ers.
This structure is rather generic and can be extended to include speci$c characteristics of actual
implementations in various venues. The market structure here incorporates the essential characteristics
of the recently restructured Italian market [13]. The description serves the aim of the work, which is
to formulate the capacity allocation strategy of a price-taking seller who submits o2ers in multiple
competitive electricity markets. 2

The seller can participate in the following auctions:

• Day-ahead energy market (DEM): Buyers and sellers participate by submitting supply o2ers
and demand bids. A separate supply o2er is submitted for each production unit with eventually
multiple block components and associated prices forming a non-decreasing function.

• Adjustment market (AM): This is an energy market that allows both sellers and buyers to adjust
their day-ahead schedules on the basis of new information about load forecast and unit status.
This market consists of multiple sessions. In certain jurisdictions, such a market is run every hour
and so the AM is, in e2ect, the hour-ahead market.

• Day-ahead reserves market (DRM): This is similar to the DEM auction even though here only the
sellers are allowed to bid for the provision of the spinning and non-spinning reserves to meet the
demand de$ned by the IGO. The o2ers for reserves are capacity–price pairs with prices expressed
in $=MW=h; there is no energy supply associated with this o2er. Any energy eventually dispatched
will be paid at a rate established by the relevant balancing market.

• Balancing market (BM): this is a real-time market that ensures the load-supply energy balance
around the clock. In this market both reduction and increase of the energy are allowed. Reduc-
tion (increase) is achieved by reducing (increasing) the production or increasing (reducing) the
consumption of energy. Such adjustment are determined on the basis of the merit order of o2ers.

Faced with this diversity of electricity markets, a seller has to consider several aspects in order
to determine the optimal capacity allocation of each unit as shown in Fig. 2. In addition to the

Day-ahead market (energy)

Adjustment market (energy)

Reserve market (capacity)

Balancing market (energy)

Product Offered

Day-ahead clearing price

Adjustment clearing price

Balancing clearing price

Energy Price

Balancing clearing price

Fig. 2. Unit’s capacity allocation.

2 Even though energy and capacity can be traded as two di2erent products, we assume that any block of power will
never have (incorrectly) double payment in capacity and energy markets.
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restrictions imposed by the units’ physical/operational limitations and market regulations, the seller
may want to include strategic objectives such as diversi$cation and market niche. The complexity
of the problem increases as the number of units increases and also as more markets are considered.

The capacity allocation problem becomes even more complex when uncertainty is explicitly incor-
porated into the model. Some of the most important data are inherently uncertain: at the beginning
of every auction, the clearing price and quantities bought/sold by each buyer/seller are not known.
An optimal decision strategy needs to take into account the whole range of possible values that these
variables may assume since any formulation based on the mean value or on the worst-case analysis
may lead to unacceptable approximations.

There is a range of methodologies to deal with the optimization process under uncertainty
[14]. We next formulate the capacity allocation problem as a multi-stage stochastic programming
model.

3. The capacity allocation model

In order to simplify the discussion of the model, we restrict our attention to only three interrelated
markets as representative of the spectrum of possible markets with di2erent horizons. As a concrete
example, we consider the DEM, the AM and the BM for real time. The extension to include more
markets such as the DRM and other eventual AM sessions is straightforward and simply involves
additional variables with the corresponding constraints but presents no other challenges in terms of
incorporating them into the model discussed here. In addition, we suppose to operate in a transmission
unconstrained environment.

We denote by t, t=1; : : : ; T , the periods of the operating day and we assume that the seller has I
thermal production units. Each unit i, i=1; : : : ; I is characterized by its minimum capacity qi and its
maximum capacity Qi. The seller has to decide, for each time period, which units to commit, and
the quantities to o2er in each of the three auctions in order to maximize his pro$ts. The decision
process is made under uncertainty since the amounts of energy e2ectively sold/bought depend on the
clearing prices. Consequently, the seller must develop his strategy with the considerations of all the
uncertain events that may occur. Fig. 3 shows the bidding process for the three markets. The scheme
indicates di2erent moments of decision phases leading to the de$nition of a multi-stage stochastic
model.

submission

submission
clearing

submission

clearing

clearing

DEM

AM

BM

Day-ahead

Operating day

Fig. 3. Sequence of o2ers’ submission.
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Fig. 4. Scenario tree corresponding to the $rst test problem.

In this paper, we will use the intuitive scenario tree formulation to represent the evolution of the
random clearing prices and quantities. On the basis of our auction-wise representation, each time
period will be characterized by its own scenario tree. Fig. 4 shows an example of a scenario tree
with eight scenarios. The root node stands for the $rst stage and corresponds to the immediately
observable deterministic data. The nodes in successive stages correspond to possible outcomes that
capture the evolution of the random variables by which uncertainty is mathematically represented.
We associate a probability value with each node to represent its likelihood of occurrence. Each node
i, except the root node, has a unique immediate predecessor p(i) in the preceding stage and a $nite
number of successors in the next stage. Nodes without any successors are called the leaves of the
tree. They are in a one-to-one correspondence with the scenarios: a scenario is a path from the root
node to a leaf and represents a joint outcomes of the problems’ data over all the auctions (stages).

Nodes are also associated with the sequential decision process, so that to each node corresponds
a decision variable that depends on the previous decisions and the scenario so far observed as well.

The proposed model, based on the scenario tree formulation, represents a variant of the multi-stage
stochastic programming framework. 3

Initially, the decision maker has to determine which units to commit and the quantities to o2er
in the DEM auction. More speci$cally, we denote by uti the binary variable that takes the value 1
if unit i is committed in the period t, and 0 otherwise. If uti = 1, xti will represent the $rst-stage
decision on the quantity of energy to o2er in the DEM auction by using the unit i.

The model can also be extended to the case in which the decision maker wishes to o2er di2erent
blocks of energy at di2erent prices. In this case, it is enough to consider each block as the maximum
capacity of an independent unit having a variable cost equal to the o2ering price. A new binary
variable is introduced for each block to determine whether or not to o2er that block in one of the
auctions and additional constraints are added to ensure the consistency of the commitment decisions
for blocks of the same unit.

First-stage constraints: The technical constraints that arise in the unit commitment problem con-
cern both uti and xti . In this formulation, we include the minimum up and minimum down times and

3 For an introductory survey on multi-stage stochastic programs the reader is referred to [14,15].
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the capacity constraints. Given the minimum up time Di and the minimum down time di the former
constraints can be expressed, for each unit i, in terms of the binary variable uti as follows:

(ut−1
i − uti)(U

t−1
i − Di)¿ 0 ∀t;

(uti − ut−1
i )(Ut−1

i + di)6 0 ∀t;
where the state variable Ut

i represents the cumulative information about the number of hours unit
i has been on/o2 up to hour t. We should notice that, even though very simple and intuitive, the
above constraints are non-linear. However, it is possible to substitute each of them by a set of linear
constraints, as proposed in [16], at the cost of a remarkable increase of the problem’s size.

Constraints related to the variables xti require that the maximum capacity Qi of unit i not be
exceeded once the unit i is turned on

xti6Qiuti ∀i ∀t:
Second-stage constraints: Once the DEM clears and the e2ective amount of energy sold in the

DEM is observed, the seller must decide the quantities to o2er in the other auctions. It may be
convenient not only to o2er the quantities preserved since the beginning to the two auctions but also
re-o2er the quantity of energy remaining not sold in the DEM auction. More speci$cally, we observe
that the quantity e2ectively sold in the DEM may be expressed as a percentage � of the quantity
o2ered in that market. Three cases can occur in dependence of the value of the DEM clearing price
with respect to the o2er price of each unit i:

• the o2er price is less than the clearing price: in this case all the quantity of energy xti o2ered will
be sold and, thus, �i = 1;

• the o2er of unit i determines the market clearing price and so it is a marginal unit: in this case
only the fraction �ixti of the o2ered quantity is cleared in that market, with �i that can assume any
value in the range 0¡�i6 1;

• the o2er price of unit i is greater than the clearing price and so is unsuccessful in that market:
the quantity of energy sold will be zero (�i = 0).

The di2erent values that can be assumed by �i will de$ne the possible alternatives resulting from
the DEM for unit i. By combining all the alternatives for all the units we de$ne the set of the DEM
outcomes at the period t and we denote its cardinality by St . We use the index s with s= 1; : : : ; St

to denote a generic node of the second stage of the scenario tree at time period t. In the sequel, we
will add the subscript s and the superscript t to the term �i and also to the second-stage decision
variables in order to identify the observed outcome s at the period t.

On the basis of the realized outcome s, the seller should decide, for each period t = 1; : : : ; T , the
quantities to o2er to the AM and BM auctions which are optimal with respect to all the possible St

events.
These quantities, that we denote by yti; s and z

t
i; s, respectively, can be assured by, eventually, turning

on uncommitted units or increasing the production of some already committed units provided that
the maximum capacity constraints are satis$ed

yti; s + zti; s6Qiuti − �ti; sx
t
i ∀s ∀i ∀t:
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While zti; s will represent a $rst allocation for the BM auction that will be followed by another
corrective action, the term yti; s will be, in correspondence to the outcome s, the e2ective quantity to
o2er to the AM auction. Neither term is deterministic but depends on the particular outcome s that
has been observed in the DEM auction.

Third-stage constraints: Once the e2ective amount of energy sold in the AM is observed, the
seller makes a third-stage decision in terms of its o2er to the BM. Once again, for each time period
t, we use the index l=1; : : : ; Lt to denote an outcome observed after the clearing of the AM auction
and we express the quantity e2ectively sold in the AM auction as a percentage �ti; l of the quantity
o2ered yti; s. The third-stage decision variable zti; l will indicate the additional quantity of energy to
o2er in the BM auction under the outcome l at period t. In the BM auction, the seller has the
possibility to commit unused units or increase the output of one or more units under the constraint
of respecting the units’ capacities

zti; l6Qiuti − �ti;p(l)x
t
i − �ti; ly

t
i;p(l) − zti;p(l) ∀l ∀i ∀t:

Here p(l) denotes the predecessor of node l in the scenario tree. For each time period t=1; : : : ; T
and each outcome l, the sum (zti;p(l)+zti; l) will be the e2ective quantity to o2er in the BM auction. As
in previous cases, not all the quantity o2ered is necessarily successful in the auction, but it depends
on the outcome that materializes. For each time period t, we denote by vt , with vt = 1; : : : ; V t , a
generic outcome that can be veri$ed after the BM auction clearing, and by  ti; v the percentage of
the quantity of energy e2ectively sold of unit i. Since our model considers only three markets,
the quantity o2ered but not sold in the BM will represent a loss of opportunity. The quantity
(1 −  ti; v)(z

t
i;p(l) + zti; l) could be planned to an alternative use such as o2ered in a neighbour market

[12] or dedicated for the pumping phase in hydro pumped-storage plants. We shall consider such
loss of opportunity as an additional cost to be introduced as a penalty term in the objective function.

Other constraints: In addition to the above constraints, the model may include explicit limitations
on the hourly output change of each unit. This allows that the total change in the output of every
unit in two consecutive periods respects its ramp rates.

Minimum capacity limits should also be respected; the total quantity produced by unit i during
the period t and under all the possible scenarios of the problem should match at least the minimum
capacity to be produced by unit i:

xti + yti;p(l) + zti;p(l) + zti; l¿ qiuti ∀l ∀i ∀t:
Finally, it is necessary to include non-negativity limitations. Indeed, since our model does not

consider $nancial trading and does not include the uncertainty related to the possible failures in the
production units, it implicitly assumes that the seller is interested only in selling energy and will not
need to buy energy from the adjustment and balancing markets. As a consequence, all the variables
of the problem can assume only non-negative values.

Objective function: The objective is to maximize the total pro$ts over the operating day. For each
period, the pro$ts are de$ned as the di2erence between revenues and costs. Revenues depend on the
clearing prices and the quantities of energy e2ectively sold and, thus, are not known in advance.
The expected revenues are instead considered. For this, we need to introduce additional notation.
Let !ts, "

t
l and #tv denote, for each period t, the probability of occurrence of scenarios s, l and v

related to the three markets, respectively. Furthermore, let $ts, %
t
l and &tv denote the outcomes of the
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random clearing prices in the three markets during the time period t. Thus, the objective function
to maximize is the sum of the expected pro$ts deriving from the three auctions minus the costs and
the loss of opportunity term

max
I∑

i=1

T∑
t=1

{
−ft

iu
t
i +

St∑
s=1

!ts[$
t
s�
t
i; sx

t
i − Ci(�ti; sx

t
i)] +

Lt∑
l=1

"tl[%
t
l�

t
i; ly

t
i;p(l) − Ci(�ti; ly

t
i;p(l))]

+
V t∑
v=1

#tv[&
t
v 

t
i; v(z

t
i;p(p(v))+zti;p(v))−Ci( ti; v(z

t
i;p(p(v))+zti;p(v)))−C ′t(1− ti; v)(z

t
i;p(p(v))+zti;p(v))]

}
:

Here Ci(:) denotes the variable cost function of unit i, ft
i is the $xed cost related to the decision

of turning on the unit i, and C
′t is the opportunity cost at time period t. The variable cost may be

expressed as a polynomial function of the unit output. In practice, this function is often approximated
by a piece-wise linear function or simply truncated o the a/ne form (as pointed out in [5]).

3.1. Model extensions

Di2erent additional features could be included into the basic model in order to better express the
decision maker preferences and to be able to cover the di2erent circumstances of the production
reality with the appropriate formulation.

Strategic constraints: These constraints are used to model the seller’s preferences in the weight of
participation in the di2erent markets. By using these kind of constraints, the seller can give indicative
guidelines on how to allocate the available capacity among the di2erent markets. It is possible, for
example, to impose that the total quantity of energy to o2er to the DEM during period t should be
greater than a given value, say Ht . The model may include, in this case, the following constraint:

I∑
i=1

xti¿Ht:

Analogously, similar constraints can be formulated for the other two auctions in terms of given
values, as above, or as a function of the quantities o2ered to the DEM. It is possible to impose, for
example, that the total quantity to o2er to the AM auction should be at most a percentage *t (with
06 *t6 1) of that o2ered to the DEM. This means that the following constraints:

I∑
i=1

yti; s6 *t
I∑

i=1

xti

should be satis$ed for each time period t and scenario s.

Market constraints: Electricity markets may have some speci$c rules that impose some regulatory
constraints on the behaviour of the operators. In the Italian market, for example, the instructions
permit to a seller to participate in the AM and BM auctions only if he has sold energy in the DEM
[13]. In other words, the components of the vectors ytp(l) and ztp(l) + ztl should be set to zero if
the components of the vector �tp(l)x

t are all null. These logical relations are usually formulated by
introducing additional binary variables. Alternatively, in our case we can combine these constraints
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with the strategic constraints and use simply the following expressions:

I∑
i=1

yti; s6 *t1

I∑
i=1

�ti; sx
t
i ∀t ∀s;

I∑
i=1

(zti;p(l) + zti; l)6 *t2

I∑
i=1

�ti;p(l)x
t
i ∀t ∀l

with 06 *t1; *
t
26 1.

Risk management: The decision maker may be also interested in hedging $nancial risks due, for
example, to high prices volatility or generation failures. The risk management may be included into
the model by dynamically managing futures and options contracts to minimize expected shortfall.
A careful representation of this feature may require deep investigation. For instance some insights
could be found, for example, in [17].

3.2. Solution approaches

The capacity allocation model is a stochastic multi-stage mixed-integer program (SMIP) with
nonlinear constraints. To the best of our knowledge, no speci$c solution approaches have ever been
proposed to solve this class of problems. In e2ect, even for the linear SMIP (by substituting the
up/down constraints by their linearized counterpart) the scienti$c literature is rather limited and has
been mainly focused on the two-stage case (see the survey proposed in [18]). Lokketangen and
Woodru2 [19] applied a heuristic in which the progressive hedging algorithm is combined with
a tabu search heuristic. Caroe and Schultz [20] proposed a Lagrangian relaxation within a branch
and bound algorithm. In addition to the methods designed to solve general linear SMIP, there exist
solution strategies speci$cally tailored to solve the unit commitment problem. Such problem, which
is closely related to the one considered in this paper, has been the subject of intensive research in
the last 30 years. Among the di2erent solution strategies, the most successful technique seems to
be the Lagrangian relaxation (see for example [2,3,7]). We also cite a branch and bound solution
scheme [5] based on the relaxation of the binary variables ui.
The lack of general purpose SMIP solvers calls for the design of solution methods that fully

exploit the special structure of the problem under analysis. Considering our model, we observe that
if no strategic constraints are included the problem becomes separable into smaller optimization
subproblems. Each of them, minimizes the objective function of a single unit on the entire time
horizon. Even for long time horizon, the size of the subproblems is limited and the solution can
be carried out by using the routines provided by commercial software packages (such as CPLEX
and LINGO). When strategic constraints are considered decomposition can be again obtained by
relaxing the linking constraints. Thus, a Lagrangian relaxation solution strategy may be applied.
The design of such a strategy is the subject of a future research. Nevertheless, the inclusion of
further details in this context would not germane to the experimental study provided in the sequel of
this paper.
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4. Numerical experience

In order to validate the proposed model we consider two di2erent test problems. The $rst one
consists of a small generation system and will serve as pilot experiment to fully show and comment
the results. The second test problem is based on a more realistic generation system presented in [5].

In the $rst problem, we have simulated three units and a time horizon of four periods. Table 1
reports the main unit’s characteristics. We assume that both the $xed and variable costs (fi and Ci)
are constant for all the time periods.

Furthermore, following [21], we assume that the seller does not bid exactly at each unit’s variable
cost, but at the bidding price of (Ci + 2). This strategy allows to contribute to cover $xed costs.

Uncertainty is modelled as binary tree (see Fig. 4). In particular, at each stage, we assume that
only two di2erent clearing prices can be observed in the corresponding market. Thus, we have a
total number of 32 scenarios. For all the time periods, we assume that the scenario tree has the same
structure. In Table 2 we report the probability values (prob.) and the clearing prices (CP) associated
to each node of the scenario tree, for the four time periods.

Table 1
Units’ characteristics

Unit fi Ci Qi qi

1 900 15 500 150
2 950 16 500 150
3 1000 18 500 150

Table 2
Probabilities distribution and clearing prices

Node Period 1 Period 2 Period 3 Period 4

Prob. CP Prob. CP Prob. CP Prob. CP

2 0.7 21 0.5 22 0.4 20 0.7 20
3 0.3 18 0.5 19 0.6 17 0.3 17
4 0.5 22 0.4 21 0.25 21 0.5 22
5 0.2 18 0.2 18 0.25 20 0.2 18
6 0.2 20 0.2 19 0.25 20 0.2 19
7 0.1 17 0.2 17 0.25 17 0.1 16
8 0.3 20 0.2 21 0.3 21 0.3 20
9 0.2 17 0.2 18 0.2 19 0.2 17
10 0.1 20 0.1 20 0.1 20 0.2 17
11 0.1 18 0.2 19 0.1 18 0.1 18
12 0.1 21 0.1 19 0.1 21 0.1 21
13 0.1 19 0.1 18 0.1 20 0.1 19
14 0.05 19 0.05 18 0.05 19 0.05 19
15 0.05 18 0.05 17 0.05 18 0.05 18
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Table 3
Units’ state

Unit Period 1 Period 2 Period 3 Period 4

1 On On On On
2 On On On On
3 On On O2 O2

Table 4
Capacity allocation for the $rst period

s DEM AM BM

O2er Sell O2er Sell O2er Sell

1 500–500–0 0–0–0 0–0–0
2 0–0–500 500–500–0 0–0–0
3 500–250–0 0–250–0 0–250–0
4 0–0–500 0–125–0
5 0–0–250 500–500–250 500–500–250
6 0–0–0 0–0–500 500–500–0
7 0–0–0 500–500–500 500–500–0
8 500–250–0

On the basis of the clearing price that has been observed we can deduce, at each stage and for
each unit, the percentage of quantity of energy sold with respect to that o2ered. When it happens
to a unit to be a marginal one we assume that the percentage of energy sold is 0.5. Furthermore,
we choose an opportunity cost equal to 5 for the unsuccessful quantity of energy at the end of the
bidding process. Finally, for all the three units we have $xed the minimum up time Di and down
time di equal to 2.

The model has been implemented and solved using the solver LINGO 8.0 [22]. As explained in
the previous section, if no strategic constraints are included the resulting basic model is separable
with respect to the units. This feature makes the problem numerically tractable for moderate size
and allows to solve both the problems by using the same software package.

Table 3 reports information about the state (on/o2) of the units for the four time periods. In
particular, we observe that the up/down time constraints force unit 3 to stay on (than o2) for the
minimum up (down) time periods.

The recommendations provided by the basic model for the four time periods are reported in
Tables 4–7. Speci$cally, for each unit and scenario (s), both the amount of energy o2ered and sold
are reported for the three auctions.

Let us analyze these results by focussing, for example, on the $rst period (Table 4). The results
reported suggest to adopt the following strategy: in the DEM auction, the seller should o2er 500 MW
by using the third unit only. On the basis of his o2er and the observed clearing prices, it may
happen either that he sells all the o2ered amount (scenarios 1–4) or that his o2er is not successful
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Table 5
Capacity allocation for the second period

s DEM AM BM

O2er Sell O2er Sell O2er Sell

1 0–0–0 0–0–0 0–0–0
2 500–500–500 0–0–0 0–0–0
3 0–0–0 0–0–0 0–0–0
4 500–500–500 0–0–0
5 0–0–0 0–0–500 0–0–0
6 500–500–0 0–0–500 0–0–0
7 0–0–0 0–0–500 0–0–0
8 0–0–0

Table 6
Capacity allocation for the third period

s DEM AM BM

O2er Sell O2er Sell O2er Sell

1 0–0–0 500–500–0 500–500–0
2 0–0–0 0–0–0 500–500–0
3 0–0–0 500–500–0 500–500–0
4 0–0–0 500–250–0
5 500–500–0 0–0–0 0–0–0
6 0–0–0 500–500–0 0–0–0
7 250–0–0 250–500–0 250–500–0
8 250–250–0

(scenarios 5–8). The quantity to o2er in the AM auction are reported in the fourth column of the
same table. The model suggests di2erent plans for the scenarios. In particular, for the $rst four
scenarios it appears to be convenient to o2er the remaining amount of energy in the AM auction,
whereas for the other scenarios only the 500 MW of the third unit are o2ered again and the remaining
capacity is preserved for the MB auction. Once again, by a simple comparison between the units’
o2er prices and the observed AM clearing price, we can deduce the quantities sold for each unit
and for each possible event. In particular, we underline the fact that when a unit is marginal only
a partial percentage is sold (column 5). The seller may decide now his o2er for the BM auction
(see the sixth column). The last column reports the amount e2ectively sold in the third market. We
observe that the amount o2ered, but not sold represents for the seller a lost of pro$ts. By increasing
the opportunity cost, it is possible to penalize this circumstance, and the model will, consequently,
tend not to o2er necessarily the whole capacity of each unit.

The considerations made for the $rst period, can be similarly extended to the other periods. We
observe that, because of minimum up and down constraints, unit 3 is never used in the third and
fourth periods.
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Table 7
Capacity allocation for the fourth period

s DEM AM BM

O2er Sell O2er Sell O2er Sell

1 500–500–0 0–0–0 0–0–0
2 0–0–0 500–500–0 0–0–0
3 500–250–0 0–0–0 0–0–0
4 0–0–0 0–0–0
5 0–0–0 500–500–0 500–500–0
6 0–0–0 0–0–0 500–500–0
7 0–0–0 500–500–0 500–500–0
8 500–250–0

Table 8
Units’ characteristics

Unit fi Ci Qi qi Di di

1 1200 24 455 150 8 8
2 1200 26 455 150 8 8
3 950 25 130 20 5 5
4 900 25 130 20 5 5
5 750 24 162 25 6 6
6 600 24 80 20 3 3
7 650 23 85 25 3 3
8 550 20 55 10 1 1
9 550 20 55 10 1 1
10 550 20 55 10 1 1

Let us now introduce the second test problem. It is based on a slight modi$cation of the 10-units
system presented in [5]. Table 8 reports the main characteristics of the units.

As far as the clearing prices are concerned we have used the information made available by Red
El=ectrica, the Spanish grid operator. This information consists in a large updated database of the
exchanged energy and clearing prices for each hour and every day of several years of operation of
the Spanish market. 4 Starting from that historical data we have generated the scenarios by using
a simulation approach based on the bootstrapping technique [23]. The time horizon considered in
this test problem has been $xed to a realistic extent of 24 periods and 192 scenarios have been
simulated. By taking advantage from the separability of the model with respect to the units, it is
possible to consider larger horizons. However, even for limited number of periods and scenarios the
amount of data to handle is enormous which makes the presentation of the full input data or the

4 Web site of Red ElOectrica de España: http://www.ree.es.

http://www.ree.es
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complete results exceeding any space that could be reserved to this paper. 5 On the basis of the
numerical results, the following observations may be drawn:

• the results of this test problem are consistent with the expected strategy and con$rm the behaviour
of the model observed in the previous test problem;

• the model tries to de$ne the optimal allocation plan that hedges against all the possible scenarios;
• again the main factor inQuencing the bidding strategy is represented by the uncertain clearing

prices that a2ect directly which o2ers are successful and which are not;
• it never happens in this case that a unit is marginal and thus only two cases can occur: the total

quantity o2ered is successful or none;
• units having small values of the minimum up and down times have a more “active” schedule.

5. Concluding remarks

In this paper, we presented a stochastic model that suggests a capacity allocation strategy in a
multi-auction competitive market. The seller is considered a price taker with no ability to exercise
market power through economic and physical withholding. The mathematical formulation proposed is
basically a unit commitment-based model that covers a multi-period time horizon. Uncertainty related
to the clearing auctions information is incorporated into the model explicitly by means of a scenario
tree representation. The decision stages correspond to the di2erent bidding moments referring to the
same time period, and not, as traditionally assumed, the successive time periods referring to the
same auction. We veri$ed the e2ectiveness of the model on a $rst small test problem than on a
realistic problem by exploiting the separability of the model and by using a commercial software
package.

However, the complexity of the problem increases with the number of units and also with the
number of time periods. Moreover, the size of the optimization problem grows linearly in the
number of scenarios and exponentially in the number of stages (auctions). Hence, it is likely
that the computational tractability becomes a major challenge in the application of the proposed
methodology for large-scale systems specially if strategical constraints should be included. This
aspect presents good opportunities for the development of computationally e/cient specialized
methods.

Another open question in this context is related to the design of sophisticated and more tailored
methods for the scenario-tree generation. Existent literature in this context can be classi$ed into two
main categories [15]: generation schemes embedded in the solution procedures of stochastic programs
[24–26], and approaches based on the control of some statistical properties of the underlying random
process [27,28]. While some progress has been done in the statistical modelling of the demand of
electricity [29], the ongoing liberalization has prompted the need to de$ne novel statistical models to
simulate electricity prices. Despite some distributional similarities, electricity prices are dramatically
di2erent from equity prices, and this makes the existing $nancial models of little use to the accurate
representation of the price process in the electricity business. Recently, Knittel and Roberts [30]

5 For reproducibility reasons, the authors can make available, on request, the Lingo model and the input data spreadsheet.
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presented di2erent methods for the electricity prices modelling but, as they underline, this research
area is still in its infancy.
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