
Optimization Letters manuscript No.

(will be inserted by the editor)

A Branch-and-Cut Algorithm for the Steiner Tree Problem

with Delays

V. Leggieri · M. Haouari · C. Triki

Received: date / Revised version: date

Abstract In this paper, we investigate the Steiner Tree Problem with Delays (STPD),

which is a generalized version of the Steiner tree problem applied to multicast rout-

ing. For this challenging combinatorial optimization problem, we present an enhanced

directed cut-based MIP formulation and an exact solution method based on a branch-

and-cut approach. Our computational study reveals that the proposed approach can

optimally solve hard dense instances.

Keywords Steiner tree problem · Delay constraints · Branch-and-cut method

1 Introduction

Given a connected undirected graph G = (V,E), where V is the set of nodes and E is

the set of edges and assigned to each edge e ∈ E a nonnegative cost ce, the Steiner Tree

Problem (STP) requires finding a minimum-cost tree of G that spans a node subset

R ⊂ V, and possibly additional nodes belonging to the subset S := V \R. The elements

of set R are called terminal nodes, whereas those of S are called Steiner nodes. Since R

and S are such that R∩S = ∅ and S ∪R = V , they form a partition of the set V . It is

well-known that the STP is an NP-hard problem and since many important network

applications can be modeled as STP, it has been extensively studied (see e.g. [2], [9],

[14], and [23]).

In this paper, we suppose that each edge of the network is assigned not only a cost,

but also a nonnegative integer coefficient that represents the delay in passing through

it. Therefore we consider the Steiner Tree Problem with Delays (STPD) whose aim is

to find a minimum cost arborescence, rooted at one specific node and spanning all the

terminal nodes within a given maximal delay. Clearly, the STP is a special case of the

Valeria Leggieri
Faculty of Computer Science, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
Dipartimento di Matematica, Università del Salento, 73100 Lecce, Italy

Mohamed Haouari
Ecole Polytechnique de Tunisie, BP 743, 2078, La Marsa, Tunisia

Chefi Triki
Dipartimento di Matematica, Università del Salento, 73100 Lecce, Italy

2

STPD with the source (or root) node being any terminal node and the maximum delay

being equal to infinity. Thus, the STPD is NP-hard, too.

Satisfying the maximal delay requirement is of crucial importance in all network

applications where it is required to spread the same information from a source toward

all the members of a multicast group within a specified delay limit ([16], [21], [22]).

Heuristic approaches to the STPD have been proposed so far by several authors (see

e.g., [16] [25], [10], [11] and [17]). However to the best of our knowledge the work in [18]

has been the first significant contribution for solving this problem to the optimality. In

[18], indeed, the authors have provided the evidence that combining together reduction

procedures with an enhanced polynomial size formulation based on lifted Miller-Tucker-

Zemlin subtour elimination constraints allows to solve to optimality sparse instances

of the STPD having up to 1000 nodes, but the proposed approach was inappropriate

to solve medium size dense instances.

If the delays on all the edges have the same value, then the STPD might be viewed

as a generalization the hop-constrained minimum Steiner tree problem where a hop-

constraint requires that the number of arcs in the path connecting the source node

with any terminal node does not exceed a given threshold value (see e.g., [12], [24]).

Recently, exact and heuristic approaches for the STP with revenues, budget and hop

constraints have been proposed by Costa et al. in [7] and [8].

The objective of this paper is to propose a branch-and-cut algorithm for solving

to optimality the STPD. To that aim, we provide a directed cut-based formulation

whose LP relaxation is compared with that of a previously presented formulation [18].

In addition, we describe several valid inequalities for the STPD. Finally, we provide

empirical evidence that solving the enhanced formulation using a branch-and-cut ap-

proach makes it possible to solve to optimality hard STPD instances.

The remainder of the paper is organized as follows: in Section 2, we propose a

directed cut-based formulation STPDDC that uses lifted Miller-Tucker-Zemlin con-

straints (MTZ for short) with the purpose of preventing subtours and enforcing delay

constraints as well. Section 3 is devoted to the comparison of the linear programming

(LP) relaxations of STPDDC with that of an alternative valid formulation that has

been proposed in [18]. In Section 4, we present a new possible lifting of the MTZ con-

straints and several valid inequalities that have been included to enhance the solution

procedure. In Section 5, we provide a detailed description of a branch-and-cut solution

method. Finally, Section 6 is devoted to the computational results.

2 An enhanced cut-based formulation

Let G = (V,E) be a connected, undirected graph, where V = {1, ..., n} is the node set

and node 1 is the source node (1 ∈ R). Each edge e ∈ E is assigned a nonnegative

weight ce and a nonnegative delay θe. The STPD consists in finding a minimum-cost

subtree T of G that spans all the terminal nodes of R and possibly some of the Steiner

nodes and such that the sum of the delays on each path P (1, j) in T from the root

node 1 to each terminal node j ∈ R∗ := R \ {1} is less than or equal to a specified

maximum delay ∆. In this paper, the maximal delay ∆ is set to the same value for

each terminal nodes. However, all our results could easily be extended to the case

with node dependent maximal delays. For the sake of convenience, and since the flow

between the source and each terminal is naturally directed, we define the STPD on a

bi-directed graph B = (V,A). This latter digraph is obtained from G by replacing each

3

edge e = {i, j} ∈ E with two directed arcs (i, j) and (j, i) (with cij = cji = ce and

θij = θji = θe). However, since all the arc costs and delays are nonnegative, then the

arcs that are incident to the source node are not created.

In the sequel, we shall denote by δ+A(i) the set of the arcs of A outgoing from

i, i.e. δ+A(i) := {(i, j) ∈ A : j ∈ V } and by δ−A(i) the set of arcs of A that are

incoming in i, i.e. δ−A (i) := {(j, i) ∈ A : j ∈ V }. Moreover if W is a subset of V ,

then δ+A(W) is the set of the arcs with tails in W and heads in W c := V \ W , i.e.

δ+A(W) = {(i, j) ∈ A : i ∈ W, j ∈ W c}. Furthermore, for each pair of nodes i and

j in V , we denote by D(i, j) the shortest path connecting i to j with the delays as

weights and we indicate by θ(i, j) its length. Since the delays are nonnegative, then the

computation of D(i, j) and of θ(i, j) can be performed in polynomial-time.

In order to formulate the STPD, we define, for each node i ∈ V , a continuous time

variable ti that represents the total delay of the path connecting the root node 1 to

node i. Obviously, in any feasible solution, the value of ti should lie within the interval

[0, ∆]. Actually, we can possibly define for each node i ∈ V a tighter time window

[λi, µi] within which the communication should be received and forwarded by i to its

descendant nodes while satisfying the maximum delay constraints. Clearly, the total

elapsed time for a message sent from the root node to a node j ∈ V \{1} is larger than

or equal to the value of the shortest path θ(1, j). Thus, we set λj := θ(1, j) for each

j ∈ V \ {1} and λ1 := 0. Moreover, a Steiner node i ∈ S reached at time ti might be

included in a feasible arborescence T only if there exists a terminal node j ∈ R∗ such

that ti + θ(i, j) ≤ ∆. Consequently, we set µi := ∆ − minj∈R∗θ(i, j) for each i ∈ S,

µi := ∆ for each i ∈ R∗, and µ1 := 0 for the root node. As noticed in [18] for each

node i the values λi as well as µi are respectively a lower bound and an upper bound

on variable ti. Furthermore, if λi > µi holds for a terminal node (i ∈ R∗) then the

problem is clearly infeasible, while if λi > µi for a Steiner node (i ∈ S), then this node

can be eliminated from the graph since it cannot be included in any feasible solution.

Thereby, in the sequel, we suppose that λi ≤ µi for all i ∈ V and thus, we require that,

for each node i ∈ V , ti ∈ [λi, µi]. It is noteworthy that if λi + θij > µj holds for arc

(i, j) ∈ A, then this arc can be eliminated, since it would never appear in any feasible

solution (see [18]).

Define for each arc (i, j) ∈ A, the set

ϕji = {(k, j) ∈ A : k ∈ V \ {i}, λk + θkj ≤ µj and λk + θkj + θji > µi}, (1)

whose elements are all the arcs (k, j) that are incompatible with arc (j, i). Namely, if

both arcs (k, j) and (j, i) are included in a solution, then the delay constraint of node

i would be violated. Also, define, for each arc (i, j) ∈ A, the following nonnegative

coefficients Mij := µi − λj + θij and αji := µi − λj − θji. Moreover, we set βkj :=

λk + θkj − λj for all (k, j) ∈ ϕji and γhi := max(µi − µh − θhi, 0) for all (h, i) ∈ ϕij .

Notice that all these coefficients are nonnegative.

2.1 A cut-based formulation

We define for each arc (i, j) ∈ A a binary variable yij that takes value 1 if arc (i, j)

belongs to the arborescence T and 0 otherwise. We can formulate the STPD as follows:

4

(STPDDC) : Minimize
∑

(i,j)∈A

cijyij (2)

subject to:

∑

(i,j)∈δ
+
A
(W)

yij ≥ 1 ∀W ⊂ V, 1 ∈ W, R∗ ∩W c 6= ∅ (3)

ti − tj +Mijyij + αjiyji +
∑

(k,j)∈ϕji

βkjykj +
∑

(h,i)∈ϕij

γhiyhi ≤ Mij − θij , ∀ (i, j) ∈ A (4)

ti ∈ [λi, µi] ∀i ∈ V (5)

yij ∈ {0, 1} ∀ (i, j) ∈ A. (6)

The objective function (2) requires minimizing the total cost. Constraints (3) re-

quire that, for each cutset (W,W c) separating the root node from at least a terminal

node, there should be at least one arc outgoing from W (see e.g., [3]). Constraints (4)

prevent the solution from including subtours, and also, jointly with constraints (5) and

(6), they enforce the solution to be delay-feasible. Constraints (4) are included for the

purpose of enforcing that the following requirement (if yij = 1 ⇒ ti + θij ≤ tj) holds

for (i, j) ∈ A. They have been first proposed in [18] where it is shown that they can be

derived through lifting the so-called Miller-Tucker-Zemlin constraints [19].

To strengthen the LP relaxation of formulation STPDDC we append the following

valid constraints. First, we observe that at most one of the two opposite arcs could be

contained in a feasible solution. That is, we have:

yij + yji ≤ 1 ∀ (i, j) ∈ A : (j, i) ∈ A. (7)

Also, constraints

∑

(j,i)∈δ−(i)

yji ≤
∑

(i,j)∈δ+(i)

yij ∀ i ∈ S (8)

enforce each Steiner node with one incoming arc to have at least one outgoing arc

(flow-balance constraints see e.g. [23]). Finally, we append to formulation STPDDC

the time-bound constraints

∑

(i,j)∈δ−(j)

max(λj , λi + θij)yij ≤ tj , ∀ j ∈ V \ {1} (9)

and

µj −max(0, µj − µk + θjk)yjk ≥ tj , ∀(j, k) ∈ δ
+(j), j ∈ V \ {1} (10)

that are further restrictions on the time variables.

In the sequel, we indicate by STPDDC the directed cut formulation that includes

constraints (7), (8), (9) and (10).

5

3 Comparison of LP relaxations

Now we want to highlight that the optimal value of the linear programming (LP) relax-

ation of STPDDC is greater than that of a shortest spanning arborescence formulation

with side-constraints (indicated here as STPDLMTZ) proposed and described in [18].

Formulation STPDLMTZ is constructed on an expanded graph B′ = (V ′, A′) obtained

from B(V,A) by adding a dummy node 0 as well as dummy arcs of the form (0, j)

for all the nodes j ∈ S ∪ {1} with zero costs and zero delays. It has, in common with

STPDDC, the objective function and the liftings (4) , and then it contains constraints

on the degrees of the nodes. Such a formulation is very simple and compact since it

contains a number of constraints and variables which is polynomial in the size of the

problem.

For the sake of completeness we report formulation STPDLMTZ, where the binary

variables xij take the value 1 if arc (i, j) ∈ A′ belongs to the spanning arborescence

and 0 otherwise.

(STPDLMTZ) : Minimize
∑

(i,j)∈A

cijxij (11)

subject to:

∑

(i,j)∈δ
−

A′
(j)

xij = 1, ∀ j ∈ V (12)

x0j + xij + xji ≤ 1, ∀ j ∈ S, (i, j) ∈ δ
−

A (j)
(13)

∑

(i,j)∈δ
+
A

(i)

xij ≥ 1 − x0i, ∀ i ∈ S (14)

ti − tj + Mijxij + αjixji +
∑

(k,j)∈ϕji

βkjxkj +
∑

(h,i)∈ϕij

γhixhi ≤ Mij − θij , ∀ (i, j) ∈ A (15)

ti ∈ [λi, µi], ∀ i ∈ V, (16)

xij ∈ {0, 1}, ∀ (i, j) ∈ A
′
. (17)

Constraints (9) and (10) are also valid for formulation STPDLMTZ, and thus ap-

pended to it.

In order to compare the LP relaxations, we first provide the following result.

Lemma 1 Let (ȳ, t̄) be an optimal solution for the LP relaxation of STPDDC, then

∑

(k,j)∈δ−A (j)\{(i,j)}

ȳkj ≥ ȳji ∀j ∈ V \ {1}, (j, i) ∈ A, (18)

and
∑

(i,j)∈δ−A (j)

ȳij ≤ 1 ∀j ∈ V \ {1}. (19)

Proof See [23].

⊓⊔

Denoting by v(P) the optimal value of the LP relaxation of a generic formulation

P , we can claim that:

6

Proposition 1 v(STPDDC) ≥ v(STPDLMTZ).

Proof In order to compare the LP relaxation of formulations STPDDC and STPDLMTZ,

we need to augment formulation STPDDC with the variables associated with the arcs

(0, i) for i ∈ S∪{1}. Given an optimal solution (y∗, t∗) of the LP relaxation of STPDDC,

as in [23], we define yij := y∗ij for each (i, j) ∈ A and we set y0j := 1−
∑

(i,j)∈δ−A (j) y
∗
ij

for the arcs (0, j) with j ∈ S ∪ {1}. The solution (y, t∗) is still an optimal solution

for the LP relaxation of STPDDC, since the costs associated with the arcs (0, j) with

j ∈ S∪{1} are zero. Now for each (i, j) ∈ A′ we set x∗ij = yij and we show that (x∗, t∗)

is a feasible solution for the LP relaxation of STPDLMTZ.

Let prove that (x∗, t∗) satisfies constraints (12), first for the root node, then for the

Steiner nodes and, finally, for the terminal nodes. None of the arcs of A incomes in the

root node 1, hence δ−A (1) = ∅ and then

∑

(j,1)∈δ−
A′ (1)

x
∗
j1 = x

∗
01 = 1−

∑

(j,1)∈δ−A (1)

ȳj1 = 1.

Let j be e Steiner node (j ∈ S), then

∑

(i,j)∈δ−
A′ (j)

x
∗
ij =

∑

(i,j)∈δ−A (j)

x
∗
ij + x

∗
0j =

∑

(i,j)∈δ−A (j)

ȳij + 1−
∑

(i,j)∈δ−A (j)

ȳij = 1.

Finally, let j be a terminal node (j ∈ R∗), then because of constraints (19) and (3)

with W = V \ {j}, it follows that:

∑

(i,j)∈δ−
A′ (j)

x
∗
ij =

∑

(i,j)∈δ−A (j)

x
∗
ij =

∑

(i,j)∈δ−A (j)

ȳij = 1.

Thus, constraints (12) are fulfilled by (x∗, t∗). Let consider, now, constraints (13) and

let j be in S and (j, i) in δ+A′(j). In view of constraints (18) it follows that:

x
∗
0j + x

∗
ij + x

∗
ji = 1−

∑

(k,j)∈δ−A (j)

ȳkj + ȳij + ȳji = 1−
∑

(k,j)∈δ−A (j)\{(i,j)}

ȳkj + ȳji ≤ 1,

and thus constraints (13) are fulfilled by (x∗, t∗). It remains to prove that (x∗, t∗)

satisfies constraints (14). Let i ∈ S, since constraints (8) are fulfilled by ȳ, it holds:

∑

(i,j)∈δ+A(i)

x
∗
ij =

∑

(i,j)∈δ+A(i)

ȳij ≥
∑

(j,i)∈δ−A (i)

ȳji = 1− x
∗
0i.

The other constraints of STPDLMTZ are obviously satisfied since they belong also to

STPDDC. Therefore, (x
∗, t∗) is feasible for the LP relaxation of STPDLMTZ and hence

the thesis follows.

⊓⊔

The example of Figure 1, reported from [23], can be used to show that there exist

Steiner Tree problems with delay constraints in which the optimal solution of the LP

relaxation of STPDLMTZ is not feasible for the LP relaxation of STPDDC.

7

Fig. 1 Example with v(STPDDC) > v(STPDLMTZ)

Example 1 Consider the graph in Figure 1, where R = {1, 2} and ∆ = 10. The delay

constraints in this case are redundant for defining any optimal solution. The solution in

the variables x is: x03 = x04 = x25 = x56 = x62 = 1
3 , x23 = x34 = x42 = x05 = x06 =

2
3 , x01 = 1. It is optimal for the LP relaxation of STPDLMTZ, but the corresponding

solution y is not feasible for the LP relaxation of STPDDC, since if W = {1}, then
∑

(i,j)∈δ+(W) yij = 0.

4 Valid inequalities for STPDDC and a new lifting of the MTZ constraints

In this section, we present classes of valid inequalities that have been used in our

implementation, and we propose a different lifting of the MTZ constraints. Before

doing this, we append to formulation STPDDC the inequalities:

∑

(i,j)∈δ−A (j)

yij ≤ 1 ∀j ∈ V \ {1}. (20)

that are fulfilled by any of its optimal solutions.

4.1 A new lifting of the MTZ constraints

Here we present an alternative lifting of the MTZ constraints ti − tj + θij ≤ M(1 −
yij), ∀(i, j) ∈ A which is incomparable with constraints (4).

First, let consider the results of the following lemma that extends those of the

lemma reported in [18].

Lemma 2 Let (ȳ, t̄) be a feasible solution for STPDDC. Suppose that ȳij = 1 for an

arc (i, j) ∈ A. Then:

i) if (j, i) ∈ A then ȳji = 0;

ii) ȳkj = 0 for any (k, j) ∈ δ−A (j) \ {(i, j)};
iii) if (j, i) ∈ A then t̄j = t̄i + θij ;

iv) ȳhi = 0, for any (h, i) ∈ ϕij .

Proof The thesis easily follows (see [18]).

8

⊓⊔

Constraints (4) are not the only possible lifting of the MTZ constraints, indeed, if

we define α′
ji := max(0, µi − θij − max

(k,j)∈δ−A (j)
(λk + θkj)), then we can state:

Proposition 2 For each (i, j) ∈ A, the inequality

ti − tj +Mijyij + α
′
jiyji +

∑

(k,j)∈δ−A (j)

βkjykj +
∑

(h,i)∈ϕij

γhiyhi ≤ Mij − θij (21)

is valid for STPDDC.

Proof Let (ȳ, t̄) be a feasible integer solution and let (i, j) be an arc of A. We will

consider three different cases:

Case 1: ȳij = 1. In view of lemma 2, we should verify that t̄i− t̄j+Mij ≤ Mij−θij ,

but since ȳij = 1, then the last inequality is obviously fulfilled.

Case 2 : ȳji = 1. In view of the points i) and ii) of lemma 2 applied to the arc (j, i),

it holds that yij = 0 and yhi = 0 for all (h, i) ∈ ϕij , hence we should verify that

t̄i − t̄j + α
′
jiȳji +

∑

(k,j)∈δ−A (j)

βkj ȳkj ≤ Mij − θij . (22)

Suppose that α′
ji = 0. If ȳkj = 0 for all (k, j) ∈ δ−A (j) (this situation may occur if j is

a Steiner node), since t̄i ≤ µi and t̄j ≥ λj , it holds that t̄i − t̄j ≤ µi − λj = Mij − θij
and thus (22) follows. Else, if there exists an arc (k′, j) ∈ δ−A (j) such that ȳk′j = 1,

then ȳkj = 0 for all (k, j) ∈ δ−A (j) \ {(k′, j)}. In view of constraints (9), it holds that

t̄j ≥ max(λj , λk′+θk′j) ≥ λk′+θk′j , and hence t̄i− t̄j+α′
jiȳji+

∑

(k,j)∈δ−A (j) βkjykj =

t̄i − t̄j + βk′j = t̄i − t̄j + λk′ + θk′j − λj ≤ µi − λj = Mij − θij . Suppose on the

contrary that α′
ji 6= 0. If ȳkj = 0 for all (k, j) ∈ δ−A (j), since λj is the shortest path

value in terms of delay from the root node to j, then λj ≤ max(k,j)∈δ−A (j)(λk + θkj).

Furthermore, since ȳji = 1, then t̄i = t̄j+θij . Therefore t̄i− t̄j+α′
ji = t̄i− t̄j+µi−θij−

max(k,j)∈δ−A (j)(λk+θkj) ≤ µi−λj = Mij−θji. Else if there exists an arc (k′, j) ∈ δ−A(j)

such that ȳk′j = 1, since max(k,j)∈δ−A (j)(λk + θkj) ≥ λk′ + θk′j , and since t̄i = t̄j + θij ,

then it holds that: t̄i − t̄j + α′
jiȳji +

∑

(k,j)∈δ−A (j) βkjykj = t̄i − t̄j + α′
ji + βk′j =

t̄i − t̄j + µi − θij −max(k,j)∈δ−A (j)(λk + θkj) + λk′ + θk′j − λj ≤ µi − λj = Mij − θji.

Case 3: ȳij = 0 and ȳji = 0. We consider the following subcases:

i) ȳk′j = 1, and ȳh′i = 1 for the arcs (k′, j) ∈ δ−A(j) and (h′, i) ∈ ϕij respectively.

Since ȳh′i = 1, it holds that t̄i ≤ µh′+θh′i, but t̄i ≤ µi and hence t̄i ≤ min(µi, µh′+

θh′i). Since ȳk′j = 1, then t̄j ≥ λk′ + θk′j . Suppose that µi ≤ µh′ + θh′i, then

γh′i = 0 and it follows that t̄i − t̄j +
∑

(k,j)∈δ−A (j) βkj ȳkj +
∑

(h,i)∈ϕij
γhiȳhi =

t̄i−t̄j+βk′j = t̄i−t̄j+λk′+θk′j−λj ≤ µi−λj = Mij−θij . Suppose on the contrary

that µi > µh′ + θh′i, then t̄i ≤ µh′ + θh′i and thus t̄i − t̄j +
∑

(k,j)∈δ−A (j) βkj ȳkj +
∑

(h,i)∈ϕij
γhiȳhi = t̄i− t̄j+βk′j+γh′i = t̄i− t̄j+λk′ +θk′j−λj+µi−µh′ −θh′i ≤

µh′ + θh′i − λk′ − θk′j + λk′ + θk′j − λj + µi − µh′ − θh′i = µi − λj = Mij − θij .

ii) yh′i = 1 for an arc (h′, i) ∈ ϕij and ykj = 0 for all the arcs (k, j) ∈ δ−A (j). If γh′i = 0

then it easily follows that: t̄i − t̄j +
∑

(k,j)∈δ−A (j) βkj ȳkj +
∑

(h,i)∈ϕij
γhiȳhi =

t̄i−t̄j ≤ µi−λj = Mij−θij . Else if γh′i > 0 then µi > µh′+θh′i, and t̄i ≤ µh′+θh′i.

Hence t̄i − t̄j + γh′i = t̄i − t̄j + µi − µh′ − θh′i ≤ µi − λj = Mij − θij and, thus,

(21) holds.

9

iii) yhi = 0 for all the arcs (h, i) ∈ ϕij and yk′j = 1 for an arc (k′, j) ∈ δ−A (j). As

proved above, in this case t̄j ≥ λk′ +θk′j and hence t̄i− t̄j +
∑

(k,j)∈δ−A (j) βkj ȳkj +
∑

(h,i)∈ϕij
γhiȳhi = t̄i− t̄j +βk′j ≤ t̄i− t̄j +λk′ + θk′j −λj ≤ µi−λj = Mij − θij .

iv) yhi = 0 for all the arcs (h, i) ∈ ϕij and ykj = 0 for all the arcs (k, j) ∈ δ−A (j). Then

constraints (21) become t̄i − t̄j ≤ Mij + θij which is obviously fulfilled.

Since all the possibilities have been taken into account, then the thesis follows.

⊓⊔

Remark 1 As will become evident from the results of Table 2, constraints (4) and (21)

are not comparable. Indeed, on one hand we have αji ≥ α′
ji, and on the other hand,

constraints (21) consider all the variables corresponding to the arcs incoming in node

j while in constraints (4) only a subset ϕji of them is taken into account.

4.2 Opposite arcs constraints

Constraints (7) can be strengthened by lifting the variables corresponding to arcs of

the set ϕij . Indeed:

Proposition 3 For each arc (i, j) ∈ A such that (j, i) ∈ A, the inequality

yij + yji +
∑

(h,i)∈ϕij

yhi ≤ 1 (23)

is valid for STPDDC.

Proof Let (ȳ, t̄) be a feasible integer solution of STPDDC and let (i, j) ∈ A with

(j, i) ∈ A. In view of lemma 2 if ȳij = 1 then ȳji = 0 and ȳhi = 0 for all the arcs

(h, i) ∈ ϕij , but also if ȳji = 1 then ȳij = 0 and ȳhi = 0 for all the arcs (h, i) ∈ ϕij .

By applying again lemma 2, if there exists an arc (h′, i) ∈ ϕij such that ȳh′i = 1, then

ȳji = 0 for all the arcs (j, i) ∈ δ−A (i) \ {(h′, i)} and, in particular, ȳji = 0 and ȳhi = 0

for all the arcs (h, i) ∈ ϕij \ {(h
′, i)}. Moreover as seen in point iv) of the same lemma,

if ȳh′i = 1 and ȳij = 1, then variable t̄j violates constraints (5). Consequently, ȳij = 0

since ȳh′i = 1. In all the possible cases inequality (23) is fulfilled by (ȳ, t̄).

⊓⊔

In the sequel, constraints (23) substitute thus constraints (7) in formulation STPDDC.

4.3 Infeasible paths

Clearly, any arc (i, j) ∈ A such that λi + θij > µj can be eliminated from the directed

graph, since it would never appear in any feasible solution. Actually, we can generalize

this condition to paths connecting two non adjacent nodes i and j. Let D(i, j) := (i =

v1, v2, v3, ..., vk−1, vk = j) be the shortest path with delays as weights from node i to

j, let θ(i, j) be its cost and let |D(i, j)| be the number of its arcs.

If λi + θ(i, j) > µj then D(i, j) is an infeasible path and then the inequality

∑

(h,l)∈D(i,j)

yhl ≤ |D(i, j)| − 1, (24)

10

can be added to the model.

As proposed in [5] and [6] for the tournament constraints in the context of the TSP

with time-windows, inequalities (24) can be strengthened. Indeed it holds that:

Proposition 4 For all i, j ∈ V , if λi + θ(i, j) > µj , then

k−1
∑

h=1

k
∑

l=h+1

yvhvl ≤ |D(i, j)| − 1 (25)

is a valid inequality.

Proof See [5].

⊓⊔

4.4 Indegree constraints

For each Steiner node i, we can require not only the fulfillment of the flow-balance

constraints (8), but also that whenever there is an outgoing flow, then there should be

also an ingoing flow. Let R∗
i be the set of the terminal nodes such that there exists a

directed path P (i, j) from node i to j in the graph B = (V,A) such that λi+θ(i, j) ≤ µj .

Proposition 5 For each Steiner node i ∈ S, the inequality

min(|R∗
i |, |δ

+
A(i)|)

∑

(j,i)∈δ−A (i)

yji ≥
∑

(i,j)∈δ+A(i)

yij (26)

is fulfilled by any optimal solution of STPDDC.

Proof Let i ∈ S, and let (ȳ, t̄) be an optimal integer solution for formulation STPDDC.

Suppose that ȳji = 0 for all the arcs (j, i) ∈ δ−A (i); this means that i does not belong to

any path connecting the root node to a terminal node. Hence for the optimality of the

solution (ȳ, t̄), it holds that ȳij = 0 for all the arcs (i, j) ∈ δ+A(i) and then inequality

(26) is satisfied by (ȳ, t̄).

Suppose, on the contrary, that there exists an arc (k, i) ∈ δ−A (i) such that ȳki = 1.

Thus, it is unique, and for the optimality of (ȳ, t̄), node i belongs to at least one

path connecting the root with a terminal node. Moreover, i is the tail node of at

most min(|R∗
i |, |δ

+
A(i)|) different arcs belonging to paths from 1 to the terminal nodes.

Consequently,
∑

(i,j)∈δ+A(i) ȳij ≤ min(|R∗
i |, |δ

+
A(i)|). In all the cases (26) is fulfilled and

hence the thesis.

⊓⊔

5 A branch-and-cut solution method

Since Formulation STPDDC includes exponentially many cut constraints, then we have

implemented a branch-and-cut (B&C for short) solution method for solving it. In a

preprocessing step, the solution procedure invokes the preprocessing algorithm that is

described in [18]. This preprocessing phase aims at producing equivalent instances of

reduced size and also at strengthening the time window intervals. Consequently, the

11

coefficients of the delays constraints are tightened and the resulting LP relaxation is

tightened as well.

At each node of the B&C tree, given a tentative solution (ȳ, t̄) of the relaxed

program, the separation of violated inequalities (3) is achieved through solving, for

each source-terminal pair, a maximum flow problem on the network G, where the

capacity of each arc (i, j) ∈ A is ȳij . If the corresponding maximum flow value is

less than 1, then a minimum capacity cut (W,W c) is identified and the corresponding

constraint (3) is appended to the relaxed master program.

Furthermore, for speeding up the resolution of the LP relaxation, we start first by

solving the linear relaxation of formulation STPDLMTZ with all the costs equal to 1,

and we denote by na its optimum value. An obvious lower bound on the number of arcs

in a feasible STPD solution is given by ⌈na⌉. Hence we add to the initial constraint

system the inequality:
∑

(i,j)∈A

yij ≥ ⌈na⌉ . (27)

Actually, we found that the LP relaxation of formulation STPDLMTZ can be solved in

less than a fraction of second for the instances that we have considered and thus we

have solved this LP relaxation not only for computing na, but also for strengthening

the time window intervals [λi, µi], as explained below.

For each node i that is different from the root, we want to reduce the value of µi and,

thus, we iteratively solve the LPs of formulation STPDLMTZ where the lower bound

λi is substituted by the midpoint of the interval [λi, µi], that is
⌈

λi+µi

2

⌉

. Whenever

the new time window interval [
⌈

λi+µi

2

⌉

, µi] produces infeasible problems, we decrease

the value of µi by updating it: µ∗
i :=

⌈

λi+µi

2

⌉

− 1. Moreover, updating the value µi

for node i may have the following two consequences that are applied recursively each

time the value of µi is reduced. Firstly, if node j precedes i (that is (j, i) ∈ A) and

µ∗
i < λj+θij ≤ µi, then in view of the updated time bound, arc (j, i) can be eliminated

from the graph. Secondly, it may occur to tighten the time windows of a Steiner node

j ∈ V \ R that precedes i. Indeed if max(µ∗
i − θji, maxl∈δ∗A(j)\{(j,i)}(µl − θjl)) > µj ,

then also µj can be reduced. We notice that it is useless to try to decrease in the same

way the value of λi. If the original problem is feasible then, by definition of λi, there

always exists a path in the graph in which the delay of each node i from the root node

is equal to λi. The new delay bounds combine to define the final coefficients of the

constraints of formulation STPDDC.

The algorithm starts with an initial constraint matrix that is constituted by the

inequalities (4), (5), (8), (9), (10), (23) and (27), and by the linear relaxation of con-

straints (6). In addition, a subset of the cuts (3) are included into the formulation.

In particular, we include the cuts obtained by choosing as cutset all the sets of the

sequence (W (1)i) and for each terminal node r ∈ R∗ all the sets of the sequence

(W (r)ci). Sequence (W (1)i) starts with W (1)0 := {1}, ends if R∗ ⊂ W (1)i+1, and has

as a generic element the set W (1)i := {k ∈ V : ∃j ∈ W (1)i−1 s.t. (j, k) ∈ A}, whereas
sequence (W (r)ci) starts with the set W (r)0 := {r}, ends when 1 ∈ W (r)i+1, and has

as a generic element the set W (r)i := {k ∈ V : ∃j ∈ W (r)i−1 s.t. (k, j) ∈ A}.

Denote by STPD′
DC the LP relaxation of formulation STPDDC obtained by con-

sidering only the above subset of constraints. We describe now some implementation

details of the branch-and-cut procedure.

12

– Branching: The branching is performed on the y variables, using the strong

branching strategy ([1], [4], and [26]). It consists in performing a limited number

of simplex iterations in order to establish which one of the fractional candidates

temporarily fixed to its up and down values gives the best objective value progress

before actually branching on it.

We have also considered SOS1 branching which refers to special ordered set of

type I (see e.g. [13], and [26]). Specifically, for the subsets W := {r} with r ∈ R∗,

constraints (3) can be forced to be satisfied to the equality since clearly only one arc

will income in each terminal node in an optimal solution. Thus, for each terminal

node r ∈ R∗ the constraint
∑

(j,r)∈A yjr = 1 can be used for a SOS1 branching.

It is, indeed, possible to select a set Tr ⊆ Ir := {(j, r) ∈ A : j ∈ V } and thus

to define two subregions to be identified by the constraints
∑

(j,r)∈Tr
yjr = 0

and
∑

(j,r)∈Ir\Tr
yjr = 0, respectively. We select the SOS1 set Tr on the basis of

the delays. Specifically, suppose that during the B&C phase the current optimal

solution (ȳ, t̄) has fractional variables associated with incoming arcs of a terminal

node r. We compute the value md(r) :=
∑

(j,r)∈Ir
θjr ȳjr which is the mean delay

of the arcs incoming in r and then we set Tr := {(j, r) ∈ Ir : θjr ≤ md(r)} (in view

of this choice, variables associated with arcs having delays which are lower than

the mean delay md(r) belong to one subregion).

– Enumeration strategy: The best-bound strategy is chosen, and thus the node

with the best objective function value is selected.

– Preprocessing during the B&C phase: A preprocessing based on the reduced

costs (see e.g. [20]) can be performed at each node of the B&C tree. Let (ȳ, t̄) be

the current optimal solution and LLB be its value (it is a local lower bound), and

let UB be a global upper bound and, i.e., the value of the best known feasible

solution. Moreover, let c̄ij be the reduced cost of the arc (i, j) ∈ A. It is well known

that if yij = 0 and LLB+ c̄ij > UB, then variable ȳij can be locally fixed to zero,

whereas if ȳij = 1 and LLB − c̄ij > UB, then variable ȳij can be locally fixed to

one (by “locally” we mean that the variable can be fixed in all the current node’s

sons in the B&C tree). Whenever we fix either to one or to zero the value of some

variables, this means that we are changing the topology of the network and we

can update the values of λ and µ. If the new value λi is strictly greater than its

previous value, then we locally modify the lower bound in (5). Moreover if i is a

Steiner node and the new value µi is strictly lower than its previous value, then

we can also locally modify the upper bound in (5). Furthermore, if the new values

for a Steiner node are such that λi > µi, then all variables corresponding to arcs

incident in i can be locally fixed to zero. Finally, it can be locally fixed to zero the

value of the variable yij if the relation λi + θij > µj holds.

A synthesis of the algorithm can be formalized as follows:

Step 0: Perform the preprocessing;

Step 1: Solve STPD′
DC, and let (y, t) be its optimal solution;

Step 2: Perform the reduced costs preprocessing; if an edge is eliminated, then go to

Step 0 else go to Step 3;

Step 3: If y violates a constraint of type (3), then add the most violated constraint to

STPD′
DC and go to Step 1;

Step 4: Start the B&C procedure until the optimal integer solution has been found:

a) Separate constraints (3) and (21);

b) Separate constraints (25) and (26);

13

c) Perform reduced costs preprocessing and the local variable fixing and time

bounds strengthening;

d) Find the terminal node with the highest number of fractional variables associ-

ated with its incoming arcs and define the SOS1 set.

Preliminary, yet extensive, computational results have shown that performing steps

4b, 4c and 4d at every node of the B&C tree is too expensive from a computational

point of view. Nevertheless, we have found that performing these steps on nodes located

at depth 10 and 35 reduces not only the number of explored nodes in the B&C tree,

but also the CPU time.

6 Computational experiments

All our experiments have been carried out on an Opteron 246 computer with 2 GB

RAMmemory, by using CPLEX 10.2 and its callbacks within a C code for implementing

the B&C procedure.

6.1 Description of the problem instances

We focus our computational study on the complete graphs Berlin 52 and Brazil 58

from SteinLib library [15]. The approach proposed in [18] solved to optimality all the

considered instances Berlin 52 within a considerable CPU time, whereas it failed to

solve all the instances of the class Brazil 58. Graphs Berlin 52 are composed of 52

nodes, 16 terminals and 1326 edges and graphs Brazil 58 are composed of 58 nodes,

25 terminals and 1653 edges. The costs on the edges of these graphs are Euclidean

distances. For each of these two graphs, we have generated 20 instances having different

delay values associated with the edges. Empirically, we found that challenging instances

are obtained if the delays were correlated with the costs. These instances were generated

in the following way. First, a random number r is drawn from the interval [0.8, 1.2].

Then, for each edge {i, j} we set θij := r∗cij . Once each arc has been assigned a delay,

we have computed the value MP which is the maximum among the |R∗| shortest paths
from 1 to each terminal node with the delays as weights, i.e. MP = maxj∈R∗ θ(1, j).

In tightly constrained problems indicated with 0.1 we have set ∆ := 1.1∗MP , whereas

in weakly constrained problems indicated with 0.5 we have set ∆ := 1.5 ∗MP . Hence,

we have generated 40 test instances in total.

6.2 STPDDC based solution methods

Table 1 summarizes the computational results obtained by running the algorithm de-

scribed in section 5. Column Ctr(.) reports the number of constraints of type (.) gen-

erated during the B&C procedure, column sos reports the number of SOS branching

and column Nnod displays the number of nodes explored before obtaining an optimal

integer solution. In columns Clq and Cvr, the number of clique and of cover inequalities

introduced by CPLEX are presented. T indicates the time (in seconds) needed to run

Step 4 of the algorithm, while in column Ttot we report the total time for solving the

instances (involving all the steps of the algorithm). Finally, the last two columns report

the performance of the approach that is described in [18], in particular we indicate the

CPU time and the remaining Gap := UB−LB
LB × 100 after 3 hours of computation

14

Problem STPDDC STPDLMTZ
Ctr(3) Ctr(21) Ctr(25) Ctr(26) sos Nnod Clq Cvr T Ttot Ttot Gap

Berlin 52 0.1 01 18 4 0 6 0 2 0 0 1.28 3.96 0.78 0.00
Berlin 52 0.1 02 49 3 1 6 7 85 0 0 9.70 12.38 640.54 0.00
Berlin 52 0.1 03 42 1 0 6 2 46 1 0 3.25 4.54 505.34 0.00
Berlin 52 0.1 04 46 4 1 3 2 32 4 0 2.95 4.53 21.08 0.00
Berlin 52 0.1 05 - - - - - - - - - 1.01 1.34 0.00
Berlin 52 0.1 06 11 4 0 6 0 3 0 0 3.17 4.75 70.36 0.00
Berlin 52 0.1 07 7 0 0 3 0 2 0 0 2.12 3.08 136.87 0.00
Berlin 52 0.1 08 11 1 0 8 0 5 5 0 1.88 2.73 6.94 0.00
Berlin 52 0.1 09 15 0 0 11 0 7 1 2 2.07 2.63 30.87 0.00
Berlin 52 0.1 10 16 0 0 8 0 20 2 2 5.13 5.86 514.19 0.00

Berlin 52 0.5 01 27 4 0 0 2 47 1 0 1.65 4.59 3580.30 0.00
Berlin 52 0.5 02 35 5 0 7 5 63 0 2 4.58 7.67 1663.06 0.00
Berlin 52 0.5 03 43 4 0 2 3 60 0 0 5.12 7.14 211.15 0.00
Berlin 52 0.5 04 18 0 0 3 0 12 0 0 3.07 7.31 38.63 0.00
Berlin 52 0.5 05 2 2 0 0 0 10 0 0 0.70 3.14 537.93 0.00
Berlin 52 0.5 06 5 0 0 3 0 9 0 0 3.08 6.28 2082.43 0.00
Berlin 52 0.5 07 79 1 0 9 2 85 1 0 19.14 20.19 393.20 0.00
Berlin 52 0.5 08 62 3 0 7 3 104 0 0 14.62 15.73 3515.70 0.00
Berlin 52 0.5 09 29 3 0 5 0 23 0 0 6.31 7.25 5439.77 0 0.00
Berlin 52 0.5 10 30 5 0 11 2 46 0 0 10.64 12.94 1005.53 0.00

Brazil 58 0.1 01 530 3 0 11 11 421 0 1 2419.67 2433.27 >3h 9.02
Brazil 58 0.1 02 14 4 0 14 0 2 0 0 56.12 75.54 >3h 2.10
Brazil 58 0.1 03 2 2 0 1 0 11 0 0 41.03 56.92 >3h 6.01
Brazil 58 0.1 04 - - - - - - - - - 3.79 >3h 1.62
Brazil 58 0.1 05 943 4 1 11 232 17419 0 5 >3h >3h >3h 7.32
Brazil 58 0.1 06 77 2 0 5 12 176 1 1 85.23 94.07 >3h 3.31
Brazil 58 0.1 07 4 0 0 3 0 20 3 2 10.70 27.52 >3h 5.85
Brazil 58 0.1 08 22 0 0 3 0 24 0 0 11.90 24.31 >3h 0.93
Brazil 58 0.1 09 3 0 0 5 0 1 0 0 3.14 17.31 >3h 2.03
Brazil 58 0.1 10 18 2 0 7 4 138 3 0 46.67 63.96 >3h 5.41

Brazil 58 0.5 01 145 1 0 12 58 840 0 4 436.78 457.11 >3h 7.44
Brazil 58 0.5 02 115 2 0 15 139 2212 0 1 782.14 802.04 >3h 7.61
Brazil 58 0.5 03 307 0 0 9 20 1952 0 1 1149.26 1173.34 >3h 9.61
Brazil 58 0.5 04 285 0 0 9 19 836 0 2 695.36 716.76 >3h 7.98
Brazil 58 0.5 05 344 7 0 12 18 3811 0 0 2422.78 2434.57 >3h 8.39
Brazil 58 0.5 06 42 7 0 11 3 54 0 0 105.18 122.91 >3h 5.13
Brazil 58 0.5 07 85 1 0 3 5 129 0 0 142.38 161.62 >3h 10.06
Brazil 58 0.5 08 89 0 0 12 6 108 0 0 128.84 148.87 >3h 5.91
Brazil 58 0.5 09 98 3 0 10 7 220 0 0 239.86 272.70 >3h 9.91
Brazil 58 0.5 10 70 0 0 15 4 74 0 0 157.72 181.55 >3h 8.89

Table 1 Computational results of Formulation STPDDC

(where UB is the value of the best feasible integer solution and LB is the value of the

best lower bound obtained upon termination).

For two instances, namely Berlin 52 0.1 05 and Brazil 58 0.1 04, the LP relaxation

of STPDDC produced an optimal integer solution, while there is only one instance,

Brazil 58 0.1 05, that is unsolved by the proposed B&C with a remaining gap of 0.07%

after 3 hours of computation. It is interesting to emphasize that none of the generated

instances of class Brazil 58 can be solved with the approach described in [18], and

that the gaps upon termination (last column) are still very important in almost all the

cases, whereas all the instances except one are solved with the B&C algorithm within

at most 2435 seconds.

It is noteworthy that, for the sake of completeness, we have assessed the perfor-

mance of the proposed B&C algorithm on additional sparse instances described in [18],

however these results are not reported since they are comparable with those in [18].

6.3 Lifted MTZ constraints and LP relaxation comparison

In Section 3, we have compared formulations STPDDC and STPDLMTZ from a theo-

retical point of view and in Section 4.1 we have foretold that the two liftings (4) and

(21) are not comparable, now we present in Table 2 the computational evidence of

our claims. We indicate with “STPDDC (.)” formulation STPDDC where constraints

(4) are replaced by constraints (.) and we denote by vLP (P) the optimal value of the

15

Problem STPDDC (4) STPDDC (21) STPDDC (4)+(21) gap(STPDLMTZ) OPT

Berlin 52 0.1 01 77.70 77.71 77.71 17.71 1141
Berlin 52 0.1 02 78.37 78.38 78.38 18.05 1319
Berlin 52 0.1 03 87.39 87.40 87.40 13.31 1390
Berlin 52 0.1 04 84.91 84.96 84.96 17.86 1401
Berlin 52 0.1 05 100 100 100 13.16 1203
Berlin 52 0.1 06 73.97 73.97 73.97 19.13 1152
Berlin 52 0.1 07 86.83 86.95 86.95 16.98 1354
Berlin 52 0.1 08 93.47 93.47 93.47 13.74 1272
Berlin 52 0.1 09 86.47 86.49 86.49 11.00 1307
Berlin 52 0.1 10 89.90 88.94 89.90 16.86 1250

Berlin 52 0.5 01 96.65 96.65 96.65 19.87 1058
Berlin 52 0.5 02 79.60 79.62 79.62 21.59 1097
Berlin 52 0.5 03 81.21 81.24 81.24 22.22 1096
Berlin 52 0.5 04 75.44 74.98 75.44 23.55 1136
Berlin 52 0.5 05 91.63 91.64 91.64 21.23 1070
Berlin 52 0.5 06 94.46 94.46 94.46 20.44 1063
Berlin 52 0.5 07 88.92 88.92 88.92 24.74 1120
Berlin 52 0.5 08 89.11 89.11 89.11 19.36 1072
Berlin 52 0.5 09 84.60 84.60 84.60 20.13 1121
Berlin 52 0.5 10 85.35 85.18 85.36 20.22 1079

Brazil 58 0.1 01 66.72 67.23 67.41 20.49 14530
Brazil 58 0.1 02 55.87 55.93 56.04 23.14 16080
Brazil 58 0.1 03 45.03 45.00 45.03 22.86 16474
Brazil 58 0.1 04 100 100 100 10.15 15781
Brazil 58 0.1 05 82.94 82.94 82.94 19.10 19679
Brazil 58 0.1 06 47.75 45.30 47.75 16.06 23105
Brazil 58 0.1 07 76.17 64.47 76.17 26.53 16477
Brazil 58 0.1 08 99.46 99.46 99.46 11.83 16170
Brazil 58 0.1 09 93.04 93.07 93.07 16.20 17350
Brazil 58 0.1 10 96.27 96.27 96.27 15.80 21183

Brazil 58 0.5 01 93.73 93.74 93.74 15.16 13769
Brazil 58 0.5 02 94.29 94.29 94.29 15.01 13758
Brazil 58 0.5 03 82.08 82.00 82.08 17.34 14029
Brazil 58 0.5 04 64.54 64.60 64.67 22.50 14826
Brazil 58 0.5 05 57.51 57.54 57.66 25.75 15035
Brazil 58 0.5 06 46.14 43.38 46.49 31.86 16018
Brazil 58 0.5 07 77.15 77.14 77.15 18.43 14160
Brazil 58 0.5 08 62.03 61.20 62.07 23.53 14860
Brazil 58 0.5 09 76.34 76.26 76.34 18.65 14186
Brazil 58 0.5 10 49.90 48.33 50.85 28.34 15638

Table 2 Comparison of the liftings of the MTZ constraints

LP relaxation of a generic formulation P . Last column of table 2 reports the opti-

mal value OPT of each instance, and in column gap(STPDLMTZ) we display the

gap :=
OPT−vLP (STPDLMTZ)

vLP (STPDLMTZ)
× 100. The remaining columns report the percentage

vLP (P)−vLP (STPDLMTZ)
OPT−vLP (STPDLMTZ)

× 100, where formulation P is respectively STPDDC (4),

STPDDC (21) and finally STPDDC (4) + (21). These values show how closer the LP

relaxation of formulations STPDDC are to the optimal value with respect to the LP

relaxation of STPDLMTZ.

We have highlighted in bold which lifting (4) or (21) produces the best LP bound

and when both entries are in bold, it means that formulations STPDDC (4) and

STPDDC (21) have the same LP relaxation values. When column STPDDC (4)+(21) is

displayed in bold, then the combination of the two lifted constraints produced a strictly

better LP relaxation value. The instance with the worst gap for all the formulations

is Brazil 58 0.5 06, where the gap for STPDDC (4) is 14.96, for STPDDC (21) is 15.85

and using both the constraints the gap is 14.85. If we compute the mean gap over all

the considered instances, we obtain the value 19.25 for formulation STPDLMTZ, 3.81

for STPDDC (4) and 3.93 for STPDDC (21), while the combination of the two liftings

leads to a mean gap of 3.80.

From the computational results, it appears evident that the use of constraints

(4) produces on the average a better LP relaxations than using constraints (21) and

this justifies our choice of considering constraints (4) in formulation STPDDC and to

generate constraints (21) only if necessary during the B&C solution method.

16

7 Conclusion

In this paper, we have proposed an enhanced directed cut-based formulation for the

STPD together with an exact branch-and-cut algorithm. The proposed approach in-

cludes several enhanced algorithmic features. In particular, it incorporates a new lifting

of the delay/subtour elimination constraint, an effective preprocessing procedure, and

an SOS branching, while including additional valid inequalities. Computational results

attest the efficacy of the proposed algorithm, which can solve to optimality hard dense

STPD instances. Furthermore, we have provided empirical evidence that the proposed

approach consistently outperforms a previously proposed compact formulation-based

solution procedure. As a topic for future research, we recommend the derivation of

facet-defining inequalities that might prove useful for accelerating the convergence of

the algorithm. The literature on the exact solution of the STPD is very scant and its

in depth investigation is still in its infancy. We hope that the results presented in this

paper will stimulate further research in this topic.

References

1. T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33(1):42 – 54, 2005.

2. E. Althaus, T. Polzin, and S. V. Daneshmand. Improving linear programming approaches
for the Steiner tree problem. In Experimental and efficient algorithms, volume 2647 of
Lecture Notes in Comput. Sci., pages 1–14. Springer, Berlin, 2003.

3. Y. P. Aneja. An integer linear programming approach to the Steiner problem in graphs.
Networks, 10(2):167–178, 1980.

4. D. Applegate, R. Bixby, and W. Cook. Finding cuts in the tsp (a preliminary report),
1995.

5. N. Ascheuer, M. Fischetti, and M. Grötschel. Solving the asymmetric travelling salesman
problem with time windows by branch-and-cut. Math. Program., 90(3, Ser. A):475–506,
2001.

6. N. Ascheuer, M. Fischetti, and M. Grötschel. A polyhedral study of the asymmetric
traveling salesman problem with time windows. Networks, 36(2):69–79, 2000.

7. A. M. Costa, J.-F. Cordeau, and G. Laporte. Fast heuristics for the Steiner tree problem
with revenues, budget and hop constraints. European Journal of Operational Research,
190(1):68–78, 2008.

8. A. M. Costa, J.F. Cordeau, and G. Laporte. Models and branch-and-cut algorithms for the
Steiner tree problem with revenues, budget and hop constraints. Networks, 53(2):141–159,
2009.

9. D. Z. Du, B. Lu, H. Ngo, and P. M. Pardalos. Steiner tree problems. In: C. Floudas and
P. Pardalos (eds.), Encyclopedia of Optimization, 5:227–290, 2001.

10. N. Ghaboosi and A. T. Haghighat. Tabu search based algorithms for bandwidth-delay-
constrained least-cost multicast routing. Telecommunication Systems, 34(3-4):147–166,
2007.

11. A. Ghanwani. Neural and delay based heuristics for the Steiner problem in networks.
European Journal of Operational Research, 108(2):241–265, 1998.

12. L. Gouveia. Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning
tree problem with Hop constraints. Computers & Operations Research, 22(9):959–970,
1995.

13. E. L. Johnson, G. L. Nemhauser, and M.W.P. Savelsbergh. Progress in linear
programming-based algorithms for integer programming: An exposition. INFORMS Jour-
nal on Computing, 12, 2000.

14. T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks,
32(3):207–232, 1998.

15. T. Koch, A. Martin, and S. Voβ. SteinLib. http : //elib.zib.de/steinlib.
16. V. P. Kompella, J. Pasquale, and G. C. Polyzos. Multicast routing for multimedia com-

munication. IEEE/ACM Transactions on Networking, 1(3):286–292, 1993.

17

17. Z. Kun, W. Heng, and F. Y. Liu. Distributed multicast routing for delay and delay
variation-bounded Steiner tree using simulated annealing. Computer Communications,
28(11):1356–1370, 2005.

18. V. Leggieri, M. Haouari, S. Layeb, and C. Triki. The Steiner tree problem with delays: A
tight compact formulation and reduction procedures. Technical report.

19. C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of trav-
eling salesman problems. Journal of the Association for Computing Machinery, 7(4):326–
329, 1960.

20. G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc.,
New York, 1988.

21. C. A. S. Oliveira and P. M. Pardalos. A survey of combinatorial optimization problems in
multicast routing. Computers & Operations Research, 32(8):1953–1981, 2005.

22. C. A. S. Oliveira and P. M. Pardalos. Construction algorithms and approximation bounds
for the streaming cache placement problem in multicast networks. Cybernetics and System
Analysis, 41(6):898–908, 2005.

23. T. Polzin and S. V. Daneshmand. A comparison of Steiner tree relaxations. Discrete
Applied Mathematics. The Journal of Combinatorial Algorithms, Informatics and Com-
putational Sciences, 112(1-3):241–261, 2001.

24. M. Santos, L. M.A. Drummond, and E. Uchoa. A distributed dual ascent algorithm for the
hop-constrained Steiner tree problem. Operations Research Letters, 38(1):57 – 62, 2010.

25. R. Sriram, G. Manimaran, and C. S. Ram Murthy. Algorithms for delay-constrained low-
cost multicast tree construction. Computer Communications, 21(18):1693–1706, 1998.

26. L.A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

