Asymptotic Behavior of a Bouncing Ball

A.M. Cherubini G. Metafune
F. Paparella

Dip. di Matematica “E. De Giorgi”, Università di Lecce

SPT - Otranto - May 5, 2007
Constant Coefficient of Restitution: the “Standard Model”

Before Impact

\[-U \]

After Impact

\[rU \]

\[0 \leq r \leq 1 \]

\[r = 0 \] totally inelastic impact

\[r = 1 \] perfectly elastic impact
The Simplest Example of Inelastic Collapse

A ball repeatedly bouncing off the floor (neglect air friction):

Time of flight: \[\tau_n = \frac{2U_n}{g} \]

Velocity map: \[U_{n+1} = rU_n \]

Sum of the times of flight: \[\sum_{n=0}^{\infty} \tau_n = \frac{2U_0}{g} \sum_{n=0}^{\infty} r^n \]
The Simplest Example of Inelastic Collapse

A ball repeatedly bouncing off the floor (neglect air friction):

Time of flight: \(\tau_n = \frac{2U_n}{g} \)

Velocity map: \(U_{n+1} = r U_n \)

Sum of the times of flight: \(\sum_{n=0}^{\infty} \tau_n = \frac{2U_0}{g} \sum_{n=0}^{\infty} r^n \)

Convergent!

What happens after the time

\[t_\infty = \frac{2U_0}{g(1-r)} \]
Inelastic Collapse

A set of grains described by the above model may be subject to the inelastic collapse:

"at least one grain experiences an infinite number of impacts in a finite time"

A Variable \(r \) Is Not the Cure...

It has been suggested (spherical geometry, homogeneous material, Hertz’s contact law) that it should be:

\[
r(U) = 1 - \left(\frac{U}{U_c} \right)^{1/5} + O \left(\left(\frac{U}{U_c} \right)^{2/5} \right)
\]

It can be proved that with this model:

- Three spheres without gravity are not affected by inelastic collapse.
- But a bouncing ball is still subject to inelastic collapse.
...But It Appears to Agree with Experiments!

Beware: these are single impacts, they are not repeated bounces!
Our Model: Deformability is the Key

Non-dimensional equations of motion:

\[
\ddot{x} + \mu \dot{x} + \frac{1}{2} x = -\gamma - \frac{1}{2} + \frac{1}{2} y + \mu \dot{y}
\]

\[
\ddot{y} + \mu \dot{y} + \frac{1}{2} y = -\gamma + \frac{1}{2} + \frac{1}{2} x + \mu \dot{x}
\]

or

\[
\ddot{\psi} = -\gamma
\]

\[
\ddot{\xi} = -\xi - 2\mu \dot{\xi}
\]

where \(\psi = \frac{1}{2}(y + x - 1) \), \(\xi = \frac{1}{2}(y - x - 1) \)

and the non-dimensional parameters are

\[
\gamma = \frac{gm}{(2Lk)}, \quad \mu = \frac{\nu}{\sqrt{2km}}
\]

- \(L \) length at rest of the spring,
- \(k \) elastic constant of the spring
- \(\nu \) dissipativity of the spring
- \(m \) mass of each material point
Impact Rule

Let $t_0, t_1, \ldots, t_n, \ldots$ be the times such that $x(t_n) = 0$ (impact times). Then we impose

$$\dot{x}(t_n^+) = -\dot{x}(t_n^-)$$

The interaction with the floor is **instantaneous** and **conservative** (but the spring is dissipative...).

This is a *piecewise smooth* dynamical system.
Main Results

1. Except for a set of zero Lebesgue measure of initial conditions, the asymptotic time of flight is

\[\tau_n \sim \frac{3}{\mu} \cdot \frac{1}{n} \]
Main Results

1. Except for a set of zero Lebesgue measure of initial conditions, the asymptotic time of flight is

\[\tau_n \sim \frac{3}{\mu} \cdot \frac{1}{n} \]

2. For \(t \to \infty \) the system tends to the state of static equilibrium

\[x = \dot{x} = \dot{y} = 0, \quad y = 1 - 2\gamma \]
Main Results

1. Except for a set of zero Lebesgue measure of initial conditions, the asymptotic time of flight is

\[\tau_n \sim \frac{3}{\mu} \cdot \frac{1}{n} \]

2. For \(t \to \infty \) the system tends to the state of static equilibrium

\[x = \dot{x} = \dot{y} = 0, \quad y = 1 - 2\gamma \]

3. An initial condition that does not obey to 1. leads to a sticky contact: the lower point mass hits the floor with zero velocity, and maintains the contact forever, while the upper point mass performs exponentially damped oscillations.

No Inelastic Collapse!
Energy of the System

The energy is a non-increasing function of time:

\[E = \frac{\dot{\xi}^2}{2} + \frac{\xi^2}{2} + \frac{\dot{\psi}^2}{2} + \gamma \psi \]

\[\frac{dE}{dt} = -2\mu \dot{\xi}^2 \]

The energy has a minimum

\[E_m = -\gamma^2 / 2 \]

There is only one state corresponding to this minimum: the static equilibrium.
Energy of the System

The energy is a non-increasing function of time:

\[E = \frac{\dot{\xi}^2}{2} + \frac{\xi^2}{2} + \frac{\psi^2}{2} + \gamma \psi \]

\[\frac{dE}{dt} = -2\mu \dot{\xi}^2 \]

The energy has a minimum

\[E_m = -\frac{\gamma^2}{2} \]

There is only one state corresponding to this minimum: the static equilibrium.

If I take an initial condition sufficiently close to the static equilibrium, then (from the equations of motion and their derivatives) it can be seen that

\[\dddot{X}_n < 0, \quad \dddot{X}_n > 0 \]

where \(\dddot{X}_n = x(t_n^+) \). More precisely, they are confined in a neighborhood of \(-2\gamma\) and \(2\mu\gamma\) respectively.
Sketch of a Proof Close to Equilibrium I

Taylor expansion of the trajectory of the lower point mass

\[0 \equiv x(t_{n+1}) = \dot{X}_n \tau_n + \ddot{X}_n \frac{\tau_n^2}{2} + \dddot{X}_n \frac{\tau_n^3}{6} + O(\tau_n^4) \]

\[-\dot{X}_{n+1} \equiv \dot{x}(t_{n+1}^-) = \dot{X}_n + \ddot{X}_n \tau_n + \dddot{X}_n \frac{\tau_n^2}{2} + O(\tau_n^3) \]
Taylor expansion of the trajectory of the lower point mass

\[0 \equiv x(t_{n+1}) = \dot{X}_n \tau_n + \ddot{X}_n \frac{\tau_n^2}{2} + \dddot{X}_n \frac{\tau_n^3}{6} + O(\tau_n^4) \]

\[-\dot{X}_{n+1} \equiv \dot{x}(t_{n+1}^{-}) = \dot{X}_n + \ddot{X}_n \tau_n + \dddot{X}_n \frac{\tau_n^2}{2} + O(\tau_n^3) \]

Eliminating \(\ddot{X}_n \tau_n \), we find a map for \(\dot{X}_n \)

\[\dot{X}_{n+1} = \dot{X}_n - \frac{\dddot{X}_n}{6} \tau_n^2 \]
From

\[\dot{X}_n \tau_n + \ddot{X}_n \frac{\tau_n^2}{2} + \dddot{X}_n \frac{\tau_n^3}{6} = 0 \]

we find the following approximation to the time of flight (further expanded for small \(\dot{X}_n \)):

\[\tau_n = -\frac{3}{2} \frac{\dddot{X}_n}{\ddot{X}_n} \left(1 - \sqrt{1 - \frac{8}{3} \frac{\dddot{X}_n}{\ddot{X}_n} \frac{\dot{X}_n}{\ddot{X}_n}} \right) = -2 \frac{\dddot{X}_n}{\ddot{X}_n} \]
From
\[\dot{X}_n \tau_n + \ddot{X}_n \frac{\tau_n^2}{2} + \dddot{X}_n \frac{\tau_n^3}{6} = 0 \]
we find the following approximation to the time of flight (further expanded for small \(\dot{X}_n \)):
\[\tau_n = -\frac{3}{2} \frac{\dddot{X}_n}{\dddot{X}_n} \left(1 - \sqrt{1 - \frac{8}{3} \frac{\dddot{X}_n \dddot{X}_n}{\dddot{X}_n}} \right) = -2 \frac{\dddot{X}_n}{\dddot{X}_n} \]
Inserting this into the map for \(\dot{X}_n \) we get
\[\dot{X}_{n+1} = \dot{X}_n - \frac{2}{3} \frac{\dddot{X}_n}{\dddot{X}_n} \dddot{X}_n \]
Sketch of a Proof Close to Equilibrium II

From

\[\dot{X}_n \tau_n + \ddot{X}_n \frac{\tau_n^2}{2} + \dddot{X}_n \frac{\tau_n^3}{6} = 0 \]

we find the following approximation to the time of flight (further expanded for small \(\dot{X}_n \)):

\[\tau_n = -\frac{3}{2} \frac{\ddot{X}_n}{\dot{X}_n} \left(1 - \sqrt{1 - \frac{8}{3} \frac{\dot{X}_n \dddot{X}_n}{\dot{X}_n}} \right) = -2 \frac{\dot{X}_n}{\dot{X}_n} \]

Inserting this into the map for \(\dot{X}_n \) we get

\[\dot{X}_{n+1} = \dot{X}_n - \frac{2}{3} \frac{\dddot{X}_n}{\dot{X}_n} \dot{X}_n^2 \]

It can be proved that this map implies

\[\dot{X}_n \sim \frac{3}{2} \frac{\dddot{X}_n^2}{\dot{X}_n} \cdot \frac{1}{n} \]
Then

\[\tau_n \sim -3 \frac{\dddot{X}_n}{X_n} \cdot \frac{1}{n} \]

But \(\dddot{X}_n, \dddot{X}_n \) are in an arbitrarily small neighbour of \(-2\gamma\) and \(2\mu\gamma\), so

\[\tau_n \sim \frac{3}{\mu} \cdot \frac{1}{n} \]
By contradiction assume inelastic collapse does happen. Define the time left before collapse:

\[T_n = t_\infty - t_n \]
By contradiction assume inelastic collapse does happen. Define the time left before collapse:

\[T_n = t_\infty - t_n \]

\(x(t), y(t) \) and all their derivatives are bounded. They all have a finite limit for \(t \to t_\infty \).
By contradiction assume inelastic collapse does happen. Define the time left before collapse:

\[T_n = t_\infty - t_n \]

\(x(t), y(t) \) and all their derivatives are bounded. They all have a finite limit for \(t \to t_\infty \).

The jumps across the discontinuities at the impacts are all functions of \(\dot{X}_n \):

\[
\begin{align*}
[\dot{x}(t_n)] &= 2\dot{X}_n, \\
[\dot{y}(t_n)] &= 2\mu\dot{X}_n, \\
[\ddot{y}(t_n)] &= (1 - 4\mu^2)\dot{X}_n, \\
\end{align*}
\] etc.
By contradiction assume inelastic collapse does happen. Define the time left before collapse:

\[T_n = t_\infty - t_n \]

\(x(t), y(t) \) and all their derivatives are bounded. They all have a finite limit for \(t \to t_\infty \).

The jumps across the discontinuities at the impacts are all functions of \(\dot{X}_n \):

\[
\begin{align*}
[\dot{x}(t_n)] &= 2\dot{X}_n, \\
[\ddot{y}(t_n)] &= 2\mu\dot{X}_n, \\
[\dddot{y}(t_n)] &= (1 - 4\mu^2)\dot{X}_n,
\end{align*}
\]

Integrate \((k+1)\)-th derivative of \(y \) from time \(t \) to collapse \(t_\infty \)

\[
Y^{(k)}_\infty - y^{(k)}(t) = \int_t^{t_\infty} y^{(k+1)}(s) \, ds + \sum_{i=n+1}^{\infty} \left[y^{(k)}(t_i) \right]
\]
By contradiction assume inelastic collapse does happen. Define the time left before collapse:

$$T_n = t_\infty - t_n$$

- $x(t)$, $y(t)$ and all their derivatives are bounded. They all have a finite limit for $t \to t_\infty$.
- The jumps across the discontinuities at the impacts are all functions of \dot{X}_n:
 \[
 \begin{align*}
 \dot{x}(t_n) &= 2\dot{X}_n, \\
 \ddot{y}(t_n) &= 2\mu \dot{X}_n, \\
 \dddot{y}(t_n) &= (1 - 4\mu^2)\dot{X}_n, \\
 \end{align*}
 \]
 etc.
- Integrate $(k + 1)$-th derivative of y from time t to collapse t_∞
 \[
 Y^{(k)}_\infty - y^{(k)}(t) = \int_t^{t_\infty} y^{(k+1)}(s) ds + \sum_{i=n+1}^{\infty} [y^{(k)}(t_i)]
 \]
- Get an estimate for the k-th derivative of y
 \[
 y^{(k)}(t) = Y^{(k)}_\infty + Y^{(k+1)}_\infty (t - t_\infty) + O((t - t_\infty)^2) + O \left(\sum_{i=n+1}^{\infty} \dot{X}_i \right)
 \]
Use the estimates in the equation of motion for x and find

$$\ddot{x} + \mu \dot{x} + \frac{1}{2} x = P - Q(t_\infty - t) + R(t_\infty - t)^2 + O((t_\infty - t)^3) + O\left((t_\infty - t) \sum_{i=n+1}^{\infty} \dot{X}_i\right)$$

where P, Q, R are constants depending on $Y_\infty, \dot{Y}_\infty, \ddot{Y}_\infty$.
Use the estimates in the equation of motion for x and find
\[
\ddot{x} + \mu \dot{x} + \frac{1}{2} x = P - Q(t_\infty - t) + R(t_\infty - t)^2 + O((t_\infty - t)^3) + O\left((t_\infty - t) \sum_{i=n+1}^{\infty} \dot{X}_i\right)
\]

where P, Q, R are constants depending on $Y_\infty, \dot{Y}_\infty, \ddot{Y}_\infty$.

Now (using Lagrange’s average function thm.) the map becomes
\[
\begin{align*}
\dot{X}_{n+1} &= \dot{X}_n - \Delta_n \tau_n^2 \\
T_{n+1} &= T_n - \tau_n
\end{align*}
\]

where $\Delta_n = \ddot{x}(\eta_n)/2 - \ddot{x}(\zeta_n)/3$ for some $t_n < \eta_n, \zeta_n < t_{n+1}$.
Use the estimates in the equation of motion for x and find

$$\ddot{x} + \mu \dot{x} + \frac{1}{2} x = P - Q(t_\infty - t) + R(t_\infty - t)^2 + O((t_\infty - t)^3) + O((t_\infty - t) \sum_{i=n+1}^{\infty} \dot{X}_i)$$

where P, Q, R are constants depending on $Y_\infty, \dot{Y}_\infty, \ddot{Y}_\infty$.

Now (using Lagrange's average function thm.) the map becomes

$$\begin{cases}
\dot{X}_{n+1} = \dot{X}_n - \Delta_n \tau_n^2 \\
T_{n+1} = T_n - \tau_n
\end{cases}$$

where $\Delta_n = \dddot{x}(\eta_n)/2 - \dddot{x}(\zeta_n)/3$ for some $t_n < \eta_n, \zeta_n < t_{n+1}$.

Study separately the three cases $\dddot{X}_\infty \neq 0$, $\dddot{X}_\infty = 0$, $\dddot{X}_\infty \neq 0$, $\dddot{X}_\infty = 0$, and find a (different) contradiction in each case.
Use the estimates in the equation of motion for x and find

$$\ddot{x} + \mu \dot{x} + \frac{1}{2} x = P - Q(t_\infty - t) + R(t_\infty - t)^2 + O((t_\infty - t)^3) + O \left((t_\infty - t) \sum_{i=n+1}^{\infty} \dot{X}_i \right)$$

where P, Q, R are constants depending on $Y_\infty, \dot{Y}_\infty, \ddot{Y}_\infty$.

Now (using Lagrange's average function thm.) the map becomes

$$\begin{cases}
\dot{X}_{n+1} &= \dot{X}_n - \Delta_n \tau_n^2 \\
T_{n+1} &= T_n - \tau_n
\end{cases}$$

where $\Delta_n = \ddot{x}(\eta_n)/2 - \ddot{x}(\zeta_n)/3$ for some $t_n < \eta_n, \zeta_n < t_{n+1}$.

Study separately the three cases $\dot{X}_\infty \neq 0$, $\dot{X}_\infty = 0$, $\ddot{X}_\infty \neq 0$, $\dot{X}_\infty = 0$, $\dddot{X}_\infty = 0$ and find a (different) contradiction in each case.

So the assumption of inelastic collapse always leads to contradiction.
Having established that there is no inelastic collapse we may prove that there is only one asymptotic state (which is the static equilibrium), corresponding to the minimum of the mechanical energy.

First we show that

\[
\lim_{t \to \infty} \dot{\xi}(t) = 0
\]

(otherwise the mechanical energy would decrease without bound)

Then we show that

\[
\lim_{t \to \infty} \xi(t) = -\gamma
\]

using the custom Lyapunov function

\[
\mathcal{L}(t) = \frac{1}{2} [(\dot{\xi} + 2\mu(\xi + \gamma))^2 + (\dot{\psi} + 2\mu(\xi + \gamma))^2 + \xi^2] + \gamma \psi
\]

In practice, there are a lot of technicalities due to the presence of impacts.
Anomalous Contacts

An anomalous contact occurs if $\dot{x}(t_n) = 0$. Anomalous contacts are impossible if

$$E < \frac{3 - 2\mu^2}{2(1 + 2\mu^2)}\gamma^2$$
Anomalous Contacts

An **anomalous contact** occurs if $\dot{x}(t_n) = 0$.

Anomalous contacts are impossible if

$$E < \frac{3 - 2\mu^2}{2(1 + 2\mu^2)} \gamma^2$$

At most a finite number of them may occur, starting from any initial condition.
Anomalous Contacts

An **anomalous contact** occurs if $\dot{x}(t_n) = 0$. Anomalous contacts are

- Anomalous contacts are impossible if
 \[E < \frac{3 - 2\mu^2}{2(1 + 2\mu^2)}\gamma^2 \]

- At most a finite number of them may occur, starting from any initial condition.
- They come in two flavours:
 - **Grazings**: the trajectory of the x point mass is locally parabolic, with the minimum tangent to the floor.
 - **Sticky events**: for a finite time interval the x point mass is in contact with the floor, which reacts with an upward force.
Anomalous contacts come from a set of initial conditions having zero measure. Here is a graphical 'proof'
A Numerically Supported Conjecture

Any sticky event may be approximated to arbitrarily high accuracy by a non-sticky trajectory.
Does the Ball Ever Stop? I

Three characteristic times:

Gravity Time

\[T_\psi = \sqrt{\frac{1}{2\gamma}} \]

Proper Period of the Spring

\[T_\xi = \frac{\pi}{\sqrt{1 - \mu^2}} \]

Damping Time

\[T_d = \frac{1}{\mu} \]
“emergent” restitution co-efficient:

\[r = e^{-\mu T_\xi} \]

When the time of flight is equal or less than \(T_\xi \), the ball must be seen as maintaining “macroscopic” contact with the floor. The microscopic rebounds are interpreted as internal vibrations of the ball.
Comparison with the Experiments

Restitution coefficient measured as the ratio of length of two consecutive flights of a bouncing ball.

Tungsten carbide bead

Our model
with $\gamma = 10^{-5}$ and $\mu = 10^{-2}$.
Conclusions

- Our model recovers the ordinary restitution-coefficient model for single impacts.
Conclusions

- Our model recovers the ordinary restitution-coefficient model for single impacts.

- Even for very rigid materials, deformability of the ball is crucial in order to model the last rebounds of a sequence.
Conclusions

- Our model recovers the ordinary restitution-coefficient model for single impacts.
- Even for very rigid materials, deformability of the ball is crucial in order to model the last rebounds of a sequence.
- The restitution coefficient is a meaningful quantity only if the time of flight is larger than the characteristic damping time.