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Abstract

Variational sequences are complexes of modules or sheaf sequences
in which one of the operations is the Euler–Lagrange operator, i.e.,
the differential operator taking a Lagrangian into its Euler–Lagrange
form, whose kernel is the Euler–Lagrange equation.

In this paper we present the most common approaches to varia-
tional sequences and discuss some directions of the current research
on the topic.
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Introduction

The modern differential geometric approach to mechanics and field theory
inspired many scientists coming from different areas of mathematics and
theoretical physics to the development of a differential geometric theory of
the calculus of variations (see, for example, [40, 45, 69, 108]). Relevant
objects of the calculus of variations (like Lagrangians, components of Euler–
Lagrange equations) were interpreted as differential forms on jet spaces1 of
a fibred manifold.

Fibred manifolds where chosen to provide a geometric model of the space
of independent and dependent coordinates. This is not the most general
model, see subsection 6.2.

Soon it was realized that operations like the one of passing from a La-
grangian to its Euler–Lagrange form were part of a complex, namely, the
variational sequence. The foundational contributions to variational sequences
(and much more) can be found in the papers [5, 22, 29, 30, 42, 55, 70, 89,
102, 106, 109, 110, 115, 116, 118]. More details on the development of the
subject can be found in section 7.

The variational sequence is a tool that allows to fit several important
problems of the calculus of variations all at once. Let us describe two of the
most important among such problems.

• Given a set of Euler–Lagrange equations, the vanishing of Helmholtz
conditions is a necessary and sufficient condition for the existence of a
local Lagrangian for the given equations. (see, e.g., [24, 105] for more
details on Helmholtz conditions). What about the domain of definition
of the Lagrangian? Does there exist a global Lagrangian? This problem
is said to be the inverse problem of the calculus of variations, despite
the fact that it is not the only inverse problem that can be considered
in this framework.

• It is important to be able to determine all variationally trivial La-
grangians, depending on derivatives of a prescribed order, defined on
a given fibred manifold. Those are Lagrangians whose Euler–Lagrange
equation identically vanish. For example, in liquid crystals theories [36]
minima of the action functional can be computed by adding to the
physical Lagrangian a trivial Lagrangian. Such trivial Lagrangians are
known to be locally of the type of a ‘total divergence’ of an n−1-form.
But what about their dependence on highest order derivatives? More-
over, another inverse problem arises: are they global total divergences

1The reader is invited to see the paper [100] of this Handbook about jet spaces.
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or not?

Let us see what are the answers of variational sequence theories to the
above problems in an intuitive way. Let us denote by C the space of currents2,
by L the space of Lagrangian forms, by E the space of Euler–Lagrange-type
forms and by H the space of Helmholtz forms. Then, the variational sequence
is a sequence of modules (or of sheaves, depending on the approaches) of the
type

· · · // C
dH // L

E // E
H // H

D // . . . ,

where dH is the operator of total divergence, E is the operator that takes a
Lagrangian into the corresponding Euler–Lagrange form, H is the operator
which takes an Euler–Lagrange type form into the corresponding Helmholtz
form, and D is a further operator of the complex.

The repeated application of two consecutive operators of the sequence is
identically zero: this is why the homological algebra term ‘complex’ is used
for the above sequence. In the theory of variational sequences the following
facts are proved about the previous problems.

• Let η ∈ E be a Euler–Lagrange form. Then η = E(λ) for a locally de-
fined Lagrangian λ ∈ L if and only if H(η) = 0. The space kerH/ im E
is isomorphic to the n+1-st de Rham cohomology of the total space of
the fibred manifold. This is the solution of the so-called global inverse
problem.

• The set of variationally trivial Lagrangians is ker E . The space ker E/ im dH

is isomorphic to the n-th cohomology class of the total space of the fi-
bred manifold. This enables us to compute which variationally trivial
Lagrangians are of the global or local form of a total divergence. More
information on the structure of such Lagrangians can be found in sec-
tion 6.1.

Now, let us describe the structure of the paper.
In section 1 some basic facts on jet spaces are recalled. The interested

reader may consult [1, 18, 79, 82, 91, 98] and the paper [100] in this Handbook
for detailed introductions to jets.

2Here ‘currents’ are n − 1-forms, hence they can be integrated on n − 1-dimensional
submanifolds. This includes conserved quantities (or conserved currents). The term ‘cur-
rents’ from classical calculus of variations admits a modern generalization [44] which is
not dealt with hereby.
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Next section is devoted to contact forms, which are forms whose pull-back
by any section of the fibred manifold identically vanishes. The horizontaliza-
tion is introduced in order to be able to single out the part of a form whose
pull-back by any section does not identically vanish. In order to overcome
some technical difficulties, infinite order jets are introduced. In practice, this
trick amount at dealing with forms which are defined on an arbitrary, but
finite, order jet space.

Section 3 contains a description of one of the approaches to variational
sequences on fibred manifolds: the variational bicomplex. This approach has
been developed mostly in [102, 109, 110, 111]. Local exactness and global
cohomological properties of the variational bicomplex are discussed.

In section 4 another important approach to variational sequences is pre-
sented: the C-spectral sequence approach by [115, 116, 118]. Contact forms
provide a differential filtration of the space of forms on jets. This filtration in-
duces a spectral sequence, the C-spectral sequence, in a standard way. A part
of the variational bicomplex and the variational sequence is recovered as some
of the differential groups in the C-spectral sequence. The C-spectral sequence
also yields a variational sequence on manifolds without fibrings (see subsec-
tion 6.2) and on differential equations (see subsection 6.3). In particular,
in the latter case, the C-spectral sequence yields differential and topological
invariants of the equation, among which there are conservation laws (this
particular aspect received foundational contributions also by [22, 23, 106]).

The above approaches were formulated on infinite order jets. In [5, 34, 70]
a finite order variational sequence on jets of fibred manifolds is proposed. The
approach in [70] is described in section 5, together with comparisons with the
above infinite order approaches.

Unfortunately, space constraints do not allow to write a complete text
on variational sequences. For this reason, while foundations of the theory
are exposed in the above sections in the most possible detailed way (but
without detailed proofs), in section 6 there is a collection of references to
many interesting theoretical and applied topics like the equivariant inverse
problem, symmetries of variational forms, variational sequences on jets of
submanifolds, etc.. The reader who is interested in more detailed founda-
tional expositions of the subject could consult the following books.

[4] This book is unpublished, yet it is a good source of examples, calculations
and results which never appeared elsewhere.

[14] The book is devoted to the inverse problem in mechanics (one indepen-
dent variable).

[23] The book covers some geometric aspects of the calculus of variations
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which are quite close to those of this paper, but in the framework of
exterior differential systems.

[18] It is a book on the geometry of differential equations, with one chapter
devoted to the variational sequence on jets of fibrings and on differential
equations, with a focus on symmetries and conservation laws.

[32] Idem. There is one section about the variational bicomplex.

[57] Idem. The formalism is quite close to that of [4].

[66] Idem. The formalism is the same as in [18] but with a lot more of
theoretical material, like the k-lines theorem.

[91] Idem. There is also a section on variational multivectors, which are
dual objects of variational forms (see subsection 6.5).

[98] The book deals with jets of fibrings and has a final chapter on the
variational sequence on infinite order jets.

[121] It is a book on the geometry of differential equations and the C-spectral
sequence (see section 4), with a mostly theoretical exposition.

[127] Idem, but there are some examples and applications.

We also stress that two very good web sites for this topic are the web site at
Utah State University of Logan http://www.math.usu.edu/~fg_mp (which
seems to be no longer actively maintained) and the ‘diffiety’ web site http:

//diffiety.ac.ru.
The paper ends with some notes on the development of the subject and

a relatively complete bibliography. Despite the fact that we did extensive
bibliographical researches the subject is quite vast and it is possible that
some issues have been forgotten or not properly mentioned. For this reason,
we excuse ourselves in advance with the scientists whose contribution was
hereby overlooked or misunderstood.

As a last comment, we observe that we had to make a synthesis from a
lot of sources. For this reason we adopted notation that did not come from a
single source, but has the advantage of being able to express all approaches
at once.

Acknowledgements. It is a pleasure to acknowledge D. Krupka, G.
Manno, J. Pohjanpelto and A. M. Verbovetsky for many stimulating com-
ments on the subject in general and on my manuscript in particular. They
helped me to improve the text in an essential way.
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1 Preliminaries

Manifolds and maps between manifolds are C∞. All morphisms of fibred
manifolds (and hence bundles) will be morphisms over the identity of the
base manifold, unless otherwise specified. In particular, when speaking of
‘forms’ we will always mean ‘C∞ differential forms’.

Some parts of this paper deals with sheaves. A concise but fairly complete
exposition of sheaf theory can be found in [126]; it covers all the needs of our
exposition.

Now, we recall some basic facts on jet spaces. Our framework is a fibred
manifold

π : E →M,

with dim M = n, dim E = n + m, n, m ≥ 1. We have the vector subbundle
V E def

= ker Tπ of TE, which is made by vectors which are tangent to the fibres
of E.

For 1 ≤ r, we are concerned with the r-th jet space Jrπ; we also set
J0π ≡ E. For 0 ≤ s < r we recall the natural fibrings

πr,s : Jrπ → Jsπ, πr : Jrπ →M,

and the affine bundle πr,r−1 : Jrπ → Jr−1π associated with the vector bundle
⊙rT ∗M ⊗Jr−1π V E → Jr−1π.

Charts on E adapted to the fibring are denoted by (xλ, ui). Greek indices
λ, µ,. . . run from 1 to n and label base coordinates, Latin indices i, j,. . . run
from 1 to m and label fibre coordinates, unless otherwise specified. We denote
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by (∂/∂xλ, ∂/∂ui) and (dxλ, dui), respectively, the local bases of vector fields
and 1-forms on E induced by an adapted chart.

Multiindices are needed in order to label derivative coordinates on jet
spaces. It is possible to use general multiindices or symmetrized multiindices
in order to label derivatives. There are advantages and disadvantages of both
approaches; to the purposes of this paper we prefer to use the symmetrized
multiindices because of the one-to-one correspondence between them and
coordinates on jets. In particular, following the approach of [98] we denote
multi-indices by boldface Greek letters such as σ = (σ1, . . . , σn) ∈ N

n. We
also set |σ| def

=
∑

i σi and σ! def

= σ1! · · · σn!. Multiindices can be summed in an
obvious way; the sum of a multiindex with a Greek index σ + λ will denote
the sum of σ and the multiindex (0, . . . , 1, 0, . . . , 0), where 1 is at the λ-th
entry.

The charts induced on Jrπ are denoted by (xλ, ui
σ), where 0 ≤ |σ| ≤ r

and ui
0

def

= ui. The local vector fields and forms of Jrπ induced by the fibre
coordinates are denoted by (∂/∂ui

σ) and (dui
σ), 0 ≤ |σ| ≤ r, 1 ≤ i ≤ m,

respectively.

An r-th order (ordinary or partial) differential equation is, by definition,
a submanifold Y ⊂ Jrπ.

We denote by jrs : M → Jrπ the jet prolongation of a section s : M → E
and by Jrf : Jrπ → Jrπ the jet prolongation of a fibred morphism f : E → E
over the identity. Any vector field X : E → TE which projects onto a vector
field X : M → TM can be prolonged to a vector field Xr : Jrπ → TJrπ
by prolonging its flow; its coordinate expression is well-known (see, e.g.,
[18, 91, 98]).

The fundamental geometric structure on jets is the contact distribution,
or Cartan distribution, Cr ⊂ TJrπ. It is the distribution on Jrπ generated
by all vectors which are tangent to the image jrs(M) ⊂ Jrπ of a prolonged
section jrs. It is locally generated by the vector fields

Dλ =
∂

∂xλ
+ ui

σλ

∂

∂ui
σ

,
∂

∂ui
τ

, (1)

with 0 ≤ |σ| ≤ r − 1, |τ | = r.

Remark 1.1. The contact distribution on finite order jets is not involutive.
Indeed, despite the fact that [Dλ, Dµ] = 0, if τ = σ + λ then [Dλ, ∂/∂ui

τ ] =
−∂/∂ui

σ. Moreover, the contact distribution on finite order jets does not
admit a natural direct summand that complement it to TJrπ. The above
two facts are the main motivation to the passage to infinite order jets in order
to formulate the variational sequence.
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While the contact distribution has an essential importance in the sym-
metry analysis of PDE [18, 91], in this context the dual concept of contact
differential form will play a central role.

2 Contact forms

2.1 Contact forms

Let us denote by Fr = C∞(Jrπ) the ring of smooth functions on Jrπ.
We denote by Ωk

r the Fr-module of k-forms on Jrπ.
We denote by Ω∗

r the exterior algebra of forms on Jrπ.

Definition 2.1. We say that a form α ∈ Ωk
r is a contact k-form if

(jrs)
∗α = 0

for all sections s of π.
We denote by C1Ωk

r the Fr-module of contact k-forms on Jrπ.
We denote by C1Ω∗

r the exterior algebra of contact forms on Jrπ.

Note that if k > n then every form is contact, i.e., C1Ωk
r = Ωk

r .
It is obvious from the commutation of d and pull-back that dC1Ωk

r ⊂
C1Ωk+1

r . Moreover, it is obvious that C1Ω∗
r is an ideal of Ω∗

r. Hence, the
following lemma holds.

Lemma 2.2. The space C1Ω∗
r is a differential ideal of Ω∗

r.

Unfortunately, the above ideal does not coincide with the ideal generated
by 1-forms which annihilate the contact distribution (for this would contra-
dict the non-integrability). More precisely, the following lemma can be easily
proved (see, e.g., [70]).

Lemma 2.3. The space C1Ω1
r is locally generated (on Fr) by the 1-forms

ωi
σ

def

= dui
σ − ui

σ+λdxλ, 0 ≤ |σ| ≤ r − 1.

The above differential forms generate the annihilator of the contact dis-
tribution, which is an ideal of Ω∗

r. However, such an ideal is not differential,
hence it does not coincide with C1Ω∗

r. To realize it, the following formula can
be easily proved

dωi
σ = −ωi

σ+λ ∧ dxλ, (2)
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from which it follows that, when |σ| = r − 1, then dωi
σ, which is a contact

2-form, cannot be expressed through the 1-forms of lemma 2.3 because ωi
σ+λ

contains derivatives of order r + 1.
The following theorem has been first conjectured in [35] (C1Ω-hypothesis),

then proved in [70, 71].

Theorem 2.4. Let k ≥ 2. The space C1Ωk
r is locally generated (on Fr) by

the forms

ωi
σ, dωi

τ , 0 ≤ |σ| ≤ r − 1, |τ | = r − 1.

We can consider forms which are generated by p-th exterior powers of
contact forms. More precisely, we have the following definition.

Definition 2.5. Let p ≥ 1. We say that a form α ∈ Ωk
r is a p-contact k-form

if it is generated by p-th exterior powers of contact forms.
We denote by CpΩk

r the Fr-module of p-contact k-forms on Jrπ.
We denote by CpΩ∗

r the exterior algebra of p-contact forms on Jrπ.
Finally, we set C0Ω∗

r
def

= Ω∗
r.

In other words, CpΩ∗
r is the p-th power of the ideal C1Ω∗

r in Ω∗
r. Of course,

a 1-contact form is just a contact form. The following lemma is trivial.

Lemma 2.6. Let p ≥ 0. We have the inclusion

Cp+1Ω∗
r ⊂ C

pΩ∗
r.

It follows that the space Cp+1Ω∗
r is a differential ideal of CpΩ∗

r, hence of Ω∗
r.

2.2 Horizontalization

Following the discussion in the Introduction, we would like to introduce a
tool to extract from a form α ∈ Ωk

r the non-trivial part (to the purposes of
calculus of variations). In other words, we would like to introduce a map
whose kernel is precisely the set of contact forms. First of all, we observe
that eq. (2) and Theorem 2.4 suggest that such a map can be constructed
if we allow it to increase the jet order by 1. More precisely, it can be easily
proved that the contact 1-forms ωi

σ, with 0 ≤ |σ| ≤ r− 1 generate a natural
subbundle C∗

r ⊂ T ∗Jrπ [122]. We have the following lemma (see [82, 98]).

Lemma 2.7. We have the splitting

Jr+1π ×
Jrπ

T ∗Jrπ =

(
Jr+1π ×

M
T ∗M

)
⊕

Jr+1π
C∗

r+1, (3)
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with projections

Dr+1 : Jr+1π → T ∗M ⊗
M

TJrπ, ωr+1 : Jr+1π → T ∗Jrπ ⊗
Jrπ

V Jrπ,

with coordinate expression

Dr+1 = dxλ ⊗Dλ = dxλ ⊗

(
∂

∂xλ
+ ui

σ+λ

∂

∂ui
σ

)
,

ωr+1 = ωi
σ ⊗

∂

∂ui
σ

= (dui
σ − ui

σ+λdxλ)⊗
∂

∂ui
σ

.

Note that the above construction makes sense through the natural in-
clusions V Jrπ ⊂ TJrπ and Jr+1π ×M T ∗M ⊂ T ∗Jr+1π, the latter being
provided by T ∗πr.

From elementary multilinear algebra (see the Appendix) it turns out that
we have the splitting

Jr+1π ×Jrπ ∧
kT ∗Jrπ =

⊕

p+q=k

(
Jr+1π ×

M
∧qT ∗M

)
⊕

Jr+1π
∧pC∗

r+1.

Now, we observe that a form α ∈ Ωk
r fulfills

π∗
r+1,r(α) : Jr+1π → ∧kT ∗Jrπ ⊂ ∧kT ∗Jr+1π,

where the inclusion is realized through the map T ∗πr+1,r. Hence, π∗
r+1,r(α)

can be split into k + 1 factors which, respectively, have 0 contact factors, 1
contact factor, . . . , k contact factors. More precisely, let us denote by Hq

r

the set of q-forms of the type

α : Jrπ → ∧qT ∗M.

We have the following proposition (for a proof, see [70, 122, 124]).

Proposition 2.8. We have the natural decomposition

Ωk
r ⊂

⊕

p+q=k

CpΩp
r+1 ∧H

q
r+1,

with splitting projections

prp,q : Ωk
r → C

pΩp
r+1∧H

q
r+1, prp,q(α) =

((
p + q

q

)
⊙p iDr+1 ⊙⊙qiωr+1

)
◦π∗

r+1,r,

where iDr+1, iωr+1 stand for contractions followed by a wedge product (see [98]
and the Appendix).
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Note that the above maps prp,q are not surjective. See [122] for more
details.

Definition 2.9. We say the horizontalization to be the map

hp,q : CpΩp+q
r → CpΩp

r+1 ∧H
q
r+1, α 7→ prp,q(α).

Horizontalization is not surjective, unless n = 1 [72]. We denote by

Ω
p,q

r
def

= hp,q(CpΩp+q
r ) (4)

the image of the horizontalization; we say an element ᾱ ∈ Ω
0,q

r to be a
horizontal form.

Probably the first occurrence of horizontalization is in [69]. Of course,
horizontalization is just the above projection on forms which have 0 contact
factors. Note that, if q > n, then horizontalization is the zero map. In
coordinates, if 0 < q ≤ n, then

α = ασ1···σh

i1 ···ih λh+1···λq
dui1

σ1
∧ · · · ∧ duih

σh
∧ dxλh+1 ∧ · · · ∧ dxλq

and

h0,q(α) = ui1
σ1+λ1

· · ·uih
σh+λh

ασ1···σh

i1 ···ih λh+1···λq
dxλ1 ∧ · · · ∧ dxλq , (5)

where 0 ≤ h ≤ q (see [5, 70, 71, 122, 125]). Note that the above form is not
the most general polynomial in (r+1)-st derivatives, even if q = 1. For q > 1
the skew-symmetrization in the indexes λ1,. . . , λh yields a peculiar structure
in the polynomial, in which the sums of all terms of the same degree are said
to be hyperjacobians [90]. Note that the coordinate expressions of hp,q can
be obtained in a similar way.

The technical importance of horizontalization is in the next two results.

Lemma 2.10. Let α ∈ Ωq
r, with 0 ≤ q ≤ n, and s : M → E be a section.

Then

(jrs)
∗(α) = (jr+1s)

∗(h0,q(α))

Proposition 2.11. Let p ≥ 0. The kernel of hp,q coincides with p+1-contact
q-forms, i.e.,

Cp+1Ωp+q
r = ker hp,q.

For a proof of both results, see, for example, [124, 125].
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2.3 Horizontal and vertical differential

The above decomposition also affects the exterior differential. Namely, the
pull-back of the differential can be split in two operators, one of which raises
the contact degree by one, and the other raises the horizontal degree by one.
More precisely, in view of proposition 2.8 and following [98], we introduce
the maps

iH : Ωk
r → Ωk

r+1, iH = iDr+1 ◦ π∗
r+1,r, (6a)

iV : Ωk
r → Ωk

r+1, iV = iωr+1 ◦ π∗
r+1,r. (6b)

The maps iH and iV are two derivations along πr+1,r of degree 0. Together
with the exterior differential d they yield two derivations along πr+1,r of
degree 1, the horizontal and vertical differential

dH
def

= iH ◦ d− d ◦ iH : Ωk
r → Ωk

r+1,

dV
def

= iV ◦ d− d ◦ iV : Ωk
r → Ωk

r+1,

It can be proved (see [98]) that dH and dV fulfill the properties

d2
H = d2

V = 0, dH ◦ dV + dV ◦ dH = 0, (7a)

dH + dV = (πr+1
r )∗ ◦ d, (7b)

(jr+1s)
∗ ◦ dV = 0, d ◦ (jrs)

∗ = (jr+1s)
∗ ◦ dH . (7c)

The action of dH and dV on functions f : JrY → R and one–forms on JrY
uniquely characterizes dH and dV . We have the coordinate expressions

dHf = Dλf dxλ =

(
∂f

∂xλ
+ ui

σ+λ

∂f

∂ui
σ

)
dxλ, (8a)

dHdxλ = 0, dHdui
σ = −dui

σ+λ ∧ dxλ, dHωi
σ = −ωi

σ+λ ∧ dxλ,
(8b)

dV f =
∂f

∂ui
σ

ωi
σ, (8c)

dV dxλ = 0 , dV dui
σ = di

σ+λ ∧ dxλ, dV ωi
σ = 0. (8d)

We note that dHdui
σ = dHωi

σ.

2.4 Infinite order jets

From subsections 2.1, 2.2, 2.3, it is clear that there are fundamental oper-
ations in the geometry of jets which do not preserve the order. For this
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reason the first formulations of variational sequences were derived in infinite
order frameworks (with a partial exception in [5]). At the level of forms, this
amounts at defining spaces containing all forms on any arbitrary (but finite)
order jet. At the level of vector fields, this is done by considering infinite
sequences of tangent vectors which are related by the maps Tπr,s.

In what follows we will use the notions of projective (or inverse) system,
projective (or inverse) limit, injective (or direct) system, injective (or direct)
limit. Such notions can be found in any book of homological algebra (see,
e.g., [96]).

We start with the following definition. Consider the projective system

· · ·
πr+2,r+1

// Jr+1π
πr+1,r

// Jrπ
πr,r−1

// · · ·
π1,0

// E
π // M.

Definition 2.12. We define the infinite order jet space to be the projective
limit

J∞π def

= lim
←−

Jrπ.

Any element θ ∈ J∞π is a sequence of points {θr}r≥0, θr ∈ Jrπ, which
are related by the projections of the system, πr,s(θr) = θs, r ≥ s. Hence, we
have obvious projections

π∞,r : J∞π → Jrπ, π∞ : J∞π →M.

Any section s : M → E induces an element j∞s(x) ∈ J∞π, for x ∈M , in an
obvious way, and conversely, any element θ ∈ J∞π is of the form θ = j∞s(x),
with x = π∞(θ), for a well-known result of analysis.

Several results can be proved on the infinite order jet: it has the struc-
ture of a bundle on E whose fibres are R

∞, the space of sequences of real
numbers; local coordinates on J∞π are (xλ, ui

σ), where 0 ≤ |σ| < +∞; it is
connected if E is connected, it is Hausdorff and second countable [98]; it is
paracompact [102]. Unfortunately, R

∞ is a Fréchet space which cannot be
made into a Banach space [98], hence several important parts of the theory
of infinite dimensional Banach manifolds fail to be true. But, to the pur-
poses of building a variational sequence, we need just the ability to deal with
functions, tangent vectors and forms which are defined on any finite order
jet space. This does not amount at defining all possible functions, tangent
vectors, forms on J∞π, but only at considering their inductive or projective
counterparts. This is a more or less implicit assumption in the literature; see
[18] for an exposition which is close to the present one.

We begin with the projective structure of the tangent space. Namely, we
have the following projective system

· · ·
Tπr+2,r+1

// TJr+1π
Tπr+1,r

// TJrπ
Tπr,r−1

// · · ·
Tπ1,0

// TE
Tπ // TM.
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We define the tangent space TJ∞π to be the projective limit of the above
projective system. Hence a tangent vector at θ ∈ J∞π is a sequence of vectors
{X̄,Xr}k≥0 tangent to M and to Jrπ respectively such that Tπr(Xr) = X̄,
Tπr,s(Xr) = Xs for all r ≥ s ≥ 0. Any tangent vector can be presented in
coordinates as the formal sum

X = Xλ ∂

∂xλ
+ X i

σ

∂

∂ui
σ

, 0 ≤ |σ| < +∞, (9)

where Xλ, X i
σ ∈ R. Of course we have obvious projections

Tπ∞,r : TJ∞π → TJrπ, Tπ∞ : TJ∞π → TM,

by which it is possible to define pull-back of forms on the infinite order
jet. Moreover, we define the vertical subbundle V J∞π ⊂ TJ∞π as the sub-
space V J∞π def

= ker Tπ∞. It could also be introduced as a projective limit of
finite-order vertical bundles. In coordinates, a vertical tangent vector can be
expressed as in (9), with the condition Xλ = 0.

Analogously, we define the cotangent space T ∗J∞π to be the injective
limit of the injective system · · ·T ∗Jrπ → T ∗Jr+1π · · · . Hence a cotangent
vector at θ ∈ J∞π is an equivalence class of the direct sum ⊕r∈NT ∗

θ Jrπ under
the following equivalence relation: for all α, β ∈ ⊕r∈NT ∗

θ Jrπ we set α ∼ β if
and only if there exist r, s ∈ N, r < s, such that T ∗πs,r(α) = β. Moreover,
we define the horizontal subbundle π∗

∞(T ∗M) ⊂ T ∗J∞π.
Any tangent vector can be presented in coordinates as the formal sum

X = Xλ ∂

∂xλ
+ X i

σ

∂

∂ui
σ

, 0 ≤ |σ| < +∞, (10)

where Xλ, X i
σ ∈ R. Any cotangent vector can be presented in coordinates

as the finite sum

α = αλdxλ + ασ
i dui

σ, 0 ≤ |σ| ≤ r, (11)

for an r ∈ N.
According with lemma 2.7, we have the following lemma (see [98]).

Lemma 2.13. We have the splittings

TJ∞π = C∞ ⊕
J∞π

V J∞π, (12)

T ∗J∞π = π∗
∞(T ∗M) ⊕

J∞π
C∗

∞, (13)

where

15



• C∞ is the projective limit of the projective system · · ·Cr+1 → Cr · · · ,
where the projection is the restriction of Tπr+1,r to Cr+1;

• C∗
∞ is the injective limit of the injective system · · ·C∗

r → C∗
r+1 · · · ,

where the injection is the restriction of T ∗πr+1,r to C∗
r .

The splitting projections are just the direct limit of the maps iH and iV of (6),
that we indicate with the same symbol.

Now, we could introduce functions and differential forms on J∞π as func-
tions on J∞π or sections of exterior powers of T ∗J∞π. But we prefer to insist
with our ‘injective limit’ approach because it makes more clear the ideas ex-
posed in the beginning of this section.

The composition with πr+1,r provides the injective system of rings · · · ⊂
Fr ⊂ Fr+1 ⊂ · · · . We can regard the above system also as a filtered algebra
[18]. Accordingly, pull-back via πr+1,r provides several injective (or direct)
systems of modules over the above injective system of rings, namely · · · ⊂

Ωk
r ⊂ Ωk

r+1 ⊂ · · · , · · · ⊂ Ω
0,q

r ⊂ Ω
0,q

r+1 ⊂ · · · , · · · ⊂ C
pΩp+q

r ⊂ CpΩp+q
r+1 ⊂ · · · .

Let us introduce the injective (or direct) limits of the above injective
systems

F def

= lim
−→
Fr, Ωk def

= lim
−→

Ωk
r , Ω

0,q def

= lim
−→

Ω
0,q

r , CpΩp+q def

= lim
−→
CpΩp+q

r .

Definition 2.14. We say:

• f ∈ F to be a (smooth) function on J∞π;

• α ∈ Ωk to be a (differential) k-form on J∞π;

• ᾱ ∈ Ω
0,q

to be a horizontal q-form on J∞π;

• γ ∈ CpΩk to be a p-contact k-form on J∞π.

From the definition of direct limit it follows that elements f ∈ F are
equivalence classes of the direct sum ⊕r∈NFr under the following equivalence
relation: for all g, h ∈ ⊕r∈NFr we set g ∼ h if and only if there exist r, s ∈ N,
r < s, such that π∗

s,rh = g. Of course, the same holds for the other spaces in
the above definition, so that:

• F is made by all functions on a jet space Jrπ of arbitrary, but finite,
order;

• Ωk is made by all k-forms on a jet space Jrπ of arbitrary, but finite,
order;

16



• Ω
0,q

is made by all horizontal q-forms on a jet space Jrπ of arbitrary,

but finite, order; if α ∈ Ω
0,q

, then, locally,

α = αλ1···λk
dxλ1 ∧ · · · ∧ dxλk , αλ1···λk

∈ F ;

hence, if α ∈ Ω
0,q

then α : Jrπ → ∧kT ∗M , for some r ∈ N. For this
reason, if we consider the inductive system · · · ⊂ Hq

r ⊂ H
q
r+1 ⊂ · · · and

its injective limit Hq, we have the equality Hq = Ω
0,q

, which does not
holt at any finite order level;

• CpΩk is made by all p-contact k-forms on a jet space Jrπ of arbitrary,
but finite, order; if α ∈ CpΩk, then, locally,

α = ωi1
σ1
∧ · · · ∧ ωip

σp
∧ α

σ1···σp

i1···ip
, α

σ1···σp

i1···ip
∈ Ωk−p,

where the multiindexes σ1,. . . , σp have arbitrary, but finite, length.

The differential d, the projections prp,q (hence also the horizontalization
hp,q) and the differentials dH , dV on finite order jets induce the maps

d : Ωk → Ωk+1, α 7→ dα, prp,q : Ωp+q → CpΩp ∧ Ω
0,q

, α 7→ prp,q(α),

dH : Ωk → Ωk+1, α 7→ dHα, dV : Ωk → Ωk+1, α 7→ dV α,

for each k ≥ 0, where, being α ∈ Ωk
r for some r, dα coincides with the

differential of α on Ωk
r , and analogously for prp,q, dH and dV .

The proof of the following proposition follows easily from the definitions,
the coordinate expressions (8), and proposition 2.8.

Proposition 2.15. We have the natural splitting

Ωk =
⊕

p+q=k

CpΩp ∧ Ω
0,q

;

with splitting projections

prp,q : Ωp+q → CpΩp ∧ Ω
0,q

, prp,q(α) =

(
p + q

q

)
⊙p iV ⊙⊙

qiH .

Moreover, we have the following inclusions

dH(CpΩp∧Ω
0,q

) ⊂ CpΩp∧Ω
0,q+1

, dV (CpΩp∧Ω
0,q

) ⊂ Cp+1Ωp+1 ∧Ω
0,q

.

Remark 2.16. The above splitting represents one of the major differences
between the finite order and the infinite order case. The simple structure of
the splitting and the behaviour of dH and dV will allow us to give an easy
definition of the variational sequence in the infinite order case.
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Remark 2.17. The differentials dH and dV can also be defined through the
above splitting. More precisely, it can be easily proved that

d(CpΩp ∧ Ω
0,q

) ⊂ CpΩp ∧ Ω
0,q+1

⊕ Cp+1Ωp+1 ∧ Ω
0,q

;

then dH is the projection onto the first factor and dV is the projection onto

the second factor of the restriction of d to CpΩp ∧ Ω
0,q

(see [4]).

Finally, a vector field on J∞π is a filtered derivation of F , i.e., an R-linear
derivation X : F → F such that X(Fr) ⊂ Fr+s for all r, and for l ≥ 0 which
depends on X. The number l is said to be the filtration degree of the field
X. The set of all vector fields is a filtered Lie algebra over R with respect to
commutator [X,Y ]. Of course, any vector field X on J∞π can be regarded
as a section of TJ∞π with coordinate expression

X = Xλ ∂

∂xλ
+ X i

σ

∂

∂ui
σ

, 0 ≤ |σ| < +∞.

where Xλ ∈ Fs and X i
σ ∈ Fr+s [18].

Let X be a vector field on J∞π. Then X can be split according with (12)
as

X = XH + XV , (14)

XH = XλDλ, XV = (X i
σ − ui

σ+λX
λ)

∂

∂ui
σ

0 ≤ |σ| < +∞.

We observe that any vector field X : E → TE which projects onto a vector
field X : M → TM can be prolonged to a vector field X∞ with filtration
degree 0. We have

X∞ = XλDλ + Dσ(X i − ui
λX

λ)
∂

∂ui
σ

, 0 ≤ |σ| < +∞, (15)

where Xλ ∈ C∞(M). The vector field X∞
V is said to be the evolutionary

vector field with generating function X (see, e.g., [18, 91]).
We can consider more general evolutionary vector fields. Namely, it can

be proved (see, e.g., [18, 91]) that a vector field X on J∞π is a symmetry
of C∞ if and only if it its vertical part is of the form XV = Eϕ, where
ϕ : Jrπ → V π and

Eϕ : J∞π → V J∞π, Eϕ = Dσϕi ∂

∂ui
σ

. (16)

We say Eϕ to be an evolutionary vector field with generating function ϕ; of
course, the filtration degree of Eϕ is the order r of the jet space on which
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ϕ is defined. It can be proved [18, 91] that evolutionary vector fields are
uniquely determined by their generating functions. We denote the Fr-module
of generating functions on Jrπ with κr. Composing with projections πr+1,r

yields the chain of inclusions · · · ⊂ κr ⊂ κr+1 ⊂ · · · , hence the direct limit
κ. This module plays an important role in section 4.

3 Variational bicomplex and variational se-

quence

Variational sequences has been introduced basically in two ways.

The first way is through the properties of dH , dV on infinite order jets
[108, 109, 102, 110]. Another way to describe this approach is to consider
the splitting (12) as a connection on J∞π which has zero curvature.

The second way is through a spectral sequence [29, 30, 115, 116, 118];
this approach will be described in section 4.

Partial exceptions to this classification are [5], where the approach is (at
least partially) on finite order jets, and [17], where the approach is based
on the properties of the interior Euler operator (see subsection 3.1). In this
section we describe the approach of [108, 109, 102, 110] in a modern language
which is close to that of [4, 98].

For all p ≥ 0 we introduce the following notation:

E0,q
0

def

= Ω
0,q

, Ep,q
0

def

= CpΩp ∧ Ω
0,q

, (17)

Ep,n
1

def

= Ep,n
0

/
dH(Ep,n−1

0 ) = CpΩp ∧ Ω
0,n/

dh(C
pΩp ∧ Ω

0,n−1
). (18)

The integers p, q are called, respectively, the contact and the horizontal
degree.

We also denote by Ωk(M) the space of k-forms on M .

We define the map

e1 : Ep,n
1 → Ep+1,n

1 , e1([α]) = [dV α]. (19)

The above map is well-defined because dV ◦ dH = −dH ◦ dV .

In view of the properties (7a) of dH and dV the following diagram com-
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mutes

0

��

0

��

0

��

0

��

0 // E0,0
0

dV //

dH

��

E1,0
0

−dH

��

Ep,0
0

dV //

(−1)pdH

��

Ep+1,0
0

(−1)p+1dH

��

0 // E0,1
0

dV // E1,1
0 Ep,1

0

dV // Ep+1,1
0

0 // E0,n−1
0

dV //

dH

��

E1,n−1
0

−dH

��

Ep,n−1
0

dV //

(−1)pdH

��

Ep+1,n−1
0

(−1)p+1dH

��

0 // E0,n
0

dV //

��

E1,n
0

��

Ep,n
0

dV //

��

Ep+1,n
0

��
0 0 0 0

(20)

and rows and columns are complexes (in the sense that the kernel of a map
contains the image of the previous). According with standard terminology
from homological algebra, the above diagram (20) is a double complex, or
a bicomplex [20]. The diagram (20) can be augmented (again, a standard
procedure from homological algebra) by the natural inclusion of de Rham
complex of M on the left edge and the natural quotient projection on the
complex

0 // E0,n
1

e1 // E1,n
1 Ep,n

1

e1 // Ep+1,n
1
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on the bottom edge. The resulting bicomplex is

0

��

0

��
R

��

R

��

0

��

0

��

0

��

0 // Ω0(M)
π∗

∞ //

d
��

E0,0
0

dV //

dH

��

E1,0
0

−dH

��

Ep,0
0

dV //

(−1)pdH

��

Ep+1,0
0

(−1)p+1dH

��

0 // Ω1(M)
π∗

∞ // E0,1
0

dV // E1,1
0 Ep,1

0

dV // Ep+1,1
0

0 // Ωn−1(M)
π∗

∞ //

d

��

E0,n−1
0

dV //

dH

��

E1,n−1
0

−dH

��

Ep,n−1
0

dV //

(−1)pdH

��

Ep+1,n−1
0

(−1)p+1dH

��

0 // Ωn(M)
π∗

∞ //

��

E0,n
0

dV //

��

E1,n
0

��

Ep,n
0

dV //

��

Ep+1,n
0

��

0 // E0,n
1

e1 //

��

E1,n
1

��

Ep,n
1

e1 //

��

Ep+1,n
1

��
0 0 0 0

(21)

Definition 3.1. We say the variational bicomplex associated with the fibred
manifold π : E →M to be the bicomplex (21).

The variational sequence can be extracted from the variational bicomplex.

Definition 3.2. The following complex

0 // R // E0,0
0

dH // E0,1
0 E0,n−1

0

dH // E0,n
0

E //

E // E1,n
n

e1 // E2,n
1 Ep,n

1

e1 // Ep+1,n
1

(22)

where the map E is just the composition of the quotient projection E0,n
0 →

E0,n
1 with the differential e1 : E0,n

1 → E1,n
1 , is said to be the variational se-

quence3.

3Some authors use the term Euler–Lagrange complex instead, see [4]
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The motivation for the above definition is immediate after the analysis of
the quotient spaces Ep,q

1 that we are going to perform in next subsection.
The second column of the variational bicomplex has a special importance

and will be studied later on.

Definition 3.3. We say the following sequence

0 // R // E0,0
0

dH // E0,1
0 E0,n−1

0

dH // E0,n
0

// 0 (23)

to be the horizontal de Rham sequence.

3.1 Representation of the variational sequence by forms

The problem of representing the elements of the quotients Ep,n
1 for p > 1

has been independently solved by many authors [109, 110, 115, 116, 79, 17].
We recognize two different approaches to the problem: with differential forms
[109, 110, 79, 17] and with differential operators [115, 116]. In this section we
follow the first approach. The interpretation of the variational sequence (22)
in terms of objects of the calculus of variations will follow at once.

Following [109, 110, 4], let us introduce the map

I : Ep,n
0 → Ep,n

0 , I(α) =
1

p
ωi ∧ (−1)|σ|Dσ

(
i∂/∂ui

σ
α
)

(24)

where Dσ stands for the iterated Lie derivative (LD1
)σ1 · · · (LDn

)σn .

Definition 3.4. We say the map I to be the interior Euler operator4.

Note that I is denoted by τ in [109, 110] and by D∗ in [17]. For a proof
of the following theorem, see [4, 67, 110].

Theorem 3.5. The following properties of I holds

• I is a natural map, i.e., LX∞(I(α)) = I(LX∞(α)), hence I is a global
map;

• if α ∈ Ep,n
0 then there exists a unique form β ∈ En,p

0 , which is of the
type β = dHγ with γ ∈ Ep,n−1

0 , such that

α = I(α) + β. (25)

4This name is due to I. Anderson.
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Remark 3.6. The above form γ is not uniquely defined, in general. For
p = 1, if the order of α is 1 it is easily proved that γ is uniquely defined; if
the order of α is 2 then there exists a unique γ fulfilling a certain intrinsic
property; if the order is 3 it is proved in [61] that no natural γ of the above
type exists. In [37, 41, 61] it is proved that suitable linear connections on M
and on the fibres of π : E → M can be used to determine a unique γ. See
[2, 4] for the case p > 1.

It follows from the above theorem that I is a global map, and if γ ∈ Ep,n−1
1

then I(dH(γ)) = 0, so that I2 = I. For this reason I induces an isomorphism
(denoted by the same letter)

I : Ep,n
1 → Vp, [α] 7→ I(α),

where Vp ⊂ Ep,n
0 is a suitable subspace. The map I also allows us to represent

the differentials E , e1 through forms: I(E(λ)) = I([dV λ]), and I(e1([α])) =
I([dV α]).

Definition 3.7. We say the elements of Vp to be the p-th degree variational
(or functional, as in [4]) forms.

Let us see the coordinate expression of I in the most meaningful cases.
We set ν def

= dx1 ∧ · · · ∧ dxn.

Case p = 1: let [α] ∈ E1,n
1 . Then α = ασ

i ωi
σ ∧ ν and

I([α]) = (−1)|σ|Dσασ
i ωi ∧ ν.

Hence, if λ ∈ E0,n
0 , then λ = Lν, E(λ) = [∂L/∂ui

σωi
σ ∧ ν] and

I(E(λ)) = (−1)|σ|Dσ

∂L

∂ui
σ

ωi ∧ ν, (26)

which is just the expression of the Euler–Lagrange form corresponding
to the Lagrangian form λ. It can be proved that the Euler–Lagrange
form is the only natural operator in a broad class of differential oper-
ators [62, 63]. It is not difficult to prove the following result (see [98,
102]).

Proposition 3.8. The space V1 is equal to the injective limit of the
system · · · V1

r ⊂ V
1
r+1 · · · , where V1

r is the space of sections of the bundle

(π∗
r,1C

∗
1) ∧ (π∗

r ∧
n T ∗M) .
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Following [102], the elements of V1 are called source forms. A source
form η ∈ V1 has the coordinate expression

η = ηi ω
i ∧ ν, ηi ∈ F , i = 1, . . . ,m.

Case p = 2: let [α] ∈ E1,n
1 . Then α = αστ

i j ωi
σ ∧ ωj

τ ∧ ν (with αστ
i j = −ατσ

j i )
and, if α is a form on the r-th order jet, then

I([α]) =
1

2
ωi ∧ (−1)|σ|Dσ(αστ

i j ωj
τ) ∧ ν

=
1

2

∑

µ+τ=ρ
0≤|ρ|≤2r

(−1)|ξ+µ| (ξ + µ)!

ξ!µ!
Dξα

ξ+µτ
i j ωi ∧ ωj

ρ ∧ ν.
(27)

If η ∈ V1, then η represents the element [η] ∈ Ep,q
1 . Hence, if η is a

form on the r-th order jet, then

I(e1[η]) =I(dV η)

=I

(
∂ηk

∂uh
σ

ωh
σ ∧ ωk ∧ ν

)

=
1

2
ωi ∧

(
∂ηj

∂ui
−

∂ηi

∂uj

)
ωj ∧ ν

+
1

2
ωi ∧

∑

0≤ρ≤2r
|µ+ρ|≥1

(−1)|µ+ρ| (µ + ρ)!

µ!ρ!
Dµ

∂ηj

∂ui
µ+ρ

ωj
ρ ∧ ν

(28)

The above form is the well-known Helmholtz form corresponding to
the source form η. The above coordinate expression dates back to [17],
even if the local expression of the Helmholtz conditions I(dV η) = 0 of
local variationality of η were known much before, even in the general
case of arbitrary values of r and n.

The Helmholtz conditions may be also expressed by the Helmholtz
tensor [64]. It has the same components of the Helmholtz form without
skew-symmetrization with respect to the pair of indexes (i, j). It has
been proved that the Helmholtz tensor is the only natural operator in
a broad class [64, 87]. Note that the Helmholtz form is also connected
with the second variation of functionals [39].

Note that if p ≥ 2 then the spaces Vp cannot be characterized as spaces of
sections of a vector bundle, like V1. This can be realized by the fact that Vp

fail to be modules over F . We will see in section 4 how to characterize the
elements of Vp.
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The forms in Vp may also be interpreted as functionals. The case p = 1
was clear in the papers [40, 45, 69]; the case p > 1 was dealt with first in
[17] (see also [4]). This provides a relationship between ‘standard’ calculus
of variations and the theory of variational sequences.

Definition 3.9. Let α ∈ Ep,n
0 . Then we define the family of functionals

A(α)

A(α)(X1, . . . , Xp)(s)U
def

= z

∫

U

(j∞s)∗α(X∞
1 , . . . , X∞

p ),

depending on an oriented open set with compact closure and oriented regular
boundary U ⊂ M , on p vertical vector fields {Xi : E → V E}1≤i≤p which
vanish on π−1(∂U), and on a section s of π.

The vector fields X1, . . . , Xp are called variation fields. We denote by

Fp def

={A(α) | α ∈ Ep,n
0 }

the space of functionals.
The following proposition is proved in [4, 17].

Proposition 3.10. Let α, α′ ∈ Ep,n
0 . Then A(α) = A(α′) if and only

if [α] = [α′] ∈ Ep,n
1 , or, equivalently, if and only if α′ = α + dHβ, with

β ∈ Ep,n−1
0 . Hence Vp ≃ Fp.

Of course, in the case p = 1 we recover the standard integral of a source
form evaluated on a variation field.

3.2 Local properties of the variational bicomplex

In this section we show that the variational bicomplex is locally exact. More
precisely, recall that an exact sequence is a complex where the kernel of
each map is equal to the image of the previous one. Then, we prove that
for all p ∈ E there exists an open neighbourhood U ⊂ E of p such that
the variational sequence on the fibred manifold π|U : U → π(U) is an exact
sequence.

We begin by proving an exactness result for the rows of the variational
bicomplex.

Theorem 3.11. Let q ≥ 0. Then for all p ∈ E there exists an open neigh-
bourhood U ⊂ E of p such that the rows

0 // Ωq(M)
π∗

∞ // E0,q
0

dV // E1,q
0 Ep,q

0

dV // Ep+1,q
0

of the variational bicomplex associated with the fibred manifold π|U : U →
π(U) are exact.
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The above theorem was proved in [109] for the case of jets of n-velocities
(see, e.g., [63] for a definition) and [110] for the case of jets of fibred manifolds
(see also [4, 98] for a detailed exposition). The proof is just a ‘vertical’ version
of the Poincaré lemma. In [115, 116] an alternative proof was proposed, see
section 4.

A more complex homotopy operator is constructed in order to prove next
theorem. Several proofs of the following result has been provided: [109,
110] (see also [4, 98] for a detailed exposition) and [102] with two different
homotopy operators, [115, 116] with Spencer sequences, [106] with Koszul
complexes (indeed, in [115, 116] the authors proved the global exactness, see
also [118, 18] and section 4 for a detailed exposition).

Theorem 3.12. Let p ≥ 1. Then for all p ∈ E there exists an open neigh-
bourhood U ⊂ E of p such that the columns

0 // Ep,0
0

(−1)pdH // Ep,1
0 Ep,n−1

0

(−1)pdH // Ep,n
0

// 0

of the variational bicomplex associated with the fibred manifold π|U : U →
π(U) are exact for horizontal degrees 0 ≤ q ≤ n− 1.

Note that in the case p = 1 the global exactness was also established in
[61] (see also references therein) by direct computation of the potential of
dH-closed forms using an auxiliary symmetric linear connection on M .

As relatively trivial consequences of the above theorems we have the fol-
lowing corollary, obtained via ‘diagram chasing’ techniques [109, 110, 102]
(see also [4, 98] for a detailed exposition), or via spectral sequences [115, 116]
(see also [118, 18] and section 4 for a detailed exposition).

Corollary 3.13. For all p ∈ E there exists an open neighbourhood U ⊂ E
of p such that in the variational bicomplex associated with the fibred manifold
π|U : U → π(U) the following complexes are exact:

• the horizontal de Rham sequence (23);

• the bottom row of the variational sequence

0 // E0,n
1

e1 // E1,n
1 Ep,n

1

e1 // Ep+1,n
1 . (29)

It follows that the variational sequence associated with the fibred manifold
π|U : U → π(U) is exact.

Note that also in [79] a variational sequence is constructed and the local
exactness at the vertices of degree n and n + 1 is proved.

26



3.3 Global properties of the variational bicomplex

In this section we collect results about the cohomology of rows and columns
of the variational bicomplex on the given (but arbitrary) fibred manifold
π : E → M . We recall that the cohomology of a complex is the sequence of
the quotients of the kernel of a map with the image of the previous one. The
cohomology of the columns is the most studied because it allows to compute
the cohomology of the variational sequence.

Theorem 3.14. Let p ≥ 1. Then the columns

0 // Ep,0
0

(−1)pdH // Ep,1
0 Ep,n−1

0

(−1)pdH // Ep,1
0

// Ep,n
1

// 0

are exact ( i.e., the above sequence have zero cohomology) for horizontal de-
grees 0 ≤ q ≤ n− 1.

The above theorem has been proved in several ways. The first proofs
appeared in [115, 116] (using Spencer sequences; see also the longer paper
[118]), in [102] (using a sheaf-theoretical approach) in [106] (using an isomor-
phism with the polynomial Koszul complex; see also the more modern texts
[18, 66, 114, 121]) and in [4] (using local exactness and a Mayer–Vietoris
argument). Note that the approach of [102] implies passing from modules of
sections Ep,q

0 to the corresponding sheaves of germs of local sections. Those
sheaves consists of sections which are defined on finite order jet spaces only
locally (see [43, 123]). The following corollary holds.

Corollary 3.15. The cohomology of the variational sequence is (not natu-
rally) isomorphic to the de Rham cohomology of E.

Note that the above corollary implies that the cohomology of the hori-
zontal de Rham sequence is isomorphic to the de Rham cohomology of E
for horizontal degrees 0 ≤ q ≤ n − 1. Such a cohomology is also called
characteristic cohomology in the framework of exterior differential systems
[22, 23].

The above corollary can be proved using spectral sequences [115, 116] (but
see the more modern texts [18, 66, 114, 121]), sheaf-theoretical arguments
[102] or just basic diagram chasing [4]. Note that all proofs show first that
the cohomology of the variational sequence is isomorphic to the cohomology
of the complex (Ω∗, d), which is, by definition, the de Rham cohomology
H∗(J∞π) of J∞π. Then it is quickly seen that H∗(J∞π) is isomorphic to
H∗(E), just by the fact that, in this case, the cohomology functor commutes
with direct limits.

The cohomology of the rows of the variational bicomplex is much less
studied. We have the following results [4].
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Theorem 3.16. The cohomology of the rows

0 // Ωq(M)
π∗

∞ // E0,q
0

dV // E1,q
0 Ep,q

0

dV // Ep+1,q
0

vanish for vertical degrees p > m.

Some restrictions on the topology of E have to be asked in order to
compute the cohomology of vertical rows.

Theorem 3.17. Let π be a bundle with typical fibre F . Suppose that F admit
a finite covering {Ui}0≤i≤k such that each Ui and each non-empty intersection
Ui1 ∩ · · · ∩ Uil is diffeomorphic to R

n for any l (finite good cover, see [20]).
Suppose that for each p there are a finite number {βi}1≤i≤d of p-forms on E
whose restriction to the fibres of E is a basis for the cohomology of the fibres.
Then

H(Ep,q
0 , dV ) ≃ Hp(F )⊗Hq(M).

More precisely, the forms αi
def

= π∗
∞,0(βi) ∈ Ep,0

0 are dV -closed, and if α ∈ Ep,q
0

is dV -closed, then there are forms {ξi}1≤i≤d in Ωq(M) and a form η ∈ Ep−1,q
0

such that

α =
d∑

i=1

ξi ∧ αi + dV η.

The forms {ξi}1≤i≤d are unique in the sense that α is dV -exact if and only if
{ξi}1≤i≤d vanish.

The above theorem is clearly inspired by the Leray–Hirsch theorem [20],
but its hypotheses are weaker because the forms βi are not assumed to be
closed on E.

4 C-spectral sequence and variational sequence

In this section we derive the variational sequence as a by-product of a spectral
sequence, the C-spectral sequence. To the author’s knowledge the first for-
mulations of the C-spectral sequence (on infinite order jets) were done in [29]
and [116], independently. But the computation of all terms of the C-spectral
sequence was done in [116] (using results from [115]), in the more general
setting of differential equations (see also the longer paper [118]). Note that
the variational sequence was already formulated in [115], without using the
C-spectral sequence. See the notes in section 7 for more details.
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The C-spectral sequence allows us not only to recover the variational
bicomplex as was formulated in the previous section, but also to formulate
a variational sequence on infinite order jets of submanifolds and on infinite
prolongations of (ordinary or partial) differential equations (which, we recall,
are submanifolds of a jet space of a certain finite order). In this section we
will recall the main results on the C-spectral sequence on the fibred manifold
π. We will follow the most recent presentation of the subject [18, 66].

We will use the language of differential operators, as in [115, 116]. There
are a number of reasons for doing that. First of all this language is used
by a part of the scientists that work in this field. Then, it yields the same
construction as the interior Euler operator using the adjoint of a differential
operator. Moreover, differential operators and the operations on them con-
stitute a calculus which is complementary to that of differential forms and
is of independent interest with respect to variational sequences. An impor-
tant domain of application of this calculus is, for example, the Hamiltonian
formalism for evolution equations [56, 66].

4.1 The C-spectral sequence and its 0-th term

Here we introduce the C-spectral sequence and compute its first term.
We begin by recalling the basic facts on spectral sequences, but we suggest

the interested reader to consult a book on algebraic topology (like [20, 81];
see also [66]).

We recall that a filtered module is a module P endowed with a chain5 of
submodules

P def

= F 0P ⊃ F 1P ⊃ F 2P ⊃ · · · ⊃ F pP ⊃ · · ·

A filtered module yields the associated graded module S∗
0(P ), where

Sp
0(P ) def

= F pP
/
F p+1P.

A (graded) filtered complex is a (graded) filtered module P endowed with
a differential d of degree 1 which preserves the filtration, i.e., d(F pP ) ⊂
F pP . With every (graded) filtered complex it is associated a filtration of its
cohomology H∗(P ) as follows:

H∗(P ) = F 0H∗(P ) ⊃ F 1H∗(P ) ⊃ F 2H∗(P ) ⊃ · · · ⊃ F pH∗(P ) ⊃ · · · (30)

where F pH∗(P ) is the image of the cohomological map H∗(F pP ) → H∗(P )
induced by the inclusion F pP ⊂ P . In general (30) is a filtration without a
natural differential.

5We will only use decreasing filtrations.
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Any filtered complex yields a spectral sequence. A spectral sequence is
a sequence of differential Abelian groups (Sn, sn) where the cohomology of
each term is equal to the next term: H(Sn, sn) = Sn+1.

A spectral sequence is said to converge if there exists k ∈ N such that for
every k′ ∈ N, k′ > k, we have Sk = Sk′ . In this case we set S∞

def

= Sk. For
spectral sequences associated with filtered complexes the notion of conver-
gence is more specific. Namely, a spectral sequence associated with a filtered
complex is said to converge if it exists a graded filtered module Q such that
S∞ = S∗

0(Q). It can be proved [20, 81, 66] that if a spectral sequence as-
sociated with a filtered complex P lays in the first quadrant (i.e., Sp,q

r = 0
whenever p < 0 or q < 0), then it converges to the graded module S0(H

∗(P ))
associated with the filtration (30) of H∗(P ).

In view of lemma 2.6, the following infinite chain of module inclusions

Ω∗ = C0Ω∗ ⊃ C1Ω∗ ⊃ C2Ω∗ ⊃ · · · ⊃ CpΩ∗ ⊃ · · · (31)

is a filtered complex.

Definition 4.1. The above filtered complex (31) is said to be the C-filtration.
The induced spectral sequence is said to be the C-spectral sequence.

We recall that, from the definition of spectral sequence associated with
a filtered complex, the first term (Sp,q

0 , s0) of the C-spectral sequence is just
the graded module associated with the C-filtration, i.e.,

Sp,q
0 = CpΩp+q

/
Cp+1Ωp+q,

with differential s0 : Sp,q
0 → Sp,q+1

0 , s0([α]) = [dα]. The C-spectral sequence
is a first quadrant spectral sequence, hence it converges to the graded group
associated with the de Rham cohomology H∗(J∞π) of the initial complex Ω∗

of the C-filtration. We stress that H∗(J∞π) is filtered according with (30).
The proof of the following proposition is quite simple and derives from

proposition 2.11 [18, 115, 116, 118, 121].

Proposition 4.2. The horizontalization hp,q yields an isomorphism, denoted
by the same symbol,

hp,q : Sp,q
0 → Ep,q

0 , [α] 7→ hp,q(α).

Moreover, the above isomorphism yields s0 = dH . It turns out that
the first term of the C-spectral sequence is just the family of complexes
(Ep,∗

0 , dH)0≤p<+∞, or, equivalently, the family of columns of the diagram (20).
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Remark 4.3. The reader may wonder about how to recover rows of the vari-
ational bicomplex within the C-spectral sequence approach. There is another
natural filtration of Ω∗: it is provided by horizontal forms. Namely, one could
consider the ideal of forms generated by the codistribution T ∗π : T ∗M →
T ∗J∞π and its powers. This filtration is preserved by d and yields another
spectral sequence, whose 0-term consists of the rows of the diagram (20).

The computations of the remaining terms of the C-spectral sequence will
be done in subsection 4.3.

4.2 Forms and differential operators

The computation of the C-spectral sequence has been performed in [115,
116, 118] in the language of differential operators. More precisely, there is
an isomorphism between the spaces Ep,q

0 and suitable spaces of differential
operators. As a by-product, we will obtain a description of the spaces Ep,q

1 .
The purpose of this subsection is to recall the basic facts about differential
operators and to state the above mentioned isomorphism.

We now recall the basic algebraic and geometric setting for differential
operators. The interested reader could consult [18, 66, 121] for more details.

Let P,Q be modules over an algebra A over R. We recall ([1]) that a linear
differential operator of order k is defined to be an R-linear map ∆ : P → Q
such that

[δa0
, [. . . , [δak

, ∆] . . . ]] = 0 (32)

for all a0, . . . , ak ∈ A. Here, square brackets stand for commutators and
δai

is the multiplication morphism. Of course, linear differential operators
of order zero are morphisms of modules. The A-module of differential op-
erators of order k from P to Q is denoted by Diffk(P,Q). The A-module
of differential operators of any order from P to Q is denoted by Diff(P,Q).
This definition can be generalized to maps between the product of the A-
modules P1,. . .Pl and Q which are differential operators of order k in each
argument, i.e., multidifferential operators. The corresponding space is de-
noted by Diffk(P1, . . . , Pl; Q), or, if P1 = · · · = Pl = P , by Diff(l) k(P,Q).
Accordingly, we define Diff(l)(P,Q).

Let P , Q be modules of sections of a vector bundle over the same basis
M , and suppose that (ei)0≤i≤p, (fj)1≤j≤q are local bases for their respective
sections. Then it can be proved that a differential operator ∆ ∈ Diffk(P,Q)
acts in coordinates as expected:

∆(s) = ajσ
i

∂|σ|si

∂xσ1 · · · ∂xσn
fj, 0 ≤ |σ| ≤ k, for all s ∈ P , (33)
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where we used the coordinate expression s = siei. The proof makes use of
Taylor expansions of the coefficients si and of the property (32).

Consider the chain of algebrae · · · ⊂ Fk ⊂ Fk+1 ⊂ · · · , and two chains
of modules of sections of vector bundles · · · ⊂ Pk ⊂ Pk+1 ⊂ · · · and · · · ⊂
Qk ⊂ Qk+1 ⊂ · · · over the previous algebrae, with direct limits P and Q.
Then a differential operator ∆: P → Q is an R-linear map such that for all
k the restriction ∆|Pk

is a differential operator ∆|Pk
: Pk → Qk+l, where l can

depend on k.
We will mainly use differential operators whose expressions contain total

derivatives instead of standard ones. To do that, we say a F -module P to
be horizontal if it is the module of sections of π∗

∞V → J∞π, where V → M
is a vector bundle. Of course, P can be seen as the direct limit of the chain
of modules of sections of π∗

rV → Jrπ. Then, we say a differential operator
∆: P → Q (of order k) between two horizontal modules P and Q to be
C-differential if it can be restricted to the manifolds of the form j∞s(M),
where s is a section of π. In other words, ∆ is a C-differential operator
if the equality j∞s(M)∗(ϕ) = 0, ϕ ∈ P , implies j∞s(M)∗(∆(ϕ)) = 0 for
any section s : M → E. In local coordinates, we have ∆ = ajσ

i Dσ, where
ajσ

i ∈ F .
We denote by CDiffk(P,Q) the F -module of C-differential operators of

order k from P to Q. We also introduce the F -module CDiff(P,Q) of dif-
ferential operators from P to Q of any order. We can generalize the defini-
tion to multi-C-differential operators. In particular, we will be interested to
spaces of antisymmetric multi-C-differential operators, which we denote by
CDiffalt(l) k(P,Q). Analogously, we introduce CDiffalt(l)(P,Q).

Now, we consider the two horizontal modules κ (16) and E0,q
0 = Ω

0,q
. For

a proof of the following proposition, see [18].

Proposition 4.4. We have the natural isomorphism

Ep,q
0 → CDiffalt(p)(κ, E0,q

0 ), α 7→ ∇α (34)

where ∇α(ϕ1, . . . , ϕp) = Eϕp
y(. . .y(Eϕ1

yα) . . . ).

Note that the isomorphism holds because for any vertical tangent vector
to Jrπ there exists an evolutionary field passing through it. In coordinates,
if α

α = α
σ1···σp

i1 ···ip λ1···λq
ωi1

σ1
∧ · · · ∧ ωip

σp
∧ dxλ1 ∧ · · · ∧ dxλq

then

∇α(ϕ1, . . . , ϕp) = p!α
σ1···σp

i1 ···ip λ1···λq
Dσ1

ϕi1 · · ·Dσp
ϕip dxλ1 ∧ · · · ∧ dxλq
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4.3 The C-spectral sequence and its 1-st and 2-nd terms

The term Sp,q
1 of the C-spectral sequence is computed in two steps. The

following lemma yields the cohomology of the terms with 0 ≤ q ≤ n− 1. Let

P be a horizontal module. Recall that E0,q
0 = Ω

0,q
, the space of horizontal

forms, and E0,0
0 = F . We introduce the adjoint module P ∗ def

= Hom(P,E0,n
0 ).

Consider the complex

0 // CDiff(p)(P,E0,0
0 )

w // CDiff(p)(P,E0,1
0 ) CDiff(p)(P,E0,n

0 ) // 0

(35)

where the maps w are defined by w(∇) def

= dH ◦ ∇.

Theorem 4.5. The cohomology of the complex (35) is zero at CDiff(p)(P,E0,q
0 )

for 0 ≤ q ≤ n− 1 and is CDiff(p−1)(P, P ∗) for q = n.

The first version of the above theorem appeared in [116] (corollary 2; see
also the longer paper [117]. The proof was published later [118] and used
Spencer cohomology. Another proof based on the Koszul complex appeared
in [106], but the formulation involved only differential forms in Ep,q

0 . In the
language of differential operators (see proposition 4.4), this amounts at con-
sidering the subspace CDiffalt(p)(P,E0,q

0 ) ⊂ CDiff(p)(P,E0,q
0 ), with P = κ. The

statement of the above theorem 4.5 is taken from [18, p. 190], but the proof
is essentially the same as in [106]. Note that there is an obvious inclusion

CDiff(p−1)(P, P ∗) ⊂ CDiff(p)(P,E0,n
0 ).

There is an action of the permutation group Sp of p elements on CDiff(p)(P,E0,q
0 ).

Namely, if τ ∈ Sp and ∇ ∈ CDiff(p)(P,E0,q
0 ) then for all s1, . . . , sp ∈ P we

set τ(∇)(s1, . . . , sp)
def

= ∇(sτ(1), . . . , sτ(p)). This action commutes with w, so
that we have the following corollary.

Corollary 4.6. The skew-symmetric part of the complex (35) has zero co-
homology at CDiffalt(p)(P,E0,q

0 ) for 0 ≤ q ≤ n− 1.

It is easy to realize through the isomorphism of proposition 4.4 that, if
P = κ, then w = dH up to the isomorphism 34. Another set of terms of the
C-spectral sequence follows.

Corollary 4.7. We have:

• Sp,q
1 = 0 for p > 0 and 0 ≤ q ≤ n− 1;

• S0,q
1 = Hq(E) for 0 ≤ q ≤ n− 1.

33



The content of the above theorem is the same of theorem 3.14 and corol-
lary 3.15. The proof of the second statement of above corollary follows from
the convergence of the C-spectral sequence to the de Rham cohomology. In-
deed it can be quickly realized that the differential s1 is the zero map on S0,q

1

for 0 ≤ q ≤ n − 1 and that s1 is never S0,q
1 -valued for 0 ≤ q ≤ n − 1. It

follows that S0,q
2 = S0,q

∞ for 0 ≤ q ≤ n − 1. Moreover, we note that there is
at most one nonzero term among Sp,q

∞ with p + q = k. Then there exists a p̃
such that F p̃H p̃+q(Ω∗

r) 6= F p̃+1H p̃+q(Ω∗
r). This implies that the filtration of

the de Rham cohomology of the initial complex (Ω∗, d) is trivial:

H p̃+q(Ω∗
r) = F 0H p̃+q(Ω∗

r) = · · · = F p̃H p̃+q(Ω∗
r) ⊃ 0 · · · ⊃ 0, (36)

whence S p̃,q
∞ = H p̃+q(Ω∗

r).

We now calculate the last set of terms of E1. The following elementary
lemma comes directly from the definition of spectral sequence and the iso-
morphism (34).

Lemma 4.8. We have

Sp,n
1 = Ep,n

0

/
dH(Ep,n−1

0 ) = CpΩp ∧ Ω
0,n/

dH(CpΩp ∧ Ω
0,n−1

) = Ep,n
1 .

It turns out that

Ep,n
1 ≃ CDiffalt(p)(κ, E0,n

0 )
/
dH(CDiffalt(p)(κ, E0,n−1

0 )).

In view of the discussion preceding corollary 4.6, the term Ep,n
1 is iso-

morphic to the subspace Kp(κ) ⊂ CDiff(p−1)(κ, κ∗) of elements which are
invariant under the action of the permutation group Sp. To do that we
need the notion of adjoint operator. Let P , Q be horizontal modules and
∆: P → Q a C-differential operator. Then ∆ induces a map

∆′ : CDiff(Q,E0,q
0 )→ CDiff(P,E0,q

0 ), ∆′(∇) = ∇ ◦∆.

The map ∆′ is a cochain map for the complex (35) (with p = 1), in the sense
that ∆′ ◦ w = w ◦∆′. Hence ∆′ yields a cohomology map which, according
to theorem 4.5, is trivial if 0 ≤ q ≤ n− 1 and is denoted by ∆∗ : Q∗ → P ∗ if
q = n.

Definition 4.9. The operator ∆∗ is said to be the adjoint operator to ∆.

In coordinates, following the same notation of (33), we have ∆ = ajσ
i Dσ.

If {ei ⊗ ν}, {f j ⊗ ν} are two local bases respectively of P ∗ and Q∗, and
s∗ ∈ P ∗, t∗ ∈ Q∗, we have s∗ = sie

i ⊗ ν, t∗ = tjf
j ⊗ ν, and

∆∗(t∗) = (−1)|σ|Dσ(ajσ
i tj)e

i ⊗ ν. (37)
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In fact, it can be easily proved that the composition ∇◦∆ is locally equal to
the above expression up to an operator in imw. Of course, locally this is just
integration by parts. The global meaning of the expression (37) appears in
the two following statements (for a proof, see [18, 66]). If ∆ ∈ CDiff(p)(P,Q),
then for any p1, . . . , pp−1 we define ∆(p1, . . . , pp−1) ∈ CDiff(P,Q) in the
following obvious way:

∆(p1, . . . , pp−1)(pp) = ∆(p1, . . . , pp−1, pp). (38)

Next lemma shows how to determine the representative of each n-th coho-
mology class of the complex (35).

Lemma 4.10. Let P be a horizontal module and ∆ ∈ CDiff(p)(P,E0,n
0 ). Then

∆(p1, . . . , pp−1) = ∆(p1, . . . , pp−1)
∗(1) + w(∇(p1, . . . , pp−1)), (39)

where∇(p1, . . . , pp−1) ∈ CDiff(P,E0,n−1
0 ). It turns out that w(∇(p1, . . . , pp−1)) =

w(∇̃), with ∇̃ ∈ CDiff(p)(P,E0,n
0 ).

The proof is achieved first locally, with a relatively easy computation, then
globally by observing that ∆(p1, . . . , pp−1)

∗(1) is a natural operator and the
representative of a cohomology class, hence the difference ∆(p1, . . . , pp−1)−
∆(p1, . . . , pp−1)

∗(1) must lie in the image of w. See also [18, 66].
The above operator w(∇̃) is uniquely determined, but ∇̃ is not. The prob-

lem of determining under which additional requirements ∇̃ is uniquely deter-
mined has been thoroughly analysed in [2, 4, 61] (see remark 3.6). Eq. (39)
is a consequence of the fact that every object in the n-th cohomology class
of the complex (35) is globally represented by a single homomorphism in P ∗.

Proposition 4.11 (Green’s formula). Let P , Q be horizontal modules and
∆: P → Q a C-differential operator. Then

q∗(∆(p))− (∆∗(q∗))(p) = dH(ωp,q∗(∆)) (40)

for all q∗ ∈ Q∗, p ∈ P , where ωp,q∗(∆) ∈ E0,n−1
0 and ωp,q∗(∆) is a C-

differential operator with respect to p and q∗.

The above formula has been introduced in [115] (but see also [18, 66, 118]);
its proof is a simple consequence of lemma 4.10.

Now, it is easy to see that the action of a permutation of the first p−1 ar-
guments of � ∈ CDiff(p−1)(κ, κ∗) commutes with the splitting of lemma 4.10,

hence Kp(κ) ⊂ CDiffalt(p−1)(κ, κ∗). Then, for ∆ ∈ CDiff(p−1)(κ, κ∗) and for
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any p1, . . . , pp we define ∆j(p1, . . . , p̂j, . . . , pp−1) ∈ CDiff(κ, κ∗) in the fol-
lowing obvious way:

∆j(p1, . . . , p̂j, . . . , pp−1)(pj)(pp) = ∆(p1, . . . , pp−1)(pp). (41)

Due to Green’s formula we have

∆j(pj)(pp) = ∆∗
j(pp)(pj) + dH(ωp,q∗(∆)).

This implies that Kp(κ) ⊂ CDiffalt(p−1)(κ, κ∗) is the subset of skew-adjoint
operators with respect to the exchange of one of the first p − 1 arguments
with the last one. Hence, we proved the following theorem.

Theorem 4.12. There is an isomorphism

I : Ep,n
1 → Kp(κ), [∆] 7→ ∆∗(1), (42)

where the adjoint is taken with respect to one of the arguments of ∆.

Let us see the coordinate expression of I in the most meaningful cases.
We will represent elements of Ep,n

0 through the isomorphism 34. We set
ν def

= dx1 ∧ · · · ∧ dxn.

Case p = 1: let [α] ∈ E1,n
1 . Then ∇α(ϕ) = ασ

i Dσϕi ν and

I([α])(ϕ) = (−1)|σ|Dσασ
i ϕi ν.

Considerations similar to what exposed in section 3.1 apply also here.

Case p = 2: let [α] ∈ E1,n
1 . Then ∇α(ϕ1, ϕ2) = 2αστ

i j Dσϕi
1Dτϕj

2 ν (with
αστ

i j = −ατσ
j i ) and, if α is a form on the r-th order jet, then

I([α])(ϕ1)(ϕ2) = (−1)|τ |Dτ(2αστ
i j Dσϕi

1)ϕ
j
2 ν

=
∑

µ+σ=ρ
0≤|ρ|≤2r

(−1)|ξ+µ| (ξ + µ)!

ξ!µ!
2Dξα

σξ+µ
ij Dρϕ

i
1ϕ

j
2 ν. (43)

Note that the above expressions coincide with the expressions of subsec-
tion 3.1 up to the isomorphism (34) and a constant factor (which depends
on different conventions about numerical factors and the ordering in contrac-
tions and wedge products).

Remark 4.13. We observe that in [116] an intrinsic expression of e1 which
makes use of the above isomorphism was provided (see also [18, p. 195–197]).
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A last step is needed in order to complete the computation of the C-
spectral sequence.

Theorem 4.14. We have:

• S0,q
2 = Hq(E) for 0 ≤ q ≤ n− 1;

• Sp,q
2 = 0 for p > 0 and 0 ≤ q ≤ n− 1;

• Sp,n
2 = Hp+n(E) for 0 ≤ p.

It turns out that S2 = S∞.

The only non-trivial statement of the above theorem is the last one. This
follows from the convergence of the C-spectral sequence to the de Rham
cohomology and the fact that the differential e2 always point either from 0
to Sp,n

2 or from Sp,n
2 , so that it is the trivial map in both cases. For more

details, see [18, 66, 118]. We just recall that the computation of the C-spectral
sequence for J∞π is called one-line theorem [118, 121].

Corollary 4.15. The variational sequence is obtained from the C-spectral
sequence by joining the two complexes (E0,q

0 , dH) and (Ep,n
1 , e1).

The above corollary is proved after proving that s1 = e1. This is quite
easy, see [124].

We stress once again that the above construction yields the same results
as in section 3 with the only exception of the cohomology of the rows. For
this another spectral sequence would produce the results, namely the one
arising from a filtration through horizontal forms.

5 Finite order variational sequence

The variational bicomplex and its derivation through the spectral sequence
have been derived so far on infinite order jets. The reasons for doing that
have been explained in section 2. But both the variational bicomplex and
its derivation through the spectral sequence admit a finite-order counterpart,
which has been studied in recent years.

The first statement of a partial version of finite order variational sequence
was in [5]. This finite order variational sequence stopped with a trivial pro-
jection to 0 just after the space of finite order source forms (see section 3.1).
The local exactness of this sequence was proved, together with an original
solution of the global inverse problem (despite the fact that in order to do
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that the authors used infinite order jets). For more detailed comments about
that variational sequence see remark 5.7.

The first formulation of a (long) variational sequence on finite order jet
spaces is in [70] (see [72] for the case n = 1). Below we will describe the main
points of the approach of [70], and compare it with other approaches. We
also observe that more details can be found in [74]. The C-spectral sequence
on finite order jets of fibrings has been recently computed; the interested
reader can find it in [125].

For the sake of completeness we also mention the paper [46]. In that
paper the exactness of the horizontal de Rham sequence on finite order jets
of submanifolds is proved. Nonetheless, we stress that this result could also
be easily derived from the exactness results in [5, 70]. Another contribution
has been given in [95], where the author stresses the relationship between a
part of the finite order variational sequence and the Spencer sequence. This
relationship was already explored in [115, 116] in the case of infinite order
jet spaces.

The scheme of the finite order approach of [70] is the following. First of all
we stress that the approach is developed in the language of sheaves. In [70]
a natural exact subsequence of the de Rham sequence on Jrπ is defined.
This subsequence is made by contact forms and their differentials. Then
we define the r–th order variational sequence to be the quotient of the de
Rham sequence on Jrπ by means of the above exact subsequence. Local
and global results about the variational sequence are proved using the fact
that the above subsequence is globally exact and using the abstract de Rham
theorem.

Let us consider the sheaf of 1-contact forms C1Ω∗, and denote by (dC1Ωk )̃
the sheaf generated by the presheaf dC1Ωk. We set

Θq
r

def

= C1Ωq
r + (dC1Ωq−1

r )̃ 0 ≤ q ≤ n,

Θp+n
r

def

= CpΩp+n
r + (dCpΩp+n−1

r )̃ 1 ≤ p ≤ dim Jrπ.
(44)

We observe that dC1Ωq−1
r ⊂ C1Ωq

r, so that the second summand of the above
first equation yields no contribution to C1Ωq

r. Moreover, we observe that
Θp+n

r = 0 if p + n > P , where the value of P (which is strictly less than
dim Jrπ) is explicitly computed in [70], and depends on the results of Theo-
rem 2.4. We also have the following property (proved in [70]).

Lemma 5.1. Let 0 ≤ k ≤ dim Jrπ. Then the sheaves Θk
r are soft sheaves.

We have the following natural soft subsequence of the de Rham sequence
on Jrπ

0 // Θ1
r

d // Θ2
r

d // . . . d // ΘP
r

d // 0 (45)
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Definition 5.2. The sheaf sequence (45) is said to be the contact sequence.

Theorem 5.3. The contact sequence is an exact soft resolution of C1Ω1
r,

hence the cohomology of the associated cochain complex of sections on any
open subset of Jrπ vanishes.

The above theorem is proved in [70] by first proving the local exactness
of the contact sequence and then using standard results from sheaf theory
(for which an adequate source is [126]).

Standard arguments of homological algebra prove that the following dia-
gram is commutative, and its rows and columns are exact.

0

��

0

��

0

��

0 // Θ1
r

d //

��

Θ2
r

d //

��

. . . d // ΘP
r

d //

��

0

0 // R // Ω0
r

d //

��@
@

@
@

@
@

@
Ω1

r
d //

��

Ω2
r

d //

��

. . . d // ΩP
r

d //

��

ΩP+1
r

d // · · · 0

Ω1
r/Θ

1
r

E1 //

��

Ω2
r/Θ

2
r

E2 //

��

. . . EP−1
// ΩP

r /ΘP
r

EP

<<yyyyyyyy

��
0 0 0

Definition 5.4. The above diagram is said to be the r-th order variational
bicomplex associated with the fibred manifold π : E → M . We say the
bottom row of the above diagram to be the r-th order variational sequence
associated with the fibred manifold π : E →M .

Due to theorem 5.3 the finite order variational sequence is an exact sheaf
sequence (this means that the sequence is locally exact, [126]). Hence both
the de Rham sequence and the variational sequence are acyclic resolutions
of the constant sheaf R (‘acyclic’ means that the sequences are locally exact
with the exception of the first sheaf R). Next corollary follows at once.

Corollary 5.5. The cohomology of the variational sequence is naturally iso-
morphic to the de Rham cohomology of Jrπ.

Having already dealt with local and global properties of the r-th order
variational sequence, we are left with the problem of representing the quotient
sheaves. Now it is obvious that, for 0 ≤ q ≤ n, horizontalization provides
such a representation (see [70, 122]).
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Proposition 5.6. Let 0 ≤ q ≤ n. Then we have the isomorphism

Jq : Ωq
r/Θ

q
r → Ω

0,q

r , [α] 7→ h0,q(α).

The quotient differential Eq reads through the above isomorphism as

Jq+1(Eq([α])) = Jq+1([dα]) = h0,q+1(dα) = dHh0,q+1(α).

The last equality of the above equation is the least obvious, and was
first proved in [5]. The proof depends on the fact that Dλu

i
σµ = ui

σµλ, and
that the indexes λ, µ are skew-symmetrized in the coefficients of α (see the
coordinate expression of h0,q).

Remark 5.7. In [5] the finite order variational sequence is developed starting
from the idea of finding a subsequence of forms whose order do not change
under dH . The authors prove that the above property characterizes the forms
which are the image of h0,q (see also [4]). Conversely, in [70] the idea is to
start with forms on finite order jets, but the result is the same up to the
degree q = n.

When the degree of forms is greater than n we are able to provide iso-
morphisms of the quotient sheaves with other quotient sheaves made with
proper subsheaves. This helps both to the purpose of representing quotient
sheaves and to the purpose of comparing the current approach with others,
as we will see.

Proposition 5.8. The horizontalization hp,n induces the natural sheaf iso-
morphism

Jp+n : Ωp+n
r /Θp+n

r → Ω
p,n

r /hp,n((dCpΩp+n−1
r )̃), [α] 7→ [hp,n(α)].

The quotient differential Ep+n reads through the above isomorphism as

Jp+1+n(Ep+n([α])) = Jp+1+n([dα]) = [hp+1,n(dα)] = [dV hp,n(α)].

For a proof, see [124]. A similar approach is in [67, 68].
Now, it is clear from proposition 5.8 that we are able to represent the

quotient sheaves Ω
p,n

r /hp,n((dCpΩp+n−1
r )̃) using the interior Euler operator

restricted to Ω
p,n

r ; this is precisely the approach of [67, 68]. See [47] for a
different approach to this problem. A further approach to the problem of
representation appeared in [76]. Here the concept of Lepagean equivalent is
introduced in full generality (older version of this concept can be found e.g.,
in [69], with references to older foundational works). Namely, let α ∈ Ωp+n

r .
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Then a Lepage equivalent of [α] ∈ Ep,n
1 is a differential form β ∈ Ωp+n

r such
that

hp,n(β) = hp,n(α), hp+1,n(dβ) = I(hp+1,n(dα)) = e1([α]).

The most important example of a Lepagean equivalent is the Poincaré–
Cartan form of a Lagrangian (see, e.g., [74]). A representation of forms
in the variational sequence through Lepagian equivalents is currently being
studied also in exterior differential systems theories [23].

Remark 5.9. It is interesting to observe that, either in view of theorem 4.5
or in view of the results by several authors referred to in remark 3.6, every
form α ∈ Ω

p,n

r can be written as the sum α = σ + dHγ, where σ can be
seen either as a skew-adjoint differential operator (from the isomorphism of
proposition 4.4 and theorem 4.12) or as a form in the image of the interior
Euler operator (which admits an equivalent characterization as skew-adjoint
form, see [4]).

This means that, despite the fact that the denominator in proposition 5.8
is made by forms which are locally total divergences, only global divergences
really matter.

The finite order formulation of [70] yields a variational sequence which can
be proved to be equal to the finite order variational sequence obtained from
a finite order analogue of the C-spectral sequence [125]. Moreover, as one
could expect, for 0 ≤ s < r pull-back via πr,s yields a natural inclusion of the
s-th order variational bicomplex into the s-th order variational bicomplex.
More precisely, we have the following lemma (see [70]).

Lemma 5.10. Let 0 ≤ s < r. Then we have the injective sheaf morphism

χr
s :

(
Ωk

s/Θ
k
s

)
→

(
Ωk

r/Θ
k
r

)
, [α] 7→ [π∗

r,sα].

Hence, there is an inclusion of the s–th order variational bicomplex into the
r–th order variational bicomplex.

It can be proved that there exists an infinite order analogue of the above
r-th order variational bicomplex [123]. This is defined in view of the above
lemma via a direct limit of the injective family of r-th order variational
bicomplexes. Nonetheless the direct limit infinite order bicomplex will be a
bicomplex of presheaves, because gluing forms defined on jets of increasing
order provides ‘forms’ which are only locally of finite order (see [43, 123] and
the comments after theorem 3.14).
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Remark 5.11. The main motivation for the finite order variational sequence
has been a refinement in inverse problems of the calculus of variations. For
example, a source form [α] ∈ Ωn+1

r /Θn+1
r which is locally variational, i.e.

e1([α]) = 0, admits a (local) Lagrangian [β] ∈ Ωn
r /Θn

r . A representative
of [β] is h0,n(β), which is defined on the r + 1-st order jet and depends
on highest order derivatives through hyperjacobians (proposition 5.6). See
[73, 123, 124, 125] for a comparison between the finite order and infinite order
approaches.

6 Special topics

Due to space and time constraints it is not possible to go further in describing
in details the current achievements in variational sequence theory. It is also
impossible to reserve to applications and examples more than just a mention.
The above tasks would require writing a whole book. But in this section at
least the most important research directions of the last 15 years will be
exposed, with reference to the literature for the readers who are interested
in knowing more.

6.1 Inverse problem of the calculus of variations

The variational sequence is intimately related with the inverse problem of
the calculus of variations (see the Introduction). This problem has a long
history for which possible sources are the notes [91, p. 377] and references
quoted therein, and [14, 88, 78] for the case of mechanics (n = 1). Here we
briefly describe some inverse problems arising in the variational sequence,
including the inverse problem of the calculus of variations. We just recall
that the cohomology of the de Rham sequence on E is isomorphic to the
cohomology of the variational sequence.

Variationally trivial Lagrangians. A variationally trivial Lagrangian
is an element [α] ∈ E0,n

1 such that e1([α]) = 0. If [α] is a variationally
trivial Lagrangian, then [α] is locally a total divergence, i.e., [α] = dH [β]
with [β] ∈ E0,n−1

0 . A global horizontal n − 1-form [β] ∈ E0,n−1
0 such that

[α] = dH [β] exists if and only if [[α]] = 0 ∈ Hn(E). A refinement of this
result is the following theorem.

Theorem 6.1. Let λ : Jrπ → ∧nT ∗M induce a variationally trivial La-
grangian [λ]. Then, locally, λ = dHµ, where µ = h0,n−1(α) and α ∈ Ωn−1

r−1 .
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In other words, according to the above hypotheses, λ = h0,n(dα), hence
it depends on r-th order derivatives through hyperjacobians. This result has
been proved in [5, 15, 75, 48]6 using various techniques. Note that the result
is better with respect to the order of jets than what can be obtained by the
local exactness of the finite order variational sequence. In fact, from the
finite order variational sequence we would obtain α ∈ Ωn−1

r . Of course, the
result is sharp: the order cannot be further lowered.

Locally variational source forms. A locally variational source form is
an element [α] ∈ E1,n

1 such that e1([α]) = 0. If [α] is a locally variational
source form, then [α] is locally the Euler–Lagrange expression of a (local)
Lagrangian, i.e., [α] = E [β] with [β] ∈ E0,n

1 . A global Lagrangian [β] ∈ E0,n
0

such that [α] = E [β] exists if and only if [[α]] = 0 ∈ Hn+1(E). A refinement
of this result, like in the previous inverse problem, is much more difficult.
We list the results which have been achieved till now.

Theorem 6.2. Let [α] ∈ Ωn+1
r /Θn+1

r be locally variational. Then there exists
a (local) Lagrangian [β] ∈ Ωn

r /Θn
r such that [α] = E [β].

The above result is a direct consequence of the local exactness of the
finite order variational sequence, and, as before, it is sharp with respect to
the order [70, 122]. However, it can be very difficult to check that a source
form is in the space Ωn+1

r /Θn+1
r . A result proved in [4] is helpful in this

sense. Let u(r) denote all derivative coordinates of order r on a jet space.
Let f ∈ C∞(J2rπ), and suppose that

f(xλ, u(0), . . . , u(r), tu(r+1), t2u(r+2), . . . , tru(2r))

is a polynomial of degree less than or equal to r in u(s), with r + 1 ≤ s ≤ 2r.
Then f is said to be a weighted polynomial of degree r in the derivative
coordinates of order r + 1 ≤ s ≤ 2r.

Theorem 6.3. Let [∆] be a locally variational source form induced by ∆: J2rπ →
C∗

0 ∧∧
nT ∗M . Suppose that the coefficients of ∆ are weighted polynomials of

degree less than or equal to r. Then ∆ = E(λ), where λ : Jrπ → ∧nT ∗M .

Again, the result is sharp with respect to the order of the jet space where
the Lagrangian is defined. The above theorem is complemented in [4] by
a rather complex algorithm for building the lowest order Lagrangian. This
algorithm is an improvement of the well-known Volterra Lagrangian

L =

∫ 1

0

ui∆i(x
λ, tuj

σ)dt

6In [15] the proof is for the special case when the Lagrangian does not depend on (xλ).
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for a locally variational source form ∆. In fact, the above Lagrangian is
defined on the same jet space as ∆. The finite order variational sequence
yields another method for computing lower order Lagrangians, provided we
know that ∆ = [α] ∈ Ωn+1

r /Θn+1
r . Namely, we apply the contact homotopy

operator to the closed form dα ∈ Θn+2
r , finding β ∈ Θn+1

r such that dβ = dα.
By using once again using the (standard) homotopy operator we find γ ∈ Ωn

r

such that dγ = β−α, and λ def

= h0,n(γ) is the required Lagrangian. Of course,
the most difficult point is to invert the representation of quotients in the
variational sequence, i.e., to find a least order α such that ∆ = [α].

The above theorem does not exhaust the finite order inverse problem. A
locally variational source form on J2rπ seems to have a definite form of the
coefficients with respect to its derivatives of order s, with r + 1 ≤ s ≤ 2r. A
conjecture in this sense is formulated in [4] in an admittedly imprecise way.
We conjecture that locally variational source forms defined on J2rπ could be
elements of Ωn+1

r /Θn+1
r . Note that the representation through I of elements

in Ωn+1
r /Θn+1

r yields source forms which are of order 2r + 1 and are obtained
through the adjoint of the horizontalization of a form in Ωn+1

r (which is a
hyperjacobian polynomial of degree at most n in derivatives of order r); see
[122] for more details about the structure of such forms.

Finally, we recall that recently some geometric results on variational first-
order partial differential equations have been obtained in [54]. Such equations
arise in multisymplectic field theories.

Symplectic structures. In [33] the symplectic structures for evolution
equations are introduced. They are dual to the Hamiltonian structures men-
tioned in the introduction. A symplectic structure is an element [α] ∈ E2,n

1

such that e1(α) = 0 (see also[18]). It is clear that another inverse problem
arises here. But there are no results as on the above section. It seems nat-
ural to formulate a conjecture on the structure of symplectic structures by
analogy with the above conjecture.

Variational problems defined by local data. There are some examples
of global source forms which do not admit a global Lagrangian. For instance,
Galilean relativistic mechanics [97] and Chern–Simons field theories (where a
global Lagrangian indeed exists but it is not gauge-invariant). Some authors
proposed a general formalism for dealing with such situations. Namely, they
introduce a sheaf of local n-forms all of which produce the same Euler–
Lagrange source form under the action of E . See [21, 19, 103, 104] for more
details.
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6.2 Variational sequence on jets of submanifolds

Let E be an n + m-dimensional manifold, and x ∈ E. We say that two
n-dimensional submanifolds L1, L2 such that x ∈ L1 ∩ L2 are r-equivalent if
they have a contact of order r at x. It is possible to choose a chart of E at
x of the form (xλ, ui), 1 ≤ λ ≤ n, 1 ≤ i ≤ m, where both L1 and L2 can
be expressed as graphs ui = f i

1(x
λ), ui = f i

2(x
λ). Then the contact condition

is the equality of the derivatives of the above functions at x up to the order
r. This is an equivalence relation whose quotient set is Jr(E, n), the r-th
order jet space of n-dimensional submanifolds of E7. If E is endowed with
a fibring π, then Jrπ is the open and dense subspace of Jr(E, n) which is
made by submanifolds which are transverse to the fibring at a point (which,
of course, can be locally identified with the images of sections, hence with
local sections themselves).

Of course, jets of submanifolds have a contact distribution, hence a C-
spectral sequence can be formulated [29, 115, 116]. As a by-product a vari-
ational sequence is obtained. Jets of submanifolds can also be seen as jets
of parametrizations of submanifolds (i.e., jets of local n-dimensional immer-
sions) up to the action of the reparametrization group [63]. In this setting
another approach to the variational sequence is [99]. In [84] the finite-order
C-spectral sequence on jets of submanifolds is computed. See also the more
comprehensive treaties [1, 119, 121] on the geometry of jets of submanifolds,
partial differential equations and the calculus of variations. Another ap-
proach to the calculus of variations on jets of submanifolds can be found in
[49].

6.3 Variational sequence on differential equations

There are several books on the geometric theory of differential equations (see
the Introduction). We invite the interested reader to consult them. Here we
just recall the main result related to the variational sequence on differential
equations.

A differential equation (ordinary or partial, scalar or system) is a sub-
manifold S ⊂ Jr(E, n). Such a submanifold inherits the contact distribution
from Jr(E, n), hence the C-spectral sequence can be defined on it. Let us
describe what are the main differences with the ‘trivial equation case’, i.e.,
the case of S = Jr(E, n) or S = Jrπ.

First of all, we observe that the term E0,n−1
1 of the C-spectral sequence of

an equation is made by equivalence classes of conservation laws of the given

7The synonyms ‘manifold of contact elements’ [28] and ‘extended jet bundles’ [91] are
also used.
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equation up to trivial conservation laws. To realize it, it is sufficient to recall
that conservation laws take the form of a total divergence which vanishes on
the given equation (like, e.g., continuity equations).

If S is closed then it can be represented as F = 0, where F is a section of
a vector bundle over Jr(E, n). Any differential equation S = S(0) ⊂ Jr(E, n)
can be prolonged to a differential equation S(1) ⊂ Jr+1(E, n) which is locally
described as DλF

i = 0. By iterating this procedure we obtain a sequence
{S(i)}0≤i≤+∞. We require that the equation S be formally integrable: this
amounts at requiring that for every i ∈ N the restriction of πi+1,i to S(i+1) be
a bundle over S(i). Hence the inverse limit S(∞) can be constructed. We also
require that the equation be regular : this means that the ideal of functions
on S(∞) is functionally generated by the differential consequences DσF i of
F . Finally, we say that S is ℓ-normal if the linearization of F has maximal
rank (see [18, p. 198] for more details).

In [116, 118] the following theorem is proved (‘two-lines theorem’): if S
is formally integrable, regular and ℓ-normal, then the terms Ep,q

1 of the C-
spectral sequence on S(∞) with p > 0, 1 ≤ q ≤ n − 2 are trivial. In other
words, non-trivial terms of the C-spectral sequence are distributed on the
column E0,q

i for 1 ≤ q ≤ n − 2 and on the rows Ep,n−1
j , Ep,n

j for p ≥ 1; this

explains the name of the theorem. Note that E0,q
∞ = E0,q

1 for 1 ≤ q ≤ n − 2
and Ep,n−1

∞ = Ep,n−1
3 , Ep,n

∞ = Ep,n
3 for p ≥ 1. An explicit description of the

non-vanishing terms is also provided by the two-line theorem.

Most ‘classical’ differential equations of mathematical physics (KdV equa-
tion, heat equation, etc.) are ℓ-normal, but gauge equations (like Yang-Mills
equation and Einstein equation) are not; the structure of their conservation
laws is more complex than that of ℓ-normal equations [51]. This fact was not
considered in [116, 118]. In [107] the method of compatibility complex was
proposed to compute the number of non-trivial lines. That approach has been
generalized in [114] (k-lines theorem) and compared with the Koszul–Tate
resolution method in [113]. In [22] the same problem was considered in the
framework of exterior differential systems (the author used the term ‘char-
acteristic cohomology’ to indicate what we called the horizontal de Rham
cohomology); see also [23].

Since then, several papers dealt with the C-spectral sequence on differen-
tial equations. We recall the works [50, 59] on evolution equations and the
works [7, 8, 9] on second-order parabolic and hyperbolic equations in the case
n = 2.
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6.4 Variational sequence and symmetries

Invariant variational problems. There are a number of variational prob-
lems which admit a group of symmetries G. The way to find invariant solu-
tions for these problems is to find solutions of a reduced system on the space
of invariants of G; this is related to Palais’principle of symmetric criticality.
In the paper [6] the solution of this problem is related to the existence of a
cochain map between the G-invariant variational bicomplex (see below) and
the variational bicomplex on the space of invariants of G. The local existence
of the cochain map is related to a relative Lie algebra cohomology group.

Lie derivatives of variational forms. The Lie derivative of variational
forms, i.e., elements of Ep,n

1 or equivalently Vp, is interesting for the determi-
nation of symmetries of Lagrangians and source forms. However, the result
of a Lie derivative with respect to a prolonged vector field is a form which,
in general, contains dH-exact terms. For this reason it is natural to derive a
new operator, the variational Lie derivative, which is defined up to dH-exact
terms. Such a formula first appeared in [118] (‘infinitesimal Stokes’formula’).

Theorem 6.4. Let X : E → TE be a vector field, and [α] ∈ Ep,n
1 . Then

[LX∞α] = e1([iX∞α]) + iX∞(e1([α])),

where the contraction iX∞(e1([α])) is defined by virtue of the identity iX∞

V
◦

dH = dH ◦ iX∞

V
and the fact that the action of X∞

H is trivial.

The above theorem can also be found in [4], and in [38, 77] in the finite
order case. It has clear connections with Noether’s theorem, for which we
invite the reader to consult the above literature.

Evolutionary vector fields are one example of first-order differential oper-
ators with no constant term that preserve the contact distribution. For this
reason, they yield operators on all the spaces E∗,∗

k of the C-spectral sequence.
More generally, the problem of finding ‘secondary’ differential operators, i.e.,
higher order differential operators which preserve the contact distribution,
has been faced [53]. A complete classification has not been achieved yet.

Takens’problem. It is well-known that, by virtue of Noether’s theorem,
any infinitesimal symmetry of a Lagrangian yields a conservation law of the
corresponding Euler–Lagrange equations. Takens’problem [101] can be for-
mulated as follows: when a source form, endowed with a space of infinitesimal
symmetries each of which generates a conservation law, is locally variational.

The problem has been solved in several cases, besides the simplest ones
in [101].
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1. Among the main results of [13], we have the following one. Consider
the bundle A→M , where A is the space of electromagnetic vector po-
tentials, and let ∆ be a source form. Suppose that ∆ has translational
and gauge symmetries and corresponding conservation laws. Then, if
n = 2 and ∆ is of third order, or n ≥ 3 and ∆ is of second order, ∆ is
locally variational.

2. In [10] the case of second-order scalar differential equations is consid-
ered. A number of conditions on symmetries and conservation laws
about which Takens’problem for the above equations admits an affir-
mative answer is derived.

3. In [12] the case of polynomial differential equations which admit the
algebra of Euclidean isometries and corresponding conservation laws is
considered. The authors make use of the formal differential calculus by
[42].

4. Finally, in [92] the problem is considered for the case of systems of first
order differential equations which admit the group of translations and
corresponding conservation laws.

Invariant inverse problem. This problem can be described as follows:
given a locally variational source forms which is invariant under the action
of a group G, find (if it exists) a Lagrangian which is invariant under the
action of G.

The problem admits a formulation in cohomological terms: consider a Lie
group G (or a Lie pseudogroup G′) acting on a manifold E8. Lift the action
to J∞(E, n). Then consider the G-invariant subcomplex of the variational
sequence. Its cohomology is the G-invariant cohomology; it determines the
solvability of the invariant inverse problem. The main difference with the
non-invariant case is that the G-invariant cohomology could be different from
zero even locally. The same consideration holds for infinitesimal actions.

The invariant variational bicomplex appeared in [106] together with sev-
eral examples of applications, but without any specific mention to the invari-
ant inverse problem. In a subsequent paper [3] (where the reader can also find
a short story of the invariant inverse problem) the following invariant inverse
problem was considered: to find natural Lagrangians for natural source forms
on the bundle of Riemannian metrics on a given manifold M . Among the
results it is interesting to note that, while the invariant n + 1-st cohomology
vanishes for dim M = 0, 1, 2 mod 4, it is nonvanishing for dimM = 3 mod

8if the manifold is fibred, then the action is required to be projectable
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4, thus leading to an obstruction of Chern–Simons type to the existence of
natural Lagrangians for natural source forms.

Further results in mechanics (n = 1) are exposed in [85, 86], where the
obstruction to the existence of Lagrangians is found in the cohomology of
the Lie algebra of G. It is proved that such an obstruction can be removed
by a central extension of the group G.

In [11] the local inverse problem invariant with respect to a finite-dimensional
Lie group action is completely solved. Namely, conditions under which the
local invariant cohomology of the variational sequence is isomorphic to the
local invariant de Rham cohomology of the total space E are given. More-
over, considering the action of a finite-dimensional Lie algebra, conditions
under which the local invariant cohomology of the variational sequence is
isomorphic to the cohomology of the Lie algebra are given. The paper is
completed by several examples. In [93] the case of an infinite-dimensional
Lie pseudogroup has been considered, and the local invariant cohomology is
computed in terms of the Lie algebra cohomology of the formal infinitesimal
generators of the pseudogroup. An application of the above methods and
results is presented in [94].

In [60] the authors make use of a method of invariantization from the
moving frames theory and compute the invariant counterparts of operators
like the horizontal differential and the Euler–Lagrange operator.

The invariant variational bicomplex seems to be an important part of
the BRST theory of quantized gauge fields [16], despite the fact that the
mathematical side of that theory still needs deep investigation.

Differential invariants. The works [3, 106] (see also references therein)
showed that the C-spectral sequence invariant with respect to the pseu-
dogroup of local diffeomorphisms provides a new approach to characteristic
classes. In [52, 120] characteristic classes are interpreted as cohomologies of
the regular spectra of the algebra of differential invariants.

6.5 Further topics

Variational multivectors. Variational forms, i.e., elements of Ep,n
1 , ad-

mit a dual counterpart. More precisely, ‘standard’ differential forms on a
manifold M admit as a counterpart multivector fields, i.e., sections of the
bundle ∧kTM . The counterpart of the ‘standard’ exterior differential is the
Schouten bracket. The counterpart for variational forms is constituted by
variational multivectors. In [91] (where the word ‘functional’ is used instead
of ‘variational’, see also references therein) the approach to variational mul-
tivectors is an ‘integral’ one, and multivectors are described in coordinates

49



up to total divergences. A variational Poisson bracket is introduced. In [56]
multivectors are explicitly described through the calculus of differential op-
erators, and their bracket is analyzed in the graded case, which leads both
to a variational Poisson bracket and to a variational Schouten bracket. We
stress that such a bracket allows to define operators which are Hamiltonian,
in the sense that their ‘squared’ bracket vanishes, without respect to a given
Hamiltonian [58].

Variational sequences on supermanifolds. The problem of comput-
ing the analogue of the C-spectral sequence for supermanifolds is almost
completely open. We quote the paper [112] with a comprehensive list of
references. There, integration, adjoint operators, Green’s formula, the Euler
operator and Noether’s theorem are introduced in a noncommutative setting.
As a by-product, an interesting characterization of Berezin volume forms is
obtained.

7 Notes on the development of the subject

To the author’s knowledge, the first papers where a variational sequence
appeared are by Horndeski [55] and by Gel′fand and Dikii [42]. Horndeski
constructed an analogue of the sequence (29) for a class of tensors (rather
than forms) in coordinates, using jets in an implicit way, in order to study the
inverse problem of the calculus of variations. Gel′fand and Dikii introduced
the differentials dH and E of the variational sequence (22) in the case n =
m = 1, only for polynomial functions of ui

σ. The calculus that they developed
was called by them the formal calculus of variations. This calculus was used
to study the Hamiltonian formalism for evolution equations, of which they
are among the main contributors. Their variational sequence was studied
by Olver and Shakiban, who computed its cohomology [89]. An alternative
approach to this problem is in [31].

At the same time Tulczyjew, studying the Euler–Lagrange differential
[108], and speaking with Horndeski9, matured the ideas that led to the vari-
ational bicomplex, first for higher n-dimensional tangent bundles T r

nM [109],
then for jets of fibrings [110]. His results included the local exactness of the
variational bicomplex, achieved through local homotopy operators. How-
ever, his results did not include the solution of the global inverse problem,
i.e., cohomological results about the variational sequence, until [111].

The C-spectral sequence approach was developed independently by Dedecker

9W. M. Tulczyjew, private communication
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[29] and Vinogradov [115, 116]. However, the most complete achievements
about the C-spectral sequence are due to Vinogradov. In fact, in [29] there
is only the definition of the C-spectral sequence, together with the definition
of the variational sequence on jets of fibrings and submanifolds (see also the
later paper [30]). Previous works by Dedecker made use of spectral sequences
for the calculus of variations [25, 26, 27, 28], but none dealt with variational
sequences. In [115, 116] all terms of the C-spectral sequence are computed for
jets of fibrings and jets of submanifolds (‘one-line theorem’). The computa-
tion included a complete description of all terms of Ep,n

1 through the theory
of adjoint operators and Green’s formula. Moreover, the C-spectral sequence
was computed for the first time also on differential equations (‘two-line theo-
rem’). This last achievement led to the interpretation of conservation laws in
terms of cohomology classes of the horizontal de Rham complex on the given
equation and their computation. Vinogradov did not publish the detailed
proofs of his results in [115, 116]; however he published a longer exposition
of his results in [117] followed by a detailed exposition with proofs in [118].
Manin’s review [83] of the geometry of partial differential equations devotes
a section to the variational sequence. The material is based on results by
Vinogradov and Kuperschmidt.

Independently, Takens [102] provided a formulation of the variational
bicomplex together with local exactness and global cohomological results on
jets of fibrings. His proofs of the local exactness relied are different with
respect to those of Tulczyjew. After [102], Takens left this field of research
and become an outstanding scientist in dynamical systems.

All the above approaches to variational sequences were developed on in-
finite order jets. Independently from the previous authors, Anderson and
Duchamp [5] developed a new approach to variational sequences. The main
novelty in their approach was the use of finite order jets. Their approach was
formulated trying to find spaces of forms for which dH was stationary with re-
spect to the order of jets. Their approach did not provide a ‘long’ variational
sequence, stopping with zero just after the space of source forms. Moreover,
in the paper there is a cohomological computation about the global inverse
problem, but this is performed on the infinite order jet. Another important
result in the paper is the local classification of trivial Lagrangians of order r
(but see also [15] for Lagrangians which do not depend on (xλ)). Such a result
has never been derived in an infinite order jets framework. Anderson is the
author of the book [4], which, unfortunately, has never been finished. How-
ever, it is still a source of interesting proofs, examples, and facts, especially
about the finite order inverse problem.

After that the foundations were established, a number of important con-
tributions and improvements appeared in the literature.
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In [106] Tsujishita reviewed the C-spectral sequence and presented some
new proofs of old facts together with new ideas and theorems (remarkably, the
invariant C-spectral sequence with interesting examples). A deeper analysis
by several authors (Gessler [51], Krasil′shchik [65], Marvan [80], Tsujishita
[107], Verbovetsky [114]) led to the generalization of Vinogradov’s ‘two-lines
theorem’ to the so-called ‘k-lines theorem’. The fundamental tool for the
computation of non-trivial lines in the C-spectral sequence was the compati-
bility complex (see [114] and references therein).

The k-lines theorem was also proved in [16] in the framework of the BRST
theory of quantized gauge fields [16]. A comparison between the approach
of [16] (Koszul-Tate resolution) and the compatibility complex method was
recently performed [113].

Bryant and Griffiths [22] proved similar results on the horizontal de Rham
cohomology in the framework of exterior differential systems. They call such
a cohomology the characteristic cohomology of an exterior differential system.

Duzhin began to study the finite order C-spectral sequence, but he only
completed the computations for first order jets of the trivial bundle π =
pr1 : M × R→M (here pr1 is the projection on the first factor) [34].

Krupka was the first one to formulate a ‘long’ variational sequence on
finite order jets in [70]. This approach was formulated in the language of
sheaves entirely in terms of finite order jet spaces. The idea is described
in section 5. The results included local exactness and global cohomology of
the finite order variational sequence, which turned out to be the same as
the infinite order case. More precisely, it was proved that the direct limit of
Krupka’s variational bicomplex was the same as the variational bicomplex
[123, 124], and that the C-spectral sequence on finite order jets provides a
finite order variational sequence which is the same as Krupka’s one [124, 125].
The representation of Krupka’s variational sequence was obtained by Krbek
and Musilová in [67, 68] using the interior Euler operator adapted to the
finite order case. The classification of variationally trivial Lagrangians was
proved using local exactness of the finite order variational sequence [48, 75].
The Lepagean equivalent theory provided yet another representation of the
variational sequence [76].

As a final remark, we observe that there are many research topics which
are connected with variational sequences (such as the inverse problem of the
calculus of variations). It is impossible to provide historical notes for all of
them, for space and time constraints. The interested reader can consult the
references indicated in section 6.
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Appendix: splitting the exterior algebra

In propositions 2.8 and 2.15 we deal with two splittings of exterior algebrae
which are induced by the splittings (3) and (13) of the underlying space. In
order to make this paper self-contained we briefly describe how to obtain the
exterior algebra projections from the underlying splitting projections [122,
124].

Let V be a vector space such that dim V = n. Suppose that V = W1⊕W2,
with p1 : V → W1 and p2 : V → W2 the related projections. Then, we have
the splitting

∧mV =
⊕

k+h=m

∧kW1 ∧ ∧
hW2, (46)

where ∧kW1∧∧
hW2 is the subspace of ∧mV generated by the wedge products

of elements of ∧kW1 and ∧hW2.
There exists a natural inclusion ⊙k L(V, V ) ⊂ L(∧kV,∧kV ). Then, the

following identity can be easily proved:

⊙n(p1 + p2) =
n∑

i=0

(
n

i

)
⊙i p1 ⊙⊙

n−ip2.

It follows that the projections pk,h related to the splitting (46) turn out to
be the maps

pk,h =

(
k

p

)
⊙k p1 ⊙ ⊙

hp2 : ∧mV → ∧kW1 ∧ ∧
hW2.
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