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Abstract

We refer to Krupka’s variational sequence, i.e. the quotient of the de Rham sequence
on a finite order jet space with respect to a ‘variationally trivial’ subsequence. Among
the morphisms of the variational sequence there are the Euler–Lagrange operator and
the Helmholtz operator.

In this note we show that the Lie derivative operator passes to the quotient in the
variational sequence. Then we define the variational Lie derivative as an operator on the
sheaves of the variational sequence. Explicit representations of this operator give us some
abstract versions of Noether’s theorems, which can be interpreted in terms of conserved
currents for Lagrangians and Euler–Lagrange morphisms.
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1 Introduction

The geometrical formulations of the Calculus of Variations on fibered manifolds include
a large class of theories for which the Euler–Lagrange operator is a morphism of an
exact sequence [1, 11, 17, 20, 21, 22]. This viewpoint allows one to overcome several
problems of the Lagrangian formulations in Mechanics and Field Theories [19].

We consider the recent formulation by Krupka [11]. This has two main features.
First, it is stated on finite order jets of the fibering, rather than on infinite order jets
like most of the others. Moreover, it is conceptually very simple, because the exact
sequence, or variational sequence, is defined as a quotient of the de Rham sequence on
a finite order jet space with respect to an intrinsically defined subsequence, the choice
of which is inspired by the Calculus of Variations.

1 Partially supported by GNFM of CNR, MURST and University of Turin.
2 Partially supported by GNFM of CNR, MURST, University of Florence and University of Lecce.
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2 Symmetries in finite order variational sequences

We show that the Lie derivative operator with respect to fiber–preserving vector
fields passes to the quotient, yielding a new operator on the sheaves of the variational
sequence, namely the variational Lie derivative. This idea has already been exploited
by Vinogradov although in a different formalism [21, 22].

We make use of the representation given in [24] of the quotient sheaves of the
variational sequence as concrete sheaves of forms. In this way, we provide explicit
formulae for the quotient Lie derivative operators, as well as some abstract versions
of Noether’s theorems. Finally, we interpret Noether’s theorems in terms of conserved
currents for Lagrangians and Euler–Lagrange morphisms. In particular we recast, in a
coherent and comprehensive scheme, some results previously found by various authors
in different frameworks [1, 9, 10, 12, 13, 15, 18, 19].

We stress that the algebraic methods used here allow a synthetic and clear under-
standing of concepts whose full meaning could hardly be reached by means of coordinate
expressions alone.

Throughout the paper the structure forms on jet spaces [14] as well as the horizontal
and the vertical differential [16] will be used as fundamental tools.

Manifolds and maps between manifolds are C∞. All morphisms of fibered manifolds
(and hence bundles) will be morphisms over the identity of the base manifold, unless
otherwise specified. As for sheaves, we will use the definitions and the main results
given in [26]. In particular, we will be concerned only with sheaves of IR–vector spaces.
Thus, by ‘sheaf morphism’ we will shortly mean a morphism of sheaves of IR–vector
spaces. Section 2 reviews earlier results, while Sections 3 and 4 contain the new results.
An example is provided in Section 5.

Acknowledgments. Thanks are due to L. Fatibene, M. Ferraris, I. Kolář, D.
Krupka and M. Modugno for useful comments. This work has been performed in
the framework of Nat. Res. Proj. MURST 40% “Met. Geom. e Prob. in Fisica
Matematica” and under the auspices of CNR–GNFM.

2 Jet spaces and variational sequences

In this section we recall some basic facts about jet spaces [3, 14, 16] and Krupka’s
formulation of the finite order variational sequence [11, 24].

2.1 Jet spaces

Here we introduce jet spaces of a fibered manifold and the sheaves of forms on the
r–th order jet space. Moreover, we recall the notion of the horizontal and the vertical
differential [16].

Our framework is a fibered manifold π : Y → X, with dimX = n and dimY =
n+m.

For r ≥ 0 we are concerned with the r–jet space JrY ; in particular, we set J0Y ≡ Y .
We recall the natural fiberings πr

s : JrY → JsY , r ≥ s, πr : JrY → X, and, among
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these, the affine fiberings πr
r−1. We denote by V Y the vector subbundle of the tangent

bundle TY of vectors on Y which are vertical with respect to the fibering π.
Charts on Y adapted to π are denoted by (xλ, yi). Greek indices λ, µ, . . . run from

1 to n and they label base coordinates, while Latin indices i, j, . . . run from 1 to m and
label fibre coordinates, unless otherwise specified. We denote by (∂λ, ∂i) and (dλ, di) the
local bases of vector fields and 1–forms on Y induced by an adapted chart, respectively.

We denote multi–indices of dimension n by boldface Greek letters such as α =
(α1, . . . , αn) with 0 ≤ αµ, µ = 1, . . . , n; by an abuse of notation, we denote by λ the
multi–index such that αµ = 0 if µ 6= λ, αµ = 1 if µ = λ. We also set |α| :=α1+ · · ·+αn

and α! :=α1! . . . αn!.
The charts induced on JrY are denoted by (xλ, yiα), with 0 ≤ |α| ≤ r; in partic-

ular, we set yi
0
≡ yi. The local vector fields and forms of JrY induced by the above

coordinates are denoted by (∂α
i ) and (diα), respectively.

In the theory of variational sequences a fundamental role is played by the contact
maps on jet spaces (see [3, 11, 12, 14]). Namely, for r ≥ 1, we consider the natural
complementary fibered morphisms over JrY → Jr−1Y

D : JrY ×
X
TX → TJr−1Y , ϑ : JrY ×

Jr−1Y
TJr−1Y → V Jr−1Y ,

with coordinate expressions, for 0 ≤ |α| ≤ r − 1, given by

D = dλ⊗Dλ = dλ⊗(∂λ + yjα+λ∂
α
j ) , ϑ = ϑj

α⊗∂α
j = (djα − yjα+λd

λ)⊗∂α
j .

We have

JrY ×
Jr−1Y

T ∗Jr−1Y =

(
JrY ×

Jr−1Y
T ∗X

)
⊕ imϑ∗

r ,(1)

where ϑ∗
r : JrY ×

Jr−1Y
V ∗Jr−1Y → JrY ×

Jr−1Y
T ∗Jr−1Y .

If f : JrY → IR is a function, then we set Dλf :=(D)λf , Dα+λf :=DλDαf , where
Dλ is the standard formal derivative. Given a vector field Z : JrY → TJrY , the
splitting (1) yields Z ◦πr+1

r = ZH + ZV where, if Z = Zγ∂γ + Zi
α∂

α
i , then we have

ZH = ZγDγ and ZV = (Zi
α − yiα+γZ

γ)∂α
i .

The splitting (1) induces also a decomposition of the exterior differential on Y ,
(πr+1

r )∗◦d = dH +dV , where dH and dV are defined to be the horizontal and the vertical
differential . The action of dH and dV on functions and 1–forms on JrY uniquely
characterizes dH and dV (see, e.g., [24] for more details).

A projectable vector field on Y is defined to be a pair (Ξ, Ξ̄), where Ξ : Y → TY
and Ξ̄ : X → TX are vector fields and Ξ is a fibered morphism over Ξ̄. The coordinate
expression of a projectable vector field is then Ξ = Ξλ∂λ + Ξi∂i, Ξ̄ = Ξλ∂λ, where Ξλ

will depend only on coordinates on X. If there is no danger of confusion, we will denote
a projectable vector field (Ξ, Ξ̄) simply by Ξ.

A projectable vector field (Ξ, Ξ̄) can be conveniently prolonged to a projectable
vector field (jrΞ, Ξ̄), whose coordinate expression turns out to be

jrΞ = Ξλ∂λ +

(
DαΞ

i −
∑

β+γ=α

α!

β!γ!
DβΞ

µ yiγ+µ

)
∂α
i ,
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where β 6= 0 and 0 ≤ |α| ≤ r (see [10, 14, 16]); in particular, we have the expressions
(jrΞ)H = Ξλ Dλ, (jrΞ)V = Dα(ΞV )

i ∂α
i with (ΞV )

i = Ξi − yiλΞ
λ. From now on, by an

abuse of notation, we will drop the parentheses in (jrΞ)H and (jrΞ)V and write simply
jrΞH and jrΞV .

2.2 Variational sequences

We will be now concerned with some distinguished sheaves of forms on jet spaces [3, 11,
12, 16, 24]. Notice that we will consider sheaves on JrY with respect to the topology
generated by open sets of the kind (πr

0)
−1 (U), with U ⊂ Y open in Y . This is due to

the topological triviality of the fibre of JrY → Y .

i. For r ≥ 0 we consider the standard sheaves
p

Λr of p–forms on JrY .

ii. For 0 ≤ s ≤ r we consider the sheaves
p

H(r,s) and
p

Hr of horizontal forms ,

i.e. of local fibered morphisms over πr
s and πr of the type α : JrY →

p

∧T ∗JsY and

β : JrY →
p

∧T ∗X, respectively.

iii. For 0 ≤ s < r we consider the subsheaf
p

C(r,s) ⊂
p

H(r,s) of contact forms , i.e. of

sections α ∈
p

H(r,s) with values into
p

∧(imϑ∗
s+1). We have the distinguished subsheaf

p

Cr ⊂
p

C(r+1,r) of local fibered morphisms α ∈
p

C(r+1,r) such that α =
p

∧ϑ∗
r+1◦α̃, where α̃ is

a section of the fibration Jr+1Y ×
JrY

p

∧V ∗JrY → Jr+1Y which projects down onto JrY .

According to [24], the fibered splitting (1) yields the sheaf splitting
p

H(r+1,r) =
⊕p

t=0
p−t

C (r+1,r) ∧
t

Hr+1, which restricts to the inclusion
p

Λr ⊂
⊕p

t=0

p−t

C r ∧
t

Hh
r+1, where

p

Hh
r+1

:= h(
p

Λr) for 0 < p ≤ n and h is defined to be the restriction to
p

Λr of the projection of
the above splitting onto the non–trivial summand with the highest value of t. We also
define the map v := id−h.

We recall now the theory of variational sequences on finite order jet spaces, as it
was developed by Krupka in [11].

By an abuse of notation, let us denote by d kerh the sheaf generated by the presheaf

d kerh (see [26]). We set
∗

Θr := kerh + d kerh.

In [11] it is proved that the following diagram is commutative and that its rows and
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columns are exact:

0 0 0 0 0 0

0 ✲ 0
❄

✲ 0
❄

✲

1

Θr

❄

d
✲

2

Θr

❄

d
✲ . . .

d
✲

I

Θr

❄

d
✲ 0

❄

✲ . . . ✲ 0

0 ✲ IR
❄

✲

0

Λr

❄

d
✲

1

Λr

❄

d
✲

2

Λr

❄

d
✲ . . .

d
✲

I

Λr

❄

d
✲

I+1

Λ r

❄

d
✲ . . .

d
✲ 0

0 ✲ IR
❄

✲

0

Λr

❄

E0
✲

1

Λr/
1

Θr

❄

E1
✲

2

Λr/
2

Θr

❄

E2
✲ . . .

EI−1
✲

I

Λr/
I

Θr

❄

EI
✲

I+1

Λ r

❄

d
✲ . . .

d
✲ 0

0
❄

0
❄

0
❄

0
❄

0
❄

0
❄

Definition 2.1 The top row of the above diagram is said to be the contact sequence,
and the bottom row is said to be the r–th order variational sequence associated with
the fibered manifold Y → X.

Notice that, in general, the highest integer I depends on the dimension of the fibers of
JrY → X.

Remark 2.2 If 0 ≤ p ≤ n, then d kerh ⊂ kerh, and α ∈ kerh if and only if

(jrσ)
∗α = 0 for every section σ : X → Y ; this partly shows the relation of

p

Θr to the
Calculus of Variations [3, 6, 10, 19].

2.3 Representation of the variational sequence

Isomorphisms of the quotient sheaves with suitable sheaves of forms can be given by
means of decomposition formulae.

The sheaf morphism h yields the isomorphisms [23, 24]:

Ip :
p

Λr/
p

Θr →
p

Hh
r+1 : [α] 7→ h(α) , 0 ≤ p ≤ n .(2)

Let β ∈
1

Cr∧
n

Hh
r+1. Then there is a unique pair of sheaf morphisms [3, 6, 9, 10, 21, 22]

Eα ∈
1

C(2r,0) ∧
n

Hh
2r+1 , Fα ∈

1

C(2r,r) ∧
n

Hh
2r+1 ,(3)

such that (π2r+1
r+1 )∗α = Eα − Fα and Fα is locally of the form Fα = dHpα with pα ∈

1

C(2r−1,r−1) ∧
n−1

H 2r.
The above formula yields the isomorphism

In+1 :
n+1

Λ r/
n+1

Θ r →
n+1

V r : [α] 7→ Eh(α) .(4)
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See [24] for the expression of
n+1

V r.

Let η ∈
n+1

V r. It has been proved [24] that there exists H̃dη ∈
1

C(4r+1,2r+1)⊗
1

C(4r+1,0)∧
n

H4r+1 such that, for all vertical vector fields Σ : Y → V Y , we have E
d̂η

= H̃dη(j2r+1Σ),

where d̂η := j2r+1Σ dη. Hence there is a unique pair of sheaf morphisms

Hdη ∈
1

C(4r+1,2r+1) ∧
1

C(4r+1,0) ∧
n

H4r+1 , Gdη ∈
2

C(4r+1,2r+1) ∧
n

H4r+1 ,(5)

such that (π4r+1
2r+1)

∗(dη) = Hdη − Gdη and Hdη = 1
2
A(H̃dη), where A is the skew–

symmetrisation map. Moreover, Gdη is locally of the type Gdη = dHqdη, where qdη ∈
2

C4r ∧
n−1

H 4r. We recall that H̃dη = 0 if and only if Hdη = 0. Remark that, in general,
the sections pα and qdη are not uniquely characterized (see, e.g. [3, 9, 24]).

Moreover, we have the isomorphism In+2 : En+1(
n+1

V r) →
n+2

V r, where
n+2

V r is the

image of the injective morphism En+1(
n+1

Λ r/
n+1

Θ r) →
n+2

V r : [dα] 7→ HdEh(α)
.

By means of the above isomorphisms Ip, 0 ≤ p ≤ n+ 2, we obtain a representation
of the ‘short’ variational sequence [24], namely

0 ✲ IR ✲

0

Vr

E0
✲

1

Vr

E1
✲ . . .

En
✲

n+1

V r

En+1
✲

n+2

V r

En+2
✲ 0 .

Notice that the morphisms Ep can be read through the above isomorphisms. In partic-
ular, Ep(h(α)) = h(dα) if 0 ≤ p ≤ n− 1.

We can interpret the above sequence in terms of the Calculus of Variations (see
[3, 6, 9, 16, 24]).

A section λ ∈
n

Vr is just a Lagrangian of order (r + 1) of the standard literature;

En(λ) ∈
n+1

V r is the standard higher order Euler–Lagrange morphism associated with λ.
Due to the exactness of the above sequence, if λ is variationally trivial (i.e. , En(λ) = 0

holds), then (locally) λ = dHǫ, with ǫ ∈
n−1

V r.

Let α ∈
n+1

Λ r, i.e. h(α) ∈
1

Cr ∧
n

Hh
r+1. We call Eh(α) ∈

n+1

V r an Euler–Lagrange type
morphism; it is defined on J2r+1Y . We say ph(α) is a momentum associated with Eh(α).

Let η ∈
n+1

V r. We call En+1(η) = Hdη the Helmholtz morphism associated with η; it
is defined on J4r+1Y . Again, the exactness of the sequence implies that, if η is locally

variational (i.e. , En+1(η) = Hdη = 0 = H̃dη holds), then (locally) η = En(λ) with λ ∈
n

Vr.

Remark 2.3 Let s ≤ r. Then the inclusions
p

Λs ⊂
p

Λr and
p

Θs ⊂
p

Θr yield the

injective sheaf morphisms (see [11]) χr
s :

(
p

Λs/
p

Θs

)
→
(

p

Λr/
p

Θr

)
: [α] 7→ [πr

s
∗α], hence

the inclusions

κr
s :

p

Vs →
p

Vr(6)

for s ≤ r.
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3 Variational Lie derivative

In this section we give a representation of the Lie derivative operator in the variational
sequence. We consider a projectable vector field (Ξ, Ξ̄) on Y and take into account
the Lie derivative with respect to the prolongation jrΞ of Ξ. In fact, such a prolonged
vector field preserves the fiberings πs

r , π
r; hence it preserves the splitting (1). So, we

shall prove that the operator LjrΞ passes to the quotient, yielding an operator on the
quotient sheaves of the sequence. Moreover, we give the expression of this operator on
the representations of the finite order variational sequence.

Representation of Lie derivative

Let LjrΞ be the Lie derivative operator with respect to the r-th prolongation jrΞ of a
projectable vector field (Ξ, Ξ̄) on Y .

As a consequence of earlier results due to Krupka [10], we show that the operator

LjrΞ defines an operator LjrΞ on the quotient spaces
p

Λr/
p

Θr. First we prove a lemma.

Lemma 3.1 We have

LjrΞ :
p

Λr/
p

Θr →
p

Λr/
p

Θr : [α] 7→ LjrΞ([α]) = [LjrΞα] .

Proof. We have to prove that LjrΞ(
p

Θr) ⊂
p

Θr. We recall that
∗

Θr = kerh+ d kerh
and that α ∈ d kerh if and only if, locally, α = dβ, where β ∈ kerh. Moreover, it is
evident that LjrΞ(d kerh) = d(LjrΞ kerh). So, we have only to prove that LjrΞ(kerh) ⊂
kerh. To see this, let us consider the inclusion

kerh ⊂
q⊕

t=0

p−t

C r ∧
t

Hh
r+1 ,

where q = p− 1 if 0 < p ≤ n, and q = p− n− 1 if p > n.

The above inclusion, together with the standard result [10, 16] LjrΞ(
1

Cr) ⊂
1

Cr, shows

that LjrΞ(kerh) has no components in
p

Hh
r+1 if 0 ≤ p ≤ n, or in

p−n

C r ∧
n

Hh
r+1 if p > n.

QED

This allows us to prove

Proposition 3.2 Let [α] ∈
p

Λr/
p

Θr. The isomorphisms Ip enable us to represent the

map LjrΞ on
p

Vr as follows:

L̃jrΞ :
p

Vr →
p

Vr : Ip([α]) 7→ L̃jrΞ(Ip([α])) := Ip(LjrΞ[α]) = Ip([LjrΞα]) .(7)

If we set h(LjrΞα) = α̂, then we have

Ip([α]) = h(α) 7→ α̂ if 0 ≤ p ≤ n ,

Ip([α]) = Eh(α) 7→ Eα̂ if p = n+ 1 ,

Ip([dα]) = HdEh(α)
7→ HdEα̂

if p = n+ 2 .
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Definition 3.3 Let (Ξ, Ξ̄) be a projectable vector field. We say that the map L̃jrΞ

defined in the above theorem is the variational Lie derivative.

Noether’s theorems

Variational Lie derivatives allow us to calculate infinitesimal symmetries of forms in
the variational sequence. In particular, we are interested in symmetries of Lagrangians
and Euler–Lagrange morphisms (up to horizontal forms or divergencies). However,
the representation in the above theorem is not very useful in concrete cases; here,
we provide formulae for calculating symmetries of such morphisms which generalize
Noether’s theorems.

The inclusions κs
r give rise to new representations of LjrΞ on

p

Vs. We will distinguish
between the following cases:

i. 0 ≤ p ≤ n− 1.
ii. p = n, which is of great importance for the Calculus of Variations. In fact, the

representation yields the classical Noether’s theorem.
iii. p = n + 1, where the representation yields a formula for the symmetries of an

Euler–Lagrange type morphism.

Let again LjrΞ be the Lie derivative operator with respect to the r-th prolongation
jrΞ of a projectable vector field (Ξ, Ξ̄) on Y . We start with a technical lemma.

Lemma 3.4 Let r ≤ s. We have

κs
r◦L̃jrΞ = L̃jsΞ◦κs

r = Ip◦LjrΞ◦χs
r◦I−1

p .

Proof. In fact we have L̃jrΞ = Ip◦LjrΞ◦I−1
p , κs

r = Ip◦χs
r◦I−1

p . QED

Then the following two results hold true (for p ≤ n).

Proposition 3.5 Let 0 ≤ p ≤ n− 1 and Ip([α]) = h(α) ∈
p

Vr. Then we have

κr+3
r ◦L̃jrΞ(h(α)) = dH(Ξ̄ h(α)) + Ξ̄ dHh(α) + jr+2ΞV dV h(α) .

Proof. The proof can be easily performed by means of the splitting (1), which
yields jrΞ ◦ πr+1

r = jrΞH + jrΞV , (π
r+1
r )∗α = h(α) + v(α) and (πr+1

r )∗d = dH + dV . We
have

κr+3
r ◦L̃jrΞ(h(α)) = h(LjrΞα)

= h((dH + dV )(jr+1ΞH + jr+1ΞV ) h(α))

+ h((jr+2ΞH + jr+2ΞV ) (dH + dV )h(α))

= dH(jr+1ΞH h(α)) + jr+2ΞH dHh(α) + jr+2ΞV dV h(α) . QED
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Theorem 3.6 (First Noether’s theorem) Let p = n and In([α]) = h(α) ∈
n

Vr. Then
we have (locally)

κ2r+1
r ◦L̃jrΞ(h(α)) = ΞV E(h(α)) + dH(jrΞV pdV h(α) + Ξ̄ h(α)) .

Proof. We make use of the same techniques used to prove the above proposition,
together with the decomposition (3). We have

κ2r+1
r ◦L̃jrΞ(h(α)) = h(Ljr+1Ξh(α)))

= dH(jr+1ΞH h(α)) + h(jr+2ΞV dV h(α))

= dH(Ξ̄ h(α)) + h(j2r+1ΞV (EdV h(α) + FdV h(α))) .

Since FdV h(α) = dHpdV h(α) at least locally, because of (3) we obtain (locally)

κ2r+1
r ◦L̃jrΞ(h(α)) = ΞV E(h(α)) + dH(jrΞV pdV h(α) + Ξ̄ h(α)) . QED

Since we are also interested in the case p = n + 1, we first prove another technical
Lemma.

Lemma 3.7 Let Ip([α]) ∈
p

Vr with p > n. Then we have (globally)

κr+3
r ◦L̃jrΞIp([α]) = [dH(Ξ̄ h(α)) + dV (jr+1ΞV h(α)) + jr+2ΞV dV h(α)] .

Proof. We can easily prove the lemma by making use of the decomposition (5)
and of the isomorphisms Ip. We find

κr+3
r ◦L̃jrΞIp([α]) = [h(LjrΞα)]

= [h((dX + dV )(jr+1ΞH + jr+1ΞV ) h(α))

+ h((jr+2ΞH + jr+2ΞV ) (dH + dV )h(α))]

= [dH(Ξ̄ h(α)) + dV (jr+1ΞV h(α)) + jr+2ΞV dV h(α)] ,

where we have used dH(jr+1ΞH h(α)) = dH(Ξ̄ h(α)). QED

Remark 3.8 As for the case p = n + 1, we remark that an Euler–Lagrange type
morphism can be given in two ways:

1. as [α] ∈
n+1

Λ r/
n+1

Θ r, which yields the morphism Eh(α);

2. as η ∈
n+1

V r.
In principle, the two ways are equivalent. But in practical calculations it is very

hard to find an α ∈
n+1

Λ r such that η = Eh(α) holds.

Theorem 3.9 (Second Noether’s theorem) Let p = n + 1 and α ∈
n+1

Λ r. Then we
have

κ4r+1
r ◦L̃jrΞIn+1([α]) = E(jrΞV h(α)) + H̃dEh(α)

(j2r+1ΞV ) .
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Proof. By the above lemma we have

κ4r+1
r ◦L̃jrΞIn+1([α]) = In+1([E(jrΞV h(α)) + jr+2ΞV dV h(α)])

= [E(jrΞV h(α)) + j2r+1ΞV dVEh(α)]

= E(jrΞV h(α)) + H̃dEh(α)
(j2r+1ΞV ) .

QED

Remark 3.10 Let p = n+ 1 and In+1([η]) = η ∈
n+1

V r ⊂
n+1

V 2r+1. Then we have

κ4r+1
2r+1◦L̃jrΞη = E(ΞV η) + H̃dη(j2r+1ΞV ) .

Noether’s theorems and variational sequences

Here we summarize the above results on symmetries in the finite order variational
sequence.

Theorem 3.11 Let (Ξ, Ξ̄) be a projectable vector field on Y and r ≤ s. We have
the commutative diagram

p

Vr

LjrΞ ✲

p

Vs

p

Vr

κ
s
r

✲

L̃
j
r Ξ

✲

where LjrΞ is defined as follows:

1. if 0 ≤ p ≤ n− 1 and µ ∈
p

Vr, then s = r + 3 and

LjrΞ(µ) = dH(Ξ̄ µ) + Ξ̄ dHµ+ jr+2ΞV dV µ ;

2. if p = n and λ ∈
n

Vr, then s = 2r + 1 and

LjrΞ(λ) = ΞV E(λ) + dH(jrΞV pdV λ + Ξ̄ λ) ;

3. if p = n+ 1 and α ∈
n+1

Λ r, then s = 4r + 1 and

LjrΞ(Eh(α)) = E(jrΞV h(α)) + H̃dEh(α)
(j2r+1ΞV ) .
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4 Relations with the Calculus of Variations

In this section we analyse some consequences of Noether’s theorems. In particular, we
find the relationship between abstract Noether’s theorems and some standard concepts
of the Calculus of Variations. The above theorems play an important role in math-
ematical and physical applications concerning “variationally relevant” symmetries of
Lagrangians and Euler–Lagrange morphisms.

Definition 4.1 Let (Ξ, Ξ̄) be a projectable vector field on Y . Let λ ∈
n

Vr be a

Lagrangian and η ∈
n+1

V r an Euler–Lagrange morphism. Then Ξ is called a symmetry
of λ (of η) if Ljr+1Ξ λ = 0 (respectively, Lj2r+1Ξ η = 0).

Remark 4.2 Due to ELjrΞ = LjrΞE , a symmetry of a Lagrangian λ is also a
symmetry of its Euler–Lagrange morphism Eλ (but the converse is not true, see e.g.
[10, 13, 18]).

Let now η ∈
n+1

V r be an Euler–Lagrange morphism and let σ : X → Y be a section.
We recall that σ is said to be critical if η ◦ j2r+1σ = 0.

Remark 4.3 Let λ ∈
n

Vr be a Lagrangian and (Ξ, Ξ̄) a symmetry of λ. Then, by
theorem 3.6, i.e. the first Noether’s theorem, we have

0 = ΞV E(λ) + dH(jrΞV pdV λ + Ξ̄ λ) .

Suppose that the section σ : X → Y fulfils (j2r+1σ)
∗(ΞV E(λ)) = 0. This condition

holds for all critical sections, but it is not equivalent to the evolution equations since,
in principle, it can hold also on some non–critical sections. Then the (n − 1)–form

ǫ = jrΞV pdV λ + Ξ̄ λ of
n−1

V 2r fulfils the equation

d((j2rσ)
∗(jrΞV pdV λ + Ξ̄ λ)) = 0 .(8)

If σ is a critical section the above equation (8) admits a physical interpretation as a
conservation law along critical sections for the density associated with ǫ.

Definition 4.4 Let λ ∈
n

Vr be a Lagrangian and Ξ a symmetry of λ. Then a sheaf
morphism of the type

ǫ = (jrΞV pdV λ + Ξ̄ λ) ∈
n−1

V 2r

is said to be a conserved current .

Remark 4.5 In general, a conserved current is not uniquely defined. In fact, it
depends on the choice of pdV λ. Moreover, we could add to the conserved current any form

β ∈
n−1

V 2r which is variationally closed, i.e. such that En−1(β) = 0 holds. Furthermore,

β is locally of the type β = dHγ, where γ ∈
n−2

V 2r+1.
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In the sequel we give some preliminary examples for the first and second order
Lagrangians making use of the coordinate expressions given in [24].

Remark 4.6 Let r = 1 and λ ∈
n

H1 ⊂
n

V1. Then we have the coordinate expression

λ = Lω, where L ∈
0

Λ1. Hence we have the following expression for the conserved
current:

ǫ = ((Ξi − yiγΞ
γ)∂µ

i L+ ΞµL)ωµ .

Remark 4.7 Let r = 2 and λ ∈
n

H2 ⊂
n

V2. Then we have the coordinate expression

λ = Lω, where L ∈
0

Λ2. Hence we have the following expression for the conserved
current:

ǫ = ((Ξi − yiγΞ
γ)(∂µ

i L−Dν∂
µν
i L) +Dν(Ξ

i − yiγΞ
γ)∂µν

i L+ ΞµL)ωµ .

Similar considerations can be made for the Euler–Lagrange morphisms.

Remark 4.8 Let η ∈
n+1

V r and let Ξ be a symmetry of η. Then, by Remark 3.10,
we have

0 = E(ΞV η) + H̃dη(j2r+1ΞV ) .

Suppose that η is locally variational, i.e. Hdη = H̃dη = 0; then we have

E(ΞV η) = 0 .(9)

This implies that ΞV η is variationally trivial. ΞV η is locally of the type ΞV η =

dHβ, where β ∈
n−1

V r+1.
Suppose that the section σ : X → Y fulfils (j2r+1σ)

∗(ΞV η) = 0. Then we have
d((j2rσ)

∗β) = 0 so that, as in the case of Lagrangians, if σ is a critical section, then β
is conserved along σ.

Definition 4.9 Let η ∈
n+1

V r be an Euler–Lagrange morphism and Ξ a symmetry of

η. Then a sheaf morphism of the type β ∈
n−1

V r+1 fulfilling the conditions of the above
remark is called a conserved current .

Remark 4.10 As in the case of Lagrangians, a conserved current for an Euler–
Lagrange morphism is not uniquely defined. In fact, we could add to ΞV η any vari-
ationally trivial Lagrangian, obtaining different conserved currents. Moreover, such
conserved currents are defined up to variationally trivial (n− 1)–forms.

Remark 4.11 In general, it is difficult to find a conserved current β of the above
type. A possible way to find β is the following one. If η is locally variational, it is
possible to find a (local) Lagrangian λ such that E(λ) = η. Then the conserved current
is found with the same procedure as for Lagrangians. We notice that the problem of
finding the Lagrangian (inverse problem) is rather difficult (see [11, 12, 17, 24]).
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5 An example of physical relevance

In this section we will consider as an example of application the case of the gravitational
field interacting with an external “matter” field [4]. We shall show how the formalism
developed here enables us to obtain in a very straightforward way well known results
about conserved quantities in General Relativity in presence of “matter”.

Let Y be a natural bundle (see e.g. [7] for a review of naturality). The geometrical
framework concerning natural symmetries will be developed in detail in a forthcoming
paper [5] . Here it is enough to recall that the Lie derivative of a section of Y (see e.g.
[4, 7]) can be locally written as

£ξy
i = yiγξ

γ −Z iα
γ ξγα ,

where α is a multi–index of length |α| = k (the order of the natural bundle) and
Z iα

λ ∈ C∞(Y ). Moreover, in this case −ΞV is just the Lie derivative of sections of the
bundle Y .

The following coordinate expressions hold:

dV λ = (dV λ)
α
i ϑ

i
α ∧ ω , EdV λ = E(λ)iϑi ∧ ω , pdV λ = p(λ)αµ

i ϑi
α ∧ ωµ .

It is known (see e.g. [9]) that the decomposition formula (3) when applied to dV λ
gives

(dV λ)
α
i = p(λ)βµi β + µ = α, |α| = r ,(10)

(dV λ)
α
i = p(λ)βµi +Dνp(λ)

αν
i β + µ = α, |α| = r − 1 ,(11)

(dV λ)
α
i = E(λ)αi +Dνp(λ)

αν
i |α| = 0 .(12)

Furthermore, E(λ)i =
∑

|α|≤r(−1)|α|Dα(dV λ)
α
i .

Let us now take Y = Lor(X) ×
X

F , where Lor(X) is the bundle of Lorentzian

metrics over the space–time X and F is a natural bundle of “matter” fields [4]. Let us
consider the natural Lagrangian λ defined on the bundle J2Y :

λ = λ(gµν , γα
µν , Rµν , ϕ

Λ, ϕΛ
µ)(13)

= λH(g
µν , Rµν) + λM(gµν , γα

µν , ϕ
Λ, ϕΛ

µ)(14)

= λH(j2g) + λM(j1g; j1ϕ) ,(15)

where λH = − 1
2κ

√
ggαβRαβ is the Hilbert Lagrangian, Rαβ is the (formal) Ricci ten-

sor of the metric g given by Rαβ :=Rµ
αµβ = Dµγ

µ
αβ − Dβγ

µ
αµ + γµ

νµγ
ν
αβ − γµ

νβγ
ν
αµ, with

γµ
νβ = 1

2
gµα(Dνgβα − Dαgνβ + Dβgαν) the (formal) Levi–Civita connection of g,

√
g =√

|det(gµν)|, κ is a constant and λM(j1g; j1ϕ) is the “matter” Lagrangian describing the
dynamics of “matter” fields ϕ interacting with the gravitational field. Then the index
i stands for the set of indices {µν,Λ} with µ, ν = 1, . . . , dimX and Λ = 1, . . . , dimF .
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By a direct computational method, we can compare Equations (10)–(12) with results
already obtained e.g. in [4]. In fact, let us make the substitutions

(dV λ)Λ = fΛ + pµΘγ
α
βµ∂ΛZΘβ

α ,

(dV λ)
µ
Λ = p(λ)µΛ = pµΛ ,

(dV λ)
α
µβ =

1

2
(pΛµZΛα

β + pΛβZΛα
µ ) ≡ Aα

βµ ,

(dV λ)αβ = − 1

2κ

√
ggαβ = p(λ)αβ ,

(dV λ)µν =
1

2
tµν −

1

2κ

√
g(Rµν −

1

2
Rgµν) ,

where R = gαβRαβ is the Ricci scalar curvature and we set p0νi := pνi for the convenience
of notation.

It is easy to verify that Equation (8) with the above mentioned substitutions gives

ǫσ = − 1

2κ

√
ggαβ£ξu

σ
αβ + T σ

µν£ξg
µν + pσΛ£ξϕ

Λ − ξσλ

+∇µ[
1

2k

√
g(∇σξµ −∇µξσ)]

+ Eσ
ν ξ

ν + Eσµ
ν ∇µξ

ν − T σ
ν ξ

ν + T σµ
ν ∇µξ

ν + (dV λ)
σ
νξ

ν .

Here uσ
αβ = γσ

αβ − 1
2
[δσαγ

ν
νβ + δσβγ

ν
να], ∇νϕ

Λ = Dνϕ
Λ + ZΛβ

α (ϕ)γα
βν and T σ

µν is defined in
terms of pσΛ by means of (11) and (12) in the following way:

2T σ
µν = −2[pσΛZΛ

(µν) + pΛ(µZΛσ
ν) ]− [pΛνZΛσ

µ + pΛµZΛσ
ν ]

= −2Aσ
(µν) − Aσ

νµ = p(λ)σµν .

The tensor density T σ
µν is related by (12) to the so–called Hilbert stress tensor density

Tµν = tµν −∇σT
σ
µν [4]. Furthermore, the tensorial coefficients Eσ

ν and Eσµ
ν are defined

by

Eσ
ν = (dV λM)σΛ∇νϕ

Λ − δσνλM , Eσµ
ν = −(dV λM)σΛZΛµ

ν (ϕ) ,

and are called energy–momentum tensors of the theory.

Remark 5.1 This approach shows clearly that the density T σ
µν expresses the cou-

pling of the matter field with the derivatives of the metric, because it defines the re-
lationship between the momentum p(λ)σµν “associated” to the gravitational Lagrangian
and the momentum p(λ)σΛ “associated” to the matter Lagrangian.

6 Conclusions

The introduction of the variational Lie derivative enables us to collect a wide range of
concepts and coordinate formulae. Namely, we obtain a natural framework from the
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idea that Lie derivatives with respect to prolonged vector fields preserve the contact
subsequence.

The representation of the variational sequence yields explicit formulae for the vari-
ational Lie derivative. Moreover, we obtain expressions for the conserved currents in a
straightforward way. Furthermore, our approach enables us to know which is the degree
of arbitrariness [19] when we deal with conserved currents (see Remarks 4.5 and 4.10).

Making use of this natural framework, in a forthcoming paper [5] we shall give
a geometrical interpretation of the superpotentials in natural field theories (see [4]
and references quoted therein). An extension to gauge–natural field theories will be
considered in [2].
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