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Abstract. In this paper we compute all possible null Lagrangians (null energies)
for the mechanics of a distinguished class of continua, the nematic elastomers. The
computation is done in order to help to relate different physically equivalent theories
of nematic elastomers. We discuss both local and global (hence topological) aspects
of the problem.
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1. Introduction

A rubber-like solid that has been formed by the cross-linking of a polymeric fluid
and that includes liquid crystals in molecules as elements of its main-chain is called an
optical or nematic elastomer [22]. A continuum theory for the mechanical behaviour of
nematical elastomers has been recently developed by Anderson, Carlson and Fried [2].
This theory has been developed following closely the pioneering approach by Ericksen
[5] and Leslie [11]. In some sense, nematic elastomers is a field theory generalising
both nonlinear elasticity and classical liquid crystal theory. Indeed, for a nematic
elastomer the free energy ψ is a function of the deformation gradient F of the elastomer,
the orientation of the nematic molecule n and the orientation gradient G = Gradn.
Specifically, the deformation assigns to each point X of the body in a reference state
R0 a point x = x(X) in the deformed region R1 (R0 and R1 are regular regions
of the 3-dimensional Euclidean space). Therefore, considering only smooth invertible
deformations, F (X) is defined as

(1.1) F (X) = Gradx(X).

On the other hand, n is the referencial descriptor of the orientation and length of the
nematic molecule associated with a point X in R0. In [2] only nematic elastomers that
consist on inextensible nematic molecules are considered. For such microstructurally
inextensible materials we may restrict n to be a unit vector-valued orientation.
The determination of a suitable functional form for the free energy density function ψ

is an actual, very active field of research. Two main direction can be followed to develop
such material models: the phenomenological approach based on the axiomatic theory
of continuum mechanics and the statistical approach based on molecular concepts. The
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phenomenological approach is for example followed in [7]. The molecular approach is
pursued, for example, by the soft matter Cavendish group [16]. In the long and hard
way to the determination of effective functional form of the energy density function it is
well-known that a precious help that may come from mathematics is the determination
of all the null Lagrangians associated with the theory. Null Lagrangian is the name
given to any energy density that does not contribute to the equilibrium equation for
a given energy function. In the classical theory of liquid crystals it is well-known
the history of the k24 Frank’s constant [19]. In 1958 Frank proposed a representation
formula for nematics and cholesterics crystals that are quadratic polynomials inG. This
formula depends on some material moduli which has to be determined experimentally.
Estimates of all moduli but one have been made by comparing inverse solution with
results of experiments disregarding surface forces and couples. Only for the modulus k24
this was impossible. Indeed, Ericksen in [6] shown that the term associated with this
material modulus is a null Lagrangian. Therefore, null Lagrangians are fundamental to
classify different theories and a recent example of their usefulness is given in [12].
If in the framework of liquid crystals all the null Lagrangians have been computed by a

direct method in [6], in nonlinear elasticity all the null Lagrangians can be derived from
the general computations by Olver and Sivaloganathan in [14] where a Lagrangian of
the form ψ(X,x,F ). This situation suggests to obtain the null Lagrangians for nematic
elastomers by considering a Lagrangian of the form

(1.2) ψ(X,x,n,F ,G).

It is clear that this Lagrangian only in a subcase will be of interest in the theory of ne-
matic elastomers because its general form has to be restricted by frame indifference and
material symmetry requirements. But here we are more interested in some mathemati-
cal speculations about a possible general method for the determination of the complete
set of null Lagrangians. This method use the geometrical framework of variational se-
quences proposed by Anderson, Tulczyjev, Vinogradov and others. This geometrical
framework is used not only for academic purposes, but because it allows also to deal
with non simply connected domains, or more general topologically non-trivial domains.
It is well-known that in liquid crystal theory defects of various kind have an important
meaning and literature on defects studied within the classical theory of liquid crystals
is huge [19]. It is clear that when we have to cope with defects more refined geometrical
methods have to be introduced.
The plan of the paper is the following. In the next section we will introduce the

basic settings, such us domains, fields and coordinates. The global computation of null
lagrangians will be done in Section 3. Here, in subsection 3.1 we recall basic facts
about variational sequences and in the next subsection we compute null Lagrangians in
the case when the domain of the fields is 2-dimensional and 3-dimensional. We obtain
that, even in the case of a trivial domain, in the 2-dimensional case a topological term
appears summed with the local expression that is expected according to [1, 8, 10, 14].
Section 4 will be devoted to concluding remarks.
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2. Lagrangians for liquid crystals

The material space of our problem, i.e., the space of independent variables, is a
regular domain R0 ⊂ R

n, where n = 2 (the limit case of a very thin liquid crystal film)
or n = 3 (the general case). We put (local) coordinates (X i) on R0.
The fields space is R3 × S2, where R

3 is the space of deformations and S2 (the unit
sphere in R

3) is the space of orientations of the crystals. A deformation field is a (local)
map x : R0 → R

3. An orientation field is a (local) map n : R0 → S2. We put (local)
coordinates (xj, nα) on R

3 × S2.
The total space is R0 × S2 × R

3, the product of the material space with the fields
space. We put (local) coordinates (X i; xj, nα) on R0 × S2 × R

3.
The velocity space isR0×T

∗R0⊗(TR3×TS2), the product of the material space with
the space of differentials of fields (x,n) : R0 → R

3 × S2. We put (local) coordinates

(X i; xj , nα; xji , n
α
i ) on R0 × T ∗

R0 ⊗ (TR3
× TS2).

We remark that the velocity space is nothing but the first jet space of the trivial fibering

π : R0 × R
3
× S2

→ R0

(see [15, 18] about jet spaces). So, we will denote the velocity space by J1π, and the
velocity of a field (x,n) by j1(x,n).
Analogously, the acceleration space isR0×(T ∗R0⊙T

∗R0)⊗(TR3×TS2), the product
of the material space with the space of second differentials of fields (x,n) : R0 → R

3×S2.
Again, the acceleration space is the second jet space of π, and is denoted by J2π. We
put (local) coordinates

(X i; xj , nα; xji , n
α
i ; x

j
hk, n

α
hk) on J2π.

We say a (first-order) Lagrangian to be a function of the type

ψ : J1π → R.

Accordingly, we have the Lagrangian density ψ υ, where υ is the standard volume form
on R

n restricted to R0. The Lagrangian density is an n-form on J1π. It can be
integrated over any field (x,n) and its derivatives (F ,G) defined on any compact open
subset U ⊂ R0 with smooth boundary, producing the action

A(x,n;U) =

∫

U

ψ(X,x(X),n(X),F (X),G(X)) υ.

A standard procedure yields then the (global) Euler–Lagrange morphism

E(ψυ) : J2π → (T ∗

R
3
× T ∗S2)⊗ ∧

3T ∗

R0,

where T ∗
R

3 × T ∗S2 is the dual tangent space to the fields space. Note that the factor
∧3T ∗R0 is present because the Euler–Lagrange morphism is a vector-valued density.
The coordinate expression of E(ψυ) is the usual one:

E(ψυ)α =
∂ψ

∂nα
−

d

dX i

∂ψ

∂nα
i

, E(ψυ)j =
∂ψ

∂xj
−

d

dX i

∂ψ

∂xji
,

where
d

dX i
=

∂

∂X i
+ xki

∂

∂xk
+ nα

i

∂

∂nα
+ xkhi

∂

∂xkh
+ nα

hi

∂

∂nα
h

.
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Admissible fields are assumed to fulfill the Euler–Lagrange equation

E(ψυ) ◦ j2(x,n) = 0.

We observe that the Euler–Lagrange morphism E(ψυ) can also be regarded as an
(n+ 1)-form on J2π.

3. Global computation of null Lagrangians

A null Lagrangian is a Lagrangian ψ such that E(ψυ) = 0 identically. We want to
provide the coordinate expression of the most general first order null Lagrangian in
our setting. To this aim, we will use the theory of variational sequences. This theory
started from the idea that the operation E , which carries any Lagrangian density into
the corresponding Euler–Lagrange equations, should be a part of a complex. This means
that E behaves like the differential of forms under several viewpoints. For example, we
have E2 = 0, and, if E(ψυ) = 0, then there exists locally an (n − 1)-form P (on a
star-shaped open subset of J1π) such that

(3.1) E(P ) = ψυ

(in the given subset). We will clarify in next subsection what is E on forms of degrees
other than n. So, in order to solve our problem, we must provide the expression for
the most general form P such that equation (3.1) holds. But it could happen that
ψ be only locally of the kind of (3.1). So, the solution to our problem is completed
by providing a description of the vector space of E-closed Lagrangians modulo E-exact
Lagrangians. This is clearly a cohomology class with respect to the differential E , and
we will compute it.

Now we recall basic facts from the theory of variational sequences. Then, we ap-
ply this theoretical background to our setting in order to classify first order null La-
grangians.

3.1. Variational sequence. We will describe the theory of Vinogradov [18] and his
group [3], although our results could also be derived within other theories (for instance
Anderson’s [1] or Krupka’s theory [9]), also in view of the equivalence results of [20, 21].
We will restrict the theory to our first-order model, using results from [8, 10, 21]. Note
that the restriction to first-order theories of variational sequences seems to be essential
for physical reasons; the standard infinite-order theory would not help us enough in this
case. Indeed, higher order Lagrangians can have no physical meaning [19].
Let us denote the space of k-forms on J1π by Λk

1. We have the distinguished subspace
C1Λk

1 ⊂ Λk
1 of contact k-forms α ∈ Λk

1; they are characterised by (j1(x,n))∗(α) = 0 for
all fields (x,n) (here, ∗ is just the standard pull-back of forms, i. e., the evaluation
of the form along the field). In coordinates, contact one-forms are generated by the
following one-forms

ωi = dni
− ni

jdX
j , θk = dxk − xkjdX

j ,

ωi
h = dni

− ni
hjdX

j , θkh = dxkh − xkhjdX
j.

We consider also he spaces generated by exterior products of two or more contact
forms, thus obtaining the spaces C2Λk

1, C
3Λk

1, . . . with the obvious sequence of inclusions
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(filtration, in the terminology of homological algebra)

(3.2) Λk
1 = C

0Λk
1 ⊃ C

1Λk
1 ⊃ C

2Λk
1 ⊃ . . .

The differential of forms d preserves Cl so that on quotient spaces C∗Λ∗

1/C
∗+1Λ∗ it

is defined the quotient differential E . This differential, together with (3.2), produces
the so-called first order C-spectral sequence. Such a construction has been done in [21]
taking as a model the standard construction on infinite order jets [3, 18]. The C-spectral
sequence yields a lot of interesting facts. We just recall the first order variational
sequence

(3.3) 0 ✲ R ✲ Λ̄0
1

✲ . . . ✲ Λ̄n−1
1

✲ Λ̄n
1

✲ E1
1

✲ E2
1

✲ . . .

Here,

(1) Λ̄∗

1 = Λ∗

1/C
1Λ∗

1. The quotient can be evaluated as follows. Consider the local
basis dXj, dxi, dnα, dxij, dn

α
j of one-forms on J1π. This can be replaced by the

basis dXj , ωi, ωi
h, θ

k, θkh sending dXj to itself, dnα in ωα + nα
j dX

j, dnα
h in ωα

h +

nα
hjdX

j, and so on. Then, forms with the derived number of horizontal factors

dXj can be taken. This is a global operation denoted by h (horizontalization).
It can be easily seen that, if β ∈ Λk

1, then the representative h(β) = α ∈ Λ̄k
1 of

[β] ∈ Λ∗

1/C
1Λ∗

1 is

(3.4) α = αλ1...λk
dX1

∧ · · · ∧ dXk,

where αλ1...λk
is a polynomial of k-th degree in the second-order derivatives xihj,

nα
hj .

(2) Λ̄n
1 contains first-order Lagrangian densities, according to the above consider-

ations. We notice that the passage to the quotient space allows us to discard
forms β on which the action functional

∫

U
(j1(x,n))∗(β) would be identically

zero. We remark also that the image E(α) of an (n − 1)-form α ∈ Λ̄n−1
1 is a

trivial Lagrangian density, due to E2 = 0.
(3) Λ̄k

1 → Λ̄k+1
1 is just the quotient differential E , defined by E(h(β)) = h(dβ).

(4) E1
1 is the quotient of the space C1Λn+1

1 /C2Λn+1
1 with the space E(C1Λn

1/C
2Λn

1 ),
hence it is the n+1-th cohomology class of the quotient differential E . It contains
Euler–Lagrange type forms. Here, the double quotient allows us to discard both
forms annihilating on any field and forms that yield a total divergence when
computed on the variation (δx, δn) of any field.

(5) Λ̄n
1 → E1

1 is the Euler–Lagrange operator, still denoted by E by an abuse of
notation, sending any Lagrangian density into its Euler–Lagrange (n+1)-form.

(6) The cohomology of the above sequence is equal to the de Rham cohomology of
the total space R0 × R

3 × S2 [18]. This means that the variational sequence is
locally exact.

3.2. First-order null lagrangians. Here we provide the local expression for the most
general variationally trivial first-order Lagrangian in our setting. We also solve the
problem from a global viewpoint.

First of all, we observe that the space Λ̄n
1 (see the above item 2) does not contain only

first-order Lagrangian densities (according to our definition): it is the space of forms of
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the type ψ̄υ, where

(3.5) ψ̄ : J2π → R

is a polynomial of n-th degree in second-order derivatives nα
hj , u

i
hj of distinguished type

[21]. It follows that it is not sufficient to apply the local exactness of the variational
sequence (see item 6) to solve our problem. More precisely: if α ∈ Λ̄n

1 is such that
E(α) = 0, then there exists (at least locally) β ∈ Λ̄n−1

1 such that E(β) = α. But then
(see equation (3.4)) β is a form whose coefficients depend on second-order derivatives.
In order to characterize locally first-order null Lagrangians we will use the following
theorem.

Theorem 3.1 (local expression). Let ψυ ⊂ Λ̄n
1 be a first-order null Lagrangian, i. e.,

E(ψυ) = 0. Then there exists locally an (n − 1)-form P ∈ Λn−1
0 (i. e., a form on the

total space) such that

(3.6) ψυ = E(h(P )) = h(dP ).

Conversely, any Lagrangian of the local form ψυ = E(h(P )) = h(dP ) is null.

Proof. This theorem is a classical result (see, e.g., [5]). It has been generalized to
arbitrary order Lagrangians in [1, 9, 10, 8]. �

The above theorem solves the problem of finding a minimal order potential for first-
order null Lagrangians. At the same time it gives the form of the most general first-order
null Lagrangian. We shall provide the coordinate expression for the Lagrangians of the
above theorem.

Case n=2. The coordinate expression of P is

(3.7) P = pidX
i + pkdx

k + pαdn
α,

where pi, pk, pα, are local functions of (Xj , xh, nβ). Then we have

(3.8) h(P ) =
(

pi + pk + xki pαn
α
i

)

dX i

(3.9) dP =
∂pi
∂Xj

dXj
∧ dX i +

∂pα
∂nβ

dnβ
∧ dnα +

∂pk
∂xh

dxh ∧ dxk+

(

∂pi
∂nα

−
∂pα
∂X i

)

dnα
∧ dX i +

(

∂pi
∂xk

−
∂pk
∂X i

)

dxk ∧ dX i+

+

(

∂pα
∂xk

−
∂pk
∂nα

)

dxk ∧ dnα.

Finally, the local expression of a null Lagrangian for n = 2 is

(3.10) E(h(P )) = h(dP ) =

=

(

∂pi
∂Xj

+

(

∂pi
∂nα

−
∂pα
∂X i

)

nα
j +

(

∂pi
∂xk

−
∂pk
∂X i

)

xkj+

∂pα
∂nβ

nβ
j n

α
i +

(

∂pα
∂xk

−
∂pk
∂nα

)

xkjn
α
i +

∂pk
∂xh

xhjx
k
i

)

dXj
∧ dX i
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Case n=3. The coordinate expression of P is

(3.11) P = pji dX
j
∧ dX i + pβi dn

β
∧ dX i + phi dx

h
∧ dX i+

pβα dn
β
∧ dnα + phα dx

h
∧ dnα + phk dx

h
∧ dxk,

where the coefficient functions p are local functions of (Xj , nβ, xh). Then we have

(3.12) h(P ) =

=
(

pji + pβin
β
j + pkix

k
j + pβαn

β
j n

α
i + phαx

h
jn

α
i + phkx

h
jx

k
i

)

dXj
∧ dX i,

(3.13) dP =
∂pji
∂X l

dX l
∧ dXj

∧ dX i +
∂pβα
∂nγ

dnγ
∧ dnβ

∧ dnα +
∂phk
∂xt

dxt ∧ dxh ∧ dxk+
(

∂pji
∂nα

−
∂pαi
∂Xj

)

dnα
∧ dXj

∧ dX i +

(

∂pji
∂xk

−
∂pki
∂Xj

)

dxk ∧ dXj
∧ dX i+

(

∂pβα
∂X i

+
∂pαi
∂nβ

)

dnβ
∧ dnα

∧ dX i +

(

∂pαi
∂xh

−
∂phi
∂nα

+
∂phα
∂X i

)

dxh ∧ dnα
∧ dX i+

(

∂phk
∂X i

+
∂pki
∂xh

)

dxh ∧ dxk ∧ dX i +

(

∂phk
∂nα

+
∂pkα
∂xh

)

dxh ∧ dxk ∧ dnα+

(

∂pβα
∂xk

+
∂phβ
∂nα

)

dxk ∧ dnβ
∧ dnα.

Finally, the local expression of a null Lagrangian for n = 3 is

(3.14) E(h(P )) = h(dP ) =

=

(

∂pji
∂X l

+

(

∂pji
∂nα

−
∂pαi
∂Xj

)

nα
l +

(

∂pji
∂xk

−
∂pki
∂Xj

)

xkl +

(

∂pβα
∂X i

+
∂pαi
∂nβ

)

nβ
l n

α
j +

(

∂pαi
∂xh

−
∂phi
∂nα

+
∂phα
∂X i

)

xhl n
α
j +

+

(

∂phk
∂X i

+
∂pki
∂xh

)

xhl x
k
j+

∂pβα
∂nγ

nγ
l n

β
j n

α
i +

(

∂pβα
∂xk

+
∂phβ
∂nα

)

xkl n
β
j n

α
i +

(

∂phk
∂nα

+
∂pkα
∂xh

)

xhl x
k
jn

α
i +

+
∂phk
∂xt

xtlx
h
jx

k
i

)

dX l
∧ dXj

∧ dX i.

Global problem. Here we provide the global expression of a null Lagrangian. We
explained at the beginning of this section that the global problem depends on the
structure of the vector space

(3.15) H̄n def
=

ker E

Im E

∣

∣

∣

∣

Λ̄n

1

.

But H̄n is just the n-th cohomology space of the variational sequence (3.3), and the
variational sequence has the same cohomology as the de Rham cohomology of the total
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space R0 × S2 × R
3 [3, 18, 21]. Hence,

n = 2 ⇔ H̄2 = H2
de Rham(R0 × S2),

n = 3 ⇔ H̄3 = H3
de Rham(R0 × S2)

because the total space is contractible to R0 × S2 [4]. The cohomology of R0 × S2 can
be computed with the standard Künneth formula, provided that the cohomology of R0

be finite-dimensional. Note that a basis of the vector space H2
de Rham(S

2) is the (global)
volume form υS2 , whose expression in spherical coordinates is

υS2 = sin θ dθ ∧ dϕ.

In fact, by Stokes’theorem the above form is not exact because the integral of υS2 over
S2 is equal to the area of S2.
In the case in which R0 is a contractible space (for example Rn) our null Lagrangians

are globally characterized by the following theorem.

Theorem 3.2 (global expression).

Case n = 2: first-order null Lagrangians on J1π are of the global form

ψυ = E(h(P )) + kh(υS2),

where k ∈ R is a constant;
Case n = 3: first-order null Lagrangians on J1π are of the global form

ψυ = E(h(P )).

Remark 3.3. It is easy to generalize the above model and computation to the case in
which the domain of the deformation x is not Rn, but a regular domain R1 ⊂ R

n. In
this case our local results as well as cohomological results still hold. One has just to be
careful that the total space is no longer contractible to R0 × S2.

4. Concluding remarks

The findings of our computation may be summarized as follows. First of all, we have
determined all the local expression for null Lagrangians when n = 2 and n = 3. Then,
we have shown that if the domain is a contractible space (e.g., R0 = R

n) for n = 2 it is
possible to determine a topological global null Lagrangian, whereas for n = 3 there is no
topological term. Therefore, for n = 3 all local expressions are global. The next step is
to use our results in a mechanical framework and especially in the framework of nematic
elastomers as we have discussed in the Introduction. From our formulae (3.10), (3.14),
it is clear that the classical prototype of the null Lagrangians for nonlinear elasticity, i.e.
detF , and for the classical theory of liquid crystals tr(G)2− (divn)2 may be recovered.
For detF it is sufficient to consider all the currents to be identically zero but Px, which
must be linear in the deformations. For the term tr(G)2−(divn)2 the situation is more
complex because we have not considered n as a unit vector in the three-space (as in
[2, 7, 19, 12]) but the parametrization of this unit vector on the sphere.
Our formulas may be used in a passive or active way. In the passive way given a

free energy term it is possible by direct computation to check if this term is a null
Lagrangian. In the active way it is possible to generate interesting free energy terms
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from the given currents formulas by imposing frame indifference and if necessary other
material symmetry requirements. These topics will be the subject of future work.
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