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Abstract

We formulate higher order variations of a Lagrangian in the geometric frame-
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the second variation on critical sections is equal to the vertical differential of the
Euler–Lagrange morphism and (up to total divergencies) to its adjoint morphism.
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examples of classical Lagrangians are provided to illustrate our method.
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2 Hessian and Jacobi Morphisms in Calculus of Variations

1 Introduction

An important aspect of mathematics that can be fit into differential geometry is the
calculus of variations. This research started with several formulations of calculus of
variations on jet spaces (see, e.g., [14, 21] and Appendix 2). Jet spaces are the natural
framework for differential equations in differential geometry. Good sources are [4, 19,
23, 24, 25, 26, 31]. It become later evident that the passage from Lagrangians to Euler–
Lagrange equations was nothing but a differential of a certain complex [32, 33, 34, 35,
36]: this lead to variational sequences and much more.

So far we found that an interesting aspect of Calculus of Variations [7, 8, 9] was not
developed in all details from the point of view of geometric formulations on jet spaces:
namely, the second and higher variations of Lagrangians. The Lagrangian character-
ization of the second variation of a Lagrangian in the framework of jet bundles has
been considered in [14] and, more recently, in [7, 8, 9, 10]. We stress that in [7, 8, 14]
only first-order Lagrangians were considered, while in [9] also a distinguished class of
second-order Lagrangians had been studied. In particular, in [7, 8, 9] it was shown
how to recast (up to divergencies) the system formed by the Euler–Lagrange equa-
tions together with the Jacobi equations for a given Lagrangian as the Euler Lagrange
equations for a deformed Lagrangian.

In this paper we provide a geometrical characterization of the second variation of
a Lagrangian of arbitrary order in the general case of n independent variables and m
unknown functions.

The second variation can be written in an infinite number of ways, by adding arbi-
trary total divergencies. Some preliminary results concerning the Jacobi morphism were
obtained in [11, 27]. In the present paper, we exhibit two distinguished representatives
in the class of all such forms. Of course, the choice is dictated by existing or envisaged
applications. Our representative have remarkable intrinsic and coordinate interpreta-
tions, they show clearly the connection between Hessian and Jacobi tensors, and are
ready for applications to arbitrary order Lagrangians, as we show in the examples.

Notice that in literature only the first order case is usually treated: see [6, 10,
15]. Moreover, our formulation has the advantage to be easily generalizable to higher
variations. In [10] a Poincaré–Cartan form is used in the first-order case and for one
independent variable, but in higher-order calculus of variations the Poincaré–Cartan
form is no longer unique, so that the approach would not lead to a unique formulation
of variations of higher order Lagrangians. Last but not least, our approach can be
further generalized to higher variations of Euler–Lagrange type morphisms, Helmholtz
morphisms and all forms of the variational sequence. This is relevant also in view of
the role played by the second variation in many geometric contexts. For example, the
second variation of the Yang-Mills functional has an algebraic structure which leads in
dimension 4 to important geometric consequences about stable Yang-Mills connections,
such as local minima of the functional [2, 5]. As well as, is relevant for the study of the
theory of stable and unstable minimal submanifolds of a Riemannian manifold [30].

The paper is organized as follows. In section 2 we recall elements of calculus of
variations on jet spaces. We use the language of finite order variational sequences, as
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developed by Krupka [22].

In section 3 we introduce the notion of i-variation of a section as an i–parameter
‘deformation’. The variations that we consider are of general (nonlinear) form [13].
This allows us to pass to infinitesimal variations, i.e., Lie derivatives, in a natural
and straightforward way. Then, we introduce variation of forms as derivatives of their
pull-back through the variation of a section with respect to the parameters.

Such a notion of variation is applied in section 4. We concentrate ourselves on
the computation of the second variation of a Lagrangian. It turns out that, on critical
sections (i.e., on solutions of the Euler–Lagrange equations), the second variation equals
the vertical differential of the Euler–Lagrange morphism or (up to total divergencies) its
adjoint morphism. We say such morphisms to be, respectively, the Hessian morphism
and the Jacobi morphism of the given Lagrangian. We stress that, for a first order
Lagrangian, these two morphisms coincide with the standard Hessian and Jacobi maps.
Hence, our method generalizes maps related to the second variation to the case of
arbitrary order Lagrangians.

In the last section we consider a few well known and significant examples, showing
the role played in these cases by the geometric objects above.

Two short Appendices are included, in which we provide a synthetic version of the
well-known jet space formulation of variational problems, both for convenience of the
less experienced reader and for a better understanding of our motivation and formalism.

2 Variational sequences on jets of fibered manifolds

We recall in this section some basic definitions and results from the theory of jet spaces.
Complete treatments of this subject, with different characters, can be found in [4, 19,
23, 24, 25, 26, 31]. Our exposition follows more closely [24, 31].

Our framework is a fibered manifold π : Y → X, with dimX = n and dimY =
n + m. We recall that a fibered manifold is just a surjective submersion π; in other
words, fibers of π need not to be mutually diffeomorphic. A section of π is defined to
be a map s : X → Y such that π ◦ s = idX . We denote by V Y := kerTπ ⊂ TY the
vertical subbundle of the tangent bundle TY .

2.1 Jet spaces

For r ≥ 0 we are concerned with the r–jet space JrY . This space is defined as the set of
equivalence classes of sections of π having a contact of order at least r at a given point.
Equivalent sections have the same p-th order differential at the given point, p ≤ r. We
set J0Y ≡ Y .

There are natural projections πr
s : JrY → JsY , r ≥ s, sending r-th equivalent

sections into s-th equivalent sections. Moreover, there are obvious natural projections
πr : JrY → X. The spaces JrY are endowed with a differentiable structure making πr

s

fiber bundles. Among these, it can be proved that πr
r−1 are affine fiberings (r ≥ 1).



4 Hessian and Jacobi Morphisms in Calculus of Variations

Charts on Y adapted to π are denoted by (xλ, yi). Greek indices λ, µ, . . . run from
1 to n and they label base coordinates, while Latin indices i, j, . . . run from 1 to m and
label fiber coordinates, unless otherwise specified. We denote by (∂λ, ∂i) and (dλ, di) the
local bases of vector fields and 1–forms on Y induced by an adapted chart, respectively.

We denote multi-indices of dimension n by boldface Greek letters such as σ =
(σ1, . . . , σn), with 0 ≤ σµ, µ = 1, . . . , n; we set |σ| := σ1 + · · ·+ σn and σ! := σ1! . . . σn!.
The charts induced on JrY are denoted by (xλ, yiσ), with 0 ≤ |σ| ≤ r; in particular, we
set yi

0
≡ yi. The local vector fields and forms of JrY induced by the above coordinates

are denoted by (∂σi ) and (diσ), respectively.
We recall that a section s : X → Y can be prolonged to a section jrs : X → JrY .

If we set yi ◦ s = si, then we have the coordinate expression

(jrs)
i
σ := yiσ ◦ jrs = ∂σs

i :=
∂|σ|si

∂xσ1 · · · ∂xσn
.

If the order of prolongation needed for s in formulae is clear from context, then we
simply denote the prolongation of s by js.

The jet spaces carry a natural structure, the Cartan (or contact) distribution. It is
the vector subbundle of TJrY generated by vectors which are tangent to submanifolds
of the form jrs(X) ⊂ JrY . We present here a variant of this structure [24].

We consider the natural complementary fibered morphisms over the affine fibering
Jr+1Y → JrY induced by contact maps on jet spaces

D : Jr+1Y ×
X
TX → TJrY , ω : Jr+1Y ×

JrY
TJrY → V JrY ,

with coordinate expressions, for 0 ≤ |σ| ≤ r, given by

D = dλ⊗Dλ = dλ⊗(∂λ + yjσ+λ∂
σ
j ), ω = ωj

σ⊗∂σj = (djσ − yjσ+λd
λ)⊗∂σj .

Here, the map D is the inclusion of TX into TJrY through the differential Tjrs of any
prolonged section jrs, while ω := idTJrY −D. The vector field Dλ is said to be the total
(or formal) derivative; the forms ωj

σ are said to be contact (or Cartan) forms. Contact
forms annihilate all vectors generated by Dλ. These are tangent to submanifolds of the
form jrs(X) ⊂ JrY . We will use iterated total derivatives. Namely, if f : JrY → IR is
a function, then we set Dσ,λf :=DλDσf .

We have the following natural fibered splitting

Jr+1Y ×
JrY

T ∗JrY =

(
Jr+1Y ×

X
T ∗X

)
⊕ C∗

r [Y ], (1)

where C∗
r [Y ] := imω∗ is a subbundle of Jr+1Y ×JrY T

∗JrY , and is naturally isomorphic
to Jr+1Y ×JrY V ∗JrY (see [24, 31]).

The above splitting induces splittings in the spaces of forms [37]; here and in the
sequel we implicitly use identifications between spaces of forms and spaces of bundle
morphisms which are standard in the Calculus of Variations (see, e.g.[18, 19, 21]).
Namely, let Λp

r be the sheaf of p–forms on JrY . We introduce the sheaves of horizontal
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forms Hp
r+1,r, i.e., of fibered morphisms over πr+1

r and πr of the type α : Jr+1Y →
∧pT ∗JrY and β : JrY → ∧pT ∗X, respectively. Finally, for s ≤ r we introduce the
sheaves of contact forms Cp

r,s, i.e., of fibered morphisms over πr
s of the type α : JrY →

∧p im C∗
s [Y ]).

The splitting (1) yields naturally the sheaf splitting

Hp
r+1,r =

p⊕

t=0

Cp−t
r+1,r ∧Ht

r+1. (2)

Pull-back yields the inclusion Λp
r ⊂ Hp

(r+1,r). The effect of (2) on Λp
r is the following

Λp
r ⊂

p⊕

t=0

Cp−t
r ∧ Λ̄t

r. (3)

Here, Λ̄t
r :=h(Λp

r) for 0 < p ≤ n and h is defined to be the restriction to Λp
r of the

projection of the above splitting onto the non–trivial summand with the highest value
of t. Moreover, Cp−t

r is the space of contact forms with values in C∗
r [Y ] (which is a

bundle over Jr+1Y ) and coefficients on JrY . We define also the map v := id−h.
In other words, if α is a form on JrY , then its pull-back (πr+1

r )∗(α) can be split
into a part containing top degree horizontal forms and a part containing more contact
factors (see e.g.[22, 37]).

In coordinates this is achieved by means of the substitutions

dλ → dλ, diσ → ωi
σ + yiσ+λ d

λ.

which allow to express α in the basis (dλ, ωi
σ) at the cost of raising the order of jet.

The above splitting induces also a decomposition of the exterior differential on Y ,
(πr+1

r )∗◦d = dH+dV , where dH and dV are called the horizontal and vertical differential,
respectively. The action of dH and dV on functions and 1–forms on JrY uniquely
characterizes dH and dV (see, e.g., [31] for more details). In particular, we have the
coordinate expressions

dHf = Dλf d
λ = (∂λf + yiσ+λ∂

σ
i f)d

λ, dV f = ∂σi fω
i
σ,

dHd
λ = 0, dHd

i
σ = −diσ+λ ∧ dλ, dHω

i
σ = −ωi

σ+λ ∧ dλ,
dV d

λ = 0, dV d
i
σ = diσ+λ ∧ dλ, dV ω

i
σ = 0.

Any fibered isomorphism F : Y → Y over idX admits a prolongation to a fibered
isomorphism JrF : JrY → JrY such that JrF ◦ jrs = jr(F ◦ s).

A vector field ξ on Y is said to be vertical if it has values into V Y . A vertical vector
field can be conveniently prolonged to a vertical vector field jrξ : JrY → V JrY . The
vector field jrξ is characterized by the fact that its flow is the natural prolongation of
the flow of ξ. In coordinates, if ξ = ξi∂i we have jrξ = Dσξ

i ∂σi , 0 ≤ |σ| ≤ r. Again, if
the order of prolongation needed in formulae for ξ is clear from context, then we simply
denote the prolongation of ξ by jξ.



6 Hessian and Jacobi Morphisms in Calculus of Variations

Let α ∈ C1
r ⊗ Λ̄n

r . Then we can interpret α as the differential operator

∇α : κ0 → Λ̄n
r , ξ 7→ jξ α,

where κ0 is the space of vertical vector fields ξ : Y → V Y and denotes the in-
ner product. This is an operator in total derivatives and its coordinate expression is
∇α(ξ

i∂i) = Dσξ
iασ

i vX , where vX := dx1∧. . .∧dxn is the local volume form induced by a
chart (xλ) on X. We can form the adjoint operator ∇∗

α : (Λ̄
n
r )

∗⊗Λ̄n
r = Fr → κ

∗
0⊗Λ̄n

r . It
admits an intrinsic definition (see [4] for details). Its coordinate expression is ∇∗

α(f) =
(−1)|σ|Dσ(α

σ
i f)ω

i ⊗ vX . This notion can be extended to a form α ∈ C1
r ⊗ C1

0 ⊗ Λ̄n
r : in

this case we have ∇α, ∇∗
α : κ0 → C1

0 ⊗ Λ̄n
r , with coordinate expression

∇∗
α(ξ

i∂i) = (−1)|σ|Dσ(α
σ
ijξ

j)ωi ⊗ vX . (4)

2.2 Variational sequence

We recall now shortly the theory of variational sequences on finite order jet spaces, as
it was developed by Krupka in [22].

Denote by (d kerh)s the sheaf generated by the presheaf d kerh. Set Θ∗
r := kerh +

(d kerh)s. Then the restriction of exterior differential yields a sheaf sequence 0 → Θ∗

which is an exact subsequence of the de Rham sequence of differential forms on JrY .
[22]. Such a subsequence is made by forms that do not produce contribution in action-
like functionals [14, 21, 25, 26].

Definition 2.1 The quotient sequence

0 ✲ IR ✲ Λ0
r

E0
✲ Λ1

r/Θ
1
r

E1
✲ Λ2

r/Θ
2
r

E2
✲ . . .

EN−1
✲ ΛN

r /Θ
N
r

EN
✲ ΛN+1

r

d
✲ . . .

d
✲ 0

of the de Rham sequence with respect to the contact sequence is called the r–th order
variational sequence associated with the fibered manifold Y → X. Here the integer N
depends on the dimension of the Cartan distribution on JrY [22].

The variational sequence is locally exact and, due to the ‘abstract’ de Rham Theo-
rem, it has the same cohomology as the de Rham sequence (see [22]).

Pull-back of forms through πr+1
r yields a natural inclusion of the r-th order varia-

tional sequence into the (r+1)-th order variational sequence. This allows us to represent
any equivalence class [α] ∈ Λk

r/Θ
k
r with a single morphism of bundles over jet spaces,

at the cost of raising the order r. More precisely, the quotient sheaves Λk
r/Θ

k
r in the

variational sequence are represented as sheaves of bundle morphisms Vk
r (defined on

jets of order s > r) via the following intrinsic isomorphisms [37, 38]

Ik : Λ
k
r/Θ

k
r → Vk

r : [α] 7→ h(α), k ≤ n, (5a)

In+1 : Λ
n+1
r /Θn+1

r → Vn+1
r : [β] 7→ Eh(β), (5b)

In+2 : Λ
n+2
r /Θn+2

r → Vn+2
r : [γ] 7→ Hh(γ). (5c)

Let us describe the above morphisms h(α), Eh(β), Hh(γ) and spaces Vh
r , h ≤ n+ 2.
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1. h(α) is just the horizontalization of α; in the case k = n the morphism h(α) can
be interpreted as a Lagrangian density [1, 14, 18, 19, 21, 23, 26, 33].

2. Eh(β) is the Euler–Lagrange morphism associated to h(β). More precisely, it can
be proved [18, 21, 37] that any form h(β) can be uniquely split into the sum

(π2r+1
r+1 )∗h(β) = Eh(β) − dH(ph(β)) (6)

where Eh(β) ∈ C1
(2r,0)∧Vn

2r and ph(β) ∈ C1
(2r−1,r−1)∧Vn−1

2r−1. Here Eh(β) and dH(ph(β))

are uniquely defined, but ph(β), the momentum, is not; see [18] for a discussion.

3. Hh(γ) is the Helmholtz morphism [4, 20, 38] associated to the form h(γ). More
precisely, it can be proved that any form h(γ) can be uniquely split into the sum

(π2r+1
r+1 )∗h(γ) = Hh(γ) − dH(qh(γ)), (7)

where Hh(γ) ∈ C1
(2r+1,r) ∧ C1

(2r+1,0) ∧ Vn
2r and qh(β) ∈ C2

2r−1 ∧ Vn−1
2r−1 (here uniqueness

is intended in the same way as above), with the additional condition that Hh(γ)

is skew-adjoint in the first contact factor.

We will use later on the special case [(π2r+1
r+1 )∗γ] = [dEh(β)] ∈ En+1(Λ

n+1
2r+1/Θ

n+1
2r+1).

In this case, if we set η :=Eh(β), then Hdη can be introduced as the skew-symmet-

rization of the morphism H̃dη ∈ C1
(4r+1,2r+1) ⊗ C1

(4r+1,0) ⊗ Hn
4r+1, which is charac-

terized by

E(ijΞdη) = jΞ H̃dη (8)

(see [20, 37] for details). We recall that H and H̃ have the same kernel; more
precisely, H̃dη = 0 if and only if Hdη = 0 [20].

Let us recall the coordinate expressions.

1. h(α) = AvX , where A ∈ C∞(Jr+1Y ) is a ‘special’ polynomial in the derivatives
of order r + 1 (in the sense of [28]; see also [37]) .

2. Being locally h(β) = Bσ
i ω

i
σ ∧ vX , we have the standard expression of the Euler–

Lagrange morphism (see, e.g., [18, 21, 36])

Eh(β) = (−1)σDσB
σ
i ω

i ∧ vX .

3. In the simpler case [(π2r+1
r+1 )∗γ] = [dEh(β)] ∈ En+1(Λ

n+1
2r+1/Θ

n+1
2r+1), that we will use

later on, we have locally dEh(β) = ∂σi ej ω
i
σ ∧ ωj ∧ vX , where ej = (−1)σDσB

σ
j , so

that

H̃dEh(β)
= Hσ

i j ω
i
σ ⊗ ωj ⊗ vX , HdEh(β)

=
1

2
Hσ

i j ω
i
σ ∧ ωj ∧ vX , (9)

Hσ
i j := ∂σi ej −

2r+1−|σ|∑

|ρ|=0

(−1)|(σ,ρ)|

(|(σ,ρ)|
|ρ|

)
Dρ∂

(σ,ρ)
j ei

where (σ,ρ) denotes the union of the multi–indices σ and ρ (see [20, 37, 38]; a
local version has been also derived in [22, 31]).
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Next, we interpret the above spaces Vh
r , with h ≤ n+ 2.

1. Vk
r := Λ̄k

r , k ≤ n. We recall that Λ̄k
r = h(Λk

r). So, Vn
r can be interpreted as the

space of Lagrangians of order r+1 which are polynomials of ‘special type’ [28] in
the higher order derivatives;

2. Vn+1
r is the space of Euler–Lagrange morphisms associated to forms h(β); it is a

subspace of C1
0 ∧Hn

2r+1 [37].

3. Vn+2
r is the space of Helmholtz (or Helmholtz–Sonin) morphisms associated to

forms h(γ).

We can read Ek through the above isomorphisms Ik. We obtain the exact sheaf
sequence

0 ✲ IR ✲ Λ0
r

E0
✲ V1

r

E1
✲ . . .

En+1
✲ Vn+2

r
✲ . . . (10)

It turns out [22, 37] that:

1. if µ ∈ Vk
r , with k ≤ n−1, and µ = h(α) = Ik(α), with α ∈ Λk

r , then Ek(µ) = h(dα).
Notice that h(πr+1

r

∗
dα) = h((dV + dH)(h(α) + v(α))) = DH(h(α)), hence Ek is

equal to dH up to a pull-back;

2. if λ ∈ Vn
r then En(λ) ∈ Vn+1

r coincides with the standard higher order Euler–
Lagrange morphism associated with the Lagrangian λ. We will simply write E
instead of En;

3. if η ∈ Vn+1
r then En+1(η) ∈ Vn+2

r is the Helmholtz morphism corresponding to the
Euler–Lagrange morphism η. The exactness of (10) implies that En+1(η) = 0 if
and only if there exists (locally) a Lagrangian λ ∈ Vn

r such that E(λ) = η, i.e., η
is locally variational.

Definition 2.2 Let k ≤ n+ 1. We say elements µ ∈ Vk
r to be variational forms.

Remark 2.3 We observe that the spaces Λk
r/Θ

k
r with k ≥ n + 2 do not have in

the literature (to our knowledge) any interpretation in terms of standard objects of the
calculus of variations. In any case, there is a representation Ik also for such quotient
spaces [38]. It comes from the analogue representation for the variational sequence on
infinite order jets [4, p. 192]. Furthermore, variational forms of degree k > n + 1 will
not play any role in the rest of the paper.

Remark 2.4 Due to Ek ◦ Ek−1 = 0, Lagrangians of the form λ ∈ En−1(Vn−1
r ) are

variationally trivial (i.e., they have identically vanishing Euler–Lagrange equations).
Our aim in this paper is to obtain an intrinsic model for the second and higher order
variation. This is achieved in the literature in several ways, each of which differs from
the others by a total divergence. Our viewpoint is different: we want to provide a model
which does not suffer the above arbitrariness.
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In view of the above Remark, we factorize a part of the variational sequence as
follows:

Vn
r

E
✲ Vn+1

r

V̄n
r

Ē

✲

π̃
✲

(11)

where V̄n
r :=Vn

r /En−1(Vn−1
r ), π̃ is the quotient map and Ē is the factor map.

It is important to compute infinitesimal symmetries of objects in the variational
sequence. To do this, it is natural to look for vector fields X such that the standard
Lie derivative operator LX passes to the quotient into the variational sequence.

The jet prolongation jΞ of vertical vector fields Ξ: Y → V Y preserves the contact
structure on jets. Hence, it is easy to see that the standard Lie derivative operator with
respect to jΞ preserves the contact sequence too. This yields the new operator LjΞ on
the elements of the variational sequence

LjΞ : Vk
r → Vk

r : τ 7→ Ik([LjΞα]), (12)

where [α] = I−1
k (τ). The operator LjΞ is said to be the variational Lie derivative [12].

Such an operator allows us to recover several well–known formulae from the calculus of
variations (see, e.g., [17]) in a unique picture. We have the following expressions [12]:

1. if 0 ≤ p ≤ n− 1 and µ ∈ Vp
r , then

Ljξµ = jξ dV µ; (13a)

2. if p = n and λ ∈ Vn
r , then

Ljξλ = ξ E(λ) + dH(jξ pdV λ); (13b)

3. if p = n+ 1 and η ∈ Vn+1
r , then

Ljξη = E(ξ η) + jξ Hdη. (13c)

We remark that the operator LjΞ : Vn
r → Vn

r factorizes to V̄n
r , since the standard Lie

derivative operator with respect to jΞ commutes with dH . This fact, combined with
(13b), produces the further new quotient operator L̄jΞ:

L̄jΞ : V̄n
r → V̄n

r : λ 7→ L̄jΞλ :=Ξ E(λ). (14)

It is clear that this operator can be interpreted as the infinitesimal variation operator
of a Lagrangian up to total divergencies. In the next section we provide a geometric
model for such an operator and its iterated applications.
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3 Variations of forms

We shall here introduce the variation of a form as infinitesimal multiparameter defor-
mation. This is realized by taking iterated Lie derivatives of the form with respect to
vertical vector fields. In this paper we shall consider only vertical variations. In fact,
as it is easy to realize (see appendix 1), variations with respect to projectable vector
fields do not change the results, since they just add an horizontal differential (a total
divergence) which is not relevant for our results in view of Remark 2.4.

Let s : X → Y be a section and i > 0. Let Ξ1, . . . ,Ξi be vertical vector fields on
Y . Denote by ψl

tk
, with 1 ≤ l ≤ i, the flows generated by Ξl. Then the map

Γ(t1, . . . , ti) = ψi
ti
◦ . . . ◦ ψ1

t1
◦ s (15)

is said to be the i-th variation of s generated by (Ξ1, . . . ,Ξi).
Let α ∈ Λk

r and let Γ be an i–th variation of the section s. Then the map

∆i[Γ; s](α) :=
∂i

∂t1 . . . ∂ti

∣∣
t1,...,ti=0

(jrΓ(t1, . . . , ti)
∗α) (16)

is said to be the i–th variation of the form α along the section s.
The following Lemma states the relation between the i–th variation of a form and

its iterated Lie derivative.

Lemma 3.1 Let α : JrY →
k
∧T ∗JrY . Let Γ be an i–th variation of the section s

generated by variation fields Ξ1, . . . ,Ξi. Then we have

∆i[Γ; s](α) = (jrs)
∗LjrΞ1 . . . LjrΞi

α. (17)

Proof. By the above definitions, we have

∆i[Γ; s](α) =
∂i

∂t1 . . . ∂ti

∣∣
t1...ti=0

[(jr(ψ
i
ti
◦ . . . ◦ ψ1

t1
◦ s))∗α]

= (jrs)
∗ ∂i

∂t1 . . . ∂ti

∣∣
t1...ti=0

[(jrψ
1
t1
)∗ ◦ . . . ◦ (jrψi

ti
)∗]α

= (jrs)
∗LjrΞ1 . . . LjrΞi

α,

where ψk
tk

are the vertical flows generated by Ξk and we used the definition of prolon-
gation of a vertical vector field (see section 2).

QED

From the above considerations it follows that the definition of variation can be given
in terms of Lie derivatives with respect to prolongations of vertical vector fields, without
any reference to a given section.

Definition 3.2 Let Ξ1,. . . ,Ξi be vertical vector fields on Y . Then the variation of
a form α ∈ Λk

r is defined to be the operator

∆i[Ξ1, . . . ,Ξi](α) :=LjrΞ1(LjrΞ2(. . . (LjrΞi
α) . . . )).
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Remark 3.3 The variation of an (n+ h)-form along a section s is clearly zero. In
fact, the above Lemma shows that the variation is obtained through a pull-back on X

via s and any (n + h)-form on X is zero. So, the definition of variation is trivial for
(n+ h)-forms.

Nonetheless, we can use the more general Definition 3.2 of variation in all situations.
But we loose the classical interpretation of variation as ‘derivative along a parametrized
family of sections’.

4 Variations of Lagrangians

In this section we restrict our attention to variations of elements of the variational
sequence, and, in particular, to Lagrangians. Our task is to compute variations ‘up to
variationally trivial forms’. In other words, we want to compute the quotient variations
of Lagrangians in the variational sequence. Indeed, this is straightforwardly permitted
by our definitions: i-th variations are made by Lie derivatives with respect to prolonged
vertical vector fields, and they pass to the quotient in the variational sequence [12].

Moreover, we will devote special attention to variations along sections which are
critical with respect to a given Lagrangian λ, i.e., sections s such that E(λ) ◦ js = 0.

4.1 Quotient variation in the variational sequence

Let α ∈ Λk
r , with k ≤ n+ 1, and Ξ1,. . . ,Ξi be vertical vector fields on Y . We have

Ik([∆
i[Ξ1, . . . ,Ξi]α]) = Ik([LjΞ1(. . . (LjΞi

α) . . . )])

= LjΞ1(. . . (LjΞi
Ik([α])) . . . ),

where L stands for the variational Lie derivative (see (13a), (13b), (13c)).

Definition 4.1 The operator

δi[Ξ1, . . . ,Ξi]Ik([α]) :=LjΞ1(. . . (LjΞi
Ik([α])) . . . )

is said to be the quotient variation of the variational form Ik([α]) ∈ Vk
r with respect to

the vertical vector fields Ξ1,. . . ,Ξi on Y .
If s : X → Y is a (local) section of π, then the form

(js)∗(δi[Ξ1, . . . ,Ξi]Ik([α]))

is said the quotient variation of Ik([α]) along s.

Remark 4.2 The above definition of quotient variation can be applied to all quo-
tient spaces in the variational sequence (see Remark 2.3). But, if we want to calculate
variations of forms along sections, only the variations of forms [α] ∈ Vk

r with k ≤ n are
non-trivial (see Remark 3.3). In this work we will just devote ourselves to variations of
Lagrangians; nonetheless it would be interesting to investigate variations of elements in
Vk
r with k ≤ n.
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4.2 Second variation

In this subsection we fix a Lagrangian λ ∈ Vn
r and compute its second quotient variation

along a critical section s.

Let Ξ: Y → V Y be a vertical vector field. It is natural to introduce an improved
quotient variation on the space V̄n

r (see (11)). In fact, the operator L̄jΞ (14) is equal to
the operator LjΞ (13b) up to ‘total divergencies’, i.e., up to En−1-exact (variationally
trivial) Lagrangians. We recall (see Eq. (10)) that En−1 is equal to dH up to a pull-back,
or up to higher order variationally trivial terms.

Definition 4.3 The operator

δ̄i[Ξ1, . . . ,Ξi][λ] := L̄jΞ1(. . . (L̄jΞi
λ) . . . )

= Ξ1 E(Ξ2 E(. . .Ξi−1 E(Ξi E(λ)) . . . ))

is said to be the quotient variation of the Lagrangian λ.

If s : X → Y is a (local) section of π, then the form

(js)∗(δ̄i[Ξ1, . . . ,Ξi][λ])

is called the quotient variation of [λ] along s.

Of course, the first quotient variation of λ is just δ̄1[Ξ][λ] = Ξ E(λ).
Let Ξ1, Ξ2 be two vertical vector fields and let us consider the second quotient

variation of λ

δ̄2[Ξ1,Ξ2][λ] = Ξ1 E(Ξ2 E(λ)).

We state our main result:

Theorem 4.4 The second quotient variation of a Lagrangian λ along a critical
section s is equal to either one of the following intrinsic bundle morphisms, which are
self-adjoint:

1. the differential V E(λ) of E(λ) along the fibres of π2r+1, also known as vertical
differential:

V E(λ) : J2r+1Y → V ∗J2r+1Y ⊗ V ∗Y ⊗ ∧nT ∗X;

2. the adjoint V E(λ)∗ of the vertical differential:

V E(λ)∗ : J2r+1Y → V ∗J4r+2Y ⊗ V ∗Y ⊗ ∧nT ∗X

(see (4)).
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Proof. In coordinates we have Ξ1 = Ξi
1∂i, Ξ2 = Ξj

2∂j and λ = Lω. Then

δ̄2[Ξ1,Ξ2][λ] = (−1)|σ|Ξj
1Dσ(∂

σ
j (Ξ

i
2 E(Lω)i))ω

= (−1)|σ|Ξj
1Dσ(∂

σ
j Ξ

i
2 E(Lω)i)ω + (−1)|σ|Ξj

1Dσ(Ξ
i
2 ∂

σ
j E(Lω)i)ω. (18)

If s is a critical section, then the first summand of δ̄2[Ξ1,Ξ2][λ] in the right-hand side
of (18) vanishes identically. The second summand admits an intrinsic interpretation.

In fact, we have E2(λ) = 0 = H̃E(λ) due to the property En+1 ◦ En = 0 of the variational

sequence and the fact that H and H̃ have the same kernel [20]. Hence we have, from
the expression (8)

0 = jΞ1 jΞ2 H̃E(λ) (19)

= Ξi
1DσΞ

j
2 ∂

σ
j E(λ)i ω − (−1)|σ|Ξj

1Dσ(Ξ
i
2 ∂

σ
j E(Lω)i)ω, (20)

so that the second summand of (18) is equal to the first summand of (20), which is the
vertical differential V E(λ) of E(λ) (also known as linearization [4]) contracted with the
prolonged fields Ξ1, Ξ2, namely

Ξ1 jΞ2 V E(λ) = Ξi
1DσΞ

j
2 ∂

σ
j E(λ)i ω . (21)

A comparison of the coordinate expressions shows that the second summand of (20) is
equal to the adjoint of V E(λ) (see (4)). More precisely,

Ξ1 jΞ2 V E(λ) = Ξ1 jΞ2 (V E(λ))∗. QED

Corollary 4.5 The morphism V E(λ) is symmetric along any critical section s, i.e.

j2r+1s
∗(Ξ1 jΞ2 V E(λ)) = j2r+1s

∗(Ξ1 jΞ2 V E(λ)).

Definition 4.6 We define the fibered morphisms:

1. V E(λ) to be the Hessian morphism associated with the Lagrangian λ;

2. (V E(λ))∗ to be the Jacobi morphism associated with the Lagrangian λ.

It is not difficult to check that the above definition recovers the definitions given by
several authors up to ‘total divergencies’ (see e.g.[13, 25, 31]).

Our formulation however has the following advantages:

1. it is manifestly intrinsic (or covariant);

2. it holds for Lagrangians of arbitrary order, while in literature only the first order
case is usually treated;
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3. it allows an easy generalization to iterated variations of any order;

4. it allows an easy generalization to all spaces in the variational sequence.

Remark 4.7 We can compare our approach with the one of Crampin [10]. In that
paper the Poincaré–Cartan form is used to achieve an intrinsic formula for the second
variation of a first-order Lagrangian (r = 1) in the case of one independent variable
(n = 1). However, as is well-known, Poincaré–Cartan forms are no longer unique in the
case of many independent variables (n > 1) and higher order Lagrangians (r > 1), so
that our approach seems to be more suitable in the general case.

5 Examples

Here we show by simple but relevant examples that our definition of Jacobi morphism
coincides with the standard one and it can also be applied to higher order Lagrangians.

Example 5.1 (Metric Lagrangian). Here we shall derive the classical Jacobi equa-
tion for geodesics within our framework. Let (Q, g) be a Riemannian manifold, with
metric tensor g = gabd

a⊗db. The Lagrangian for geodesics is λ = 1
2
gab(q)q̇

aq̇bdt and the
Euler–Lagrange equation is given by

E(λ)a = −[gabq̈
b + Γabcq̇

bq̇c] = 0 ,

where Γabc are Christoffel symbols of the first kind.
The Jacobi equation is then obtained by evaluating the local coordinate expression

for the Jacobi morphism given by (21) for E(λ)a. It is easy to see that the Jacobi
morphism for geodesics is in fact given in local coordinates by

V E(λ)∗ = −[∂agbcq̈
b + ∂aΓbdcq̇

bq̇d]Ξa
2Ξ

c
1 +

+[∂agbcq̇
b − ∂cgabq̇

b]Ξa
2

d

dt
Ξc
1 +

−∂bgacq̇bΞa
2

d

dt
Ξc
1 − gacΞ

a
2

d2

d2t
Ξc
1 .

Taking into account the Euler–Lagrange equation we get finally the Jacobi equation

[∂agbcΓ
b
de − ∂cΓdea]q̇

dq̇eΞc
1 − 2Γcbaq̇

b d

dt
Ξc
1 − gac

d2

d2t
Ξc
1 = 0 ,

which can be recasted in the standard form

∇2
γ̇Ξ1 +Riem(Ξ1, γ̇, γ̇) = 0 ,

where γ is any geodesic curve, ∇2
γ̇ denotes the second order covariant derivative along

the curve γ and Riem(Ξ1, γ̇, γ̇) is the Riemannian curvature tensor. This agrees of
course with [8].
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Example 5.2 (Hilbert–Einstein Lagrangian). Let dimX = 4 and X be orientable.
Let Lor(X) be the bundle of Lorentzian metrics on X (provided that it has global
sections). Local fibered coordinates on J2(Lor(X)) are (xλ; gµν , gµν,σ, gµν,σρ).

The Hilbert–Einstein Lagrangian is the form λHE ∈ H4
2 defined by λHE = LHEω,

were LHE = r
√
g. Here r : J2(Lor(X)) → IR is the function such that, for any Lorentz

metric g, we have r ◦ j2g = R, being R the scalar curvature associated with g and g

the determinant of g.
A direct computation of the Euler–Lagrange morphism shows that EdλHE

= G :=
Ric − 1

2
Rg ∈ C1

(2,0) ∧ H4
2, Ric being the Ricci tensor of the metric g.

The Jacobi equations for the Hilbert–Einstein Lagrangian can be then characterized
as the kernel of the adjoint of the linearization morphism V E(λHE):

V E(λHE)
∗β
α =

1

2
[−∇λ∇λΓβ

α + rβλΓλα − rαλΓ
λβ − 2Rβ

ραλΓ
ρλ+

+ δβαrρλΓ
ρλ + (Gβ

α +
1

2
sδβα)Γ +∇β∇λΓ

λ
α +∇α(g

βγ∇λΓ
λ
γ)− δβα∇λ(g

λγ∇ρΓ
ρ
γ)] = 0 ,

which coincide with the classical variation of the Einstein tensor (see, e.g., [3]).
We also notice that in the specific case of the Hilbert–Einstein Lagrangian, the

Hessian and the Jacobi morphisms coincide. This is in accordance with the fact that
V E(λ) is self–adjoint (see e.g.[29]).

6 Conclusions

We provided an intrinsic formalization of higher variations of a Lagrangian. In the
case of the second variation, we gave a new interpretation of the Hessian and Jacobi
morphism for Lagrangians of arbitrary order.

Some problems remain open at this point and will be investigated in the future:

• It would be interesting to derive a formula for higher order variations, as well as
higher order analogues of Hessian and Jacobi morphisms.

• It would also be worth to compute variations of all variational forms (not only
Lagrangians).

• There are branches of Quantum Field Theory in which higher order variations
play important roles, like e.g.the Batalin–Vilkoviski theory [16]. Such approaches
still need a complete mathematical understanding. The above framework could
be well-suited for that purpose: in [16] the Batalin-Vilkoviski theory is formalized
through jet bundles. Moreover, higher order variations play in any case a role in
the path integral approach to quantization.
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Appendix 1

In this paper we considered only vertical variations. Of course, we know that more gen-
eral variations could be considered: in some problems of field theory (like the compu-
tation of conserved currents) it is interesting to consider Lie derivatives of Lagrangians
with respect to projectable vector fields. A projectable vector field on Y is a pair (Ξ, Ξ̄)
such that Ξ is a vector field on Y , Ξ̄ is a vector field on X and Ξ is a bundle morphism
over Ξ̄. In coordinates, Ξ = Ξ̄λ∂λ + Ξi∂i, where Ξ̄ = Ξ̄λ∂λ.

However, such general variations do not modify the conclusions of our paper in a
significant way: their contribution to the variation of a Lagrangian is in fact a total
divergence, so that it has obviously to be neglected in our scheme. This fact is, of course,
well-known (see, e.g., [15]), but we recall it here for the sake of completeness. The
equation (13b) takes the more general form LjrΞ(λ) = ΞV E(λ)+dH(jrΞV pdV λ+Ξ̄ λ)
(see e.g.[12]), where ΞV :=ω(Ξ) : J1Y → V Y is the vertical part of Ξ. In coordinates,
ΞV = (Ξi − yiλΞ̄

λ)∂i.
It follows that our results of section 4 hold practically unchanged by just replacing

vertical vector fields with vertical parts of projectable vector fields.

Appendix 2

Here we shortly recall the formulation of variational problems on jet spaces [14, 17,
18, 21, 23, 26, 31, 33] to help the reader to connect the purely differential setting of
variational sequences with the classical integral presentation. Nonetheless, we stress
the two approaches (differential and integral) are completely independent, even if the
latter provided the motivation to the former from an historical viewpoint.

Suppose that an r-th Lagrangian λ ∈ Hn
r is given. Then the action of λ on a section

s : U → Y (U is an oriented open subset of X with compact closure and regular
boundary) is defined to be the real number

∫

U

(jrs)
∗λ.

A vertical vector field ξ : Y → V Y defined on π−1(U ) and vanishing on π−1(∂U ) is said
to be a variation field. A section s : U → Y is said to be critical if, for each variation
field with flow φt, we have δ

∫
U
(Jrφt ◦ jrs)∗λ = 0, where δ is the derivative with respect

to the parameter t and Jrφt : JrY → JrY is the jet prolongation of the flow φt. It is
easy to see that the previous integral expression is equal to

∫
U
(jrs)

∗Lur
λ = 0 for each

variation field u, where ur : JrY → V JrY is the r–th jet prolongation of u (see the
first section). Using equation (13b) together with Lur

λ = iur
dλ and Stokes’ Theorem,
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we find that the above equation is equivalent to
∫
U
(j2rs)

∗(iuEdλ) = 0 for each variation
field u. Finally, by virtue of the fundamental Lemma of Calculus of Variations the
above condition is equivalent to (j2rs)

∗Edλ = 0, or, that is the same, Edλ ◦ j2rs = 0.
Now the reason of the choice of the sheaf Θk

r (for 0 ≤ k ≤ n) as the first non–trivial
sheaf of the contact subsequence is clear: for k = n the sheaf Θn

r is made by forms
which do not contribute to the action. As for the sheaf Θn+1

r it is easily seen that this
is precisely the sheaf of forms that give no contribution to the integral

∫
U
(j2rs)

∗iuEdλ

when added to Edλ.
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