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Abstract

We study the geometry of differential equations determined uniquely by their
point symmetries, that we call Lie remarkable. We determine necessary and
sufficient conditions for a differential equation to be Lie remarkable. Furthermore,
we see how, in some cases, Lie remarkability is related to the existence of invariant
solutions. We apply our results to minimal submanifold equations and to Monge-
Ampère equations in two independent variables of various orders.
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1 Introduction

One of the most successful achievements in the geometric theory of differential equations
(DEs), either ordinary or partial, is the theory of symmetries [5, 6, 18, 32, 33, 34].
Symmetries of DEs are (finite or infinitesimal) transformations of the independent and
dependent variables and derivatives of the latter with respect to the former, with the
further property of sending solutions into solutions. The knowledge of the symmetries of

1Work supported by PRIN 2005/2007 (“Propagazione non lineare e stabilità nei processi termodi-
namici del continuo” and “Leggi di conservazione e termodinamica in meccanica dei continui e in teorie
di campo”), GNFM, GNSAGA, Universities of Lecce and Messina.
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a DE may lead to compute some of its solutions, or to transform it in a more convenient
form; in the case of an ordinary differential equation (ODE) it may allow to reduce the
order, determine integrating factors, etc.

Point symmetries are the main object of study in this paper. Any transformation of
the independent and dependent variables induces a transformation of the derivatives,
which is said to be a point transformation. Point symmetries of a DE are symmetries
defined by point transformations.

The problem of finding the symmetries of a DE has a natural “inverse” problem
associated, namely, the problem of finding the most general form of a DE admitting a
given Lie algebra of infinitesimal point symmetries. To the authors’ knowledge, the in-
verse problem has been considered for the first time in [4] from an algorithmic viewpoint
in order to characterize all DEs admitting a given group. An interesting contribution
has been given by Rosenhaus in 1982 [38], who posed the problem of the unique de-
termination of a DE by its group; in fact, in [38] the author considered the projective
algebra of R3 and its subalgebras, and was able to prove that the equation of vanish-
ing Gaussian curvature of surfaces in R3 (which is a Monge-Ampère-type equation) is
uniquely determined by its Lie point symmetries.

One possible approach to this problem is to classify all possible realizations of the
given Lie algebra as algebra of vector fields on the base manifold [37]. Then, the theory
of differential invariants of such realizations allows to find the most general form of
the equation [17, 37]. In fact, it is known (see [33]) that, under suitable hypotheses
of regularity, the most general DE admitting a given Lie algebra of point symmetries
is locally given by ∆µ(I1, I2, . . . , Ik) = 0 where ∆µ are general smooth functions and
Ii (i = 1, . . . , k) are the differential invariants of the realization under consideration.
However, it could be hard to compute the differential invariants, though it amounts to
solve a first order differential system. Then, in some cases, it is necessary to confine
the investigation to a specified class of DEs, i.e., to impose additional constraints to
the form of ∆µ; in this context interesting questions may arise. For instance, how to
derive the functional form of a quasilinear first order system of DEs which are invariant
with respect to the Galilean group [28, 42, 44], or to a scaling group [12, 13]. Moreover,
in [38, 39, 40] it was considered the problem of finding the minimal subalgebra of the
algebra of point symmetries of the equation of vanishing Gaussian curvature of surfaces
in R3 which uniquely determines it. A 6-dimensional Lie subalgebra characterizes this
equation provided attention is restricted to fully symmetric systems (see also remark
20).

In this paper we face a problem which is related to that described above, i.e., to
find under which conditions a given DE is uniquely determined by the Lie algebra of its
infinitesimal point symmetries. By following the terminology already used in [26, 30, 31],
we call such DE Lie remarkable.

The plan of the paper is the following. In section 2, we introduce a DE of order r as
a submanifold of a suitable jet space (of order r), which is a manifold whose coordinate
functions of a chart can be interpreted as “independent” and “dependent” variables,
and by the derivatives of the latter with respect to the former up to the order r. For
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the dimension of a DE we mean its dimension as submanifold. Symmetries of a given
DE will be interpreted as particular vector fields on the jet space tangent to the DE.

In section 3, we introduce two distinguished types of Lie remarkable equations:
strongly and weakly Lie remarkable equations. Strongly Lie remarkable equations are
uniquely determined by their point symmetries in the whole jet space; weakly Lie
remarkable equations are equations which do not intersect other equations admitting the
same symmetries. An interesting question concerns with the construction of solutions
of a DE which is uniquely determined by its point symmetries. This problem was
posed in [40], where the author proved that the solutions of the equation of vanishing
Gaussian curvature of surfaces in R3 can be characterized as invariant solutions with
respect to some of its point symmetries. In the present paper, we show that the Lie
remarkability, for DEs which are ‘generalized sprays’ in the sense of [36], implies the
existence of invariant solutions.

Then, we find necessary and sufficient conditions for a given DE to be (strongly or
weakly) Lie remarkable by analyzing the dimension of the Lie algebra of point symme-
tries and the regularity of the local action that these symmetries induce on the jet space
where the DE is immersed. Our viewpoint reverses and generalizes the Lie determinant
method [33]. Such a method, together with the method of differential invariants, aims
at finding the most general form of a scalar ODE which is invariant with respect to a
r-dimensional Lie algebra of point symmetries. In this case, for dimensional reasons,
the components of the symmetries form a square matrix whose determinant is the Lie
determinant.

We stress that, by using our method, we do not need to find differential invariants
of symmetries in order to determine if a given DE is Lie remarkable or not, as in
[30, 38, 39, 40].

Of course, many DEs are not Lie remarkable for lack of point symmetries (see the-
orem 5). Among them we recall KdV equation, Burgers’ equation, Kepler’s equations.
Several authors studied the problem of finding, for a given equation, an extension of
the algebra of point symmetries for which the equation at hand is determined. For
instance, in [1, 19] such a construction is performed in the case of ODEs by considering
a non-local extension of the algebra of point symmetries. Also, in [38] it is shown that
the algebra of contact symmetries characterizes the equation of minimal surfaces rather
than the point ones.

In the remaining sections we give various examples of DEs that are strongly or
weakly Lie remarkable.

In section 4, we consider minimal submanifold equations, and prove that minimal
surface equation in Rk is weakly Lie remarkable if k = 3, 6, but it is not Lie remarkable if
k = 4, 5. We also show how strong Lie remarkability of the equation of unparametrized
geodesics in a Riemannian surface is related to Gaussian curvature. Its invariant solu-
tions behave as predicted by theorem 12.

Furthermore, in section 5 we consider Monge-Ampère equations in two independent
variables of various orders. The computations of Lie algebras of point symmetries of
the equations considered are performed through the use of computer algebra packages
(mainly Relie [29] and MathLie [3]); the (strong or weak) Lie remarkability is proved by

3



calculating the rank of the distributions determined by prolongations of the Lie algebra
and determining the submanifolds where the rank decreases. The differential invariants
of the Lie algebras of point symmetries of the examples of weak Lie remarkable equations
are determined as a by-product.

2 Preliminaries

Here we recall some basic notions of the theory of jet spaces. We start to define jets
of submanifolds, and as by-product we derive the definition of jets of fibrations. Our
main sources are [6, 24, 32, 33, 43].

In this paper manifolds and maps are C∞. If E is a manifold then we denote by χ(E)
the Lie algebra of vector fields on E. Also, for the sake of simplicity, all submanifolds
of E are embedded submanifolds.

Let E be an (n + m)-dimensional smooth manifold and L an n-dimensional em-
bedded submanifold of E. Let (V, yA) be a local chart on E. The coordinates (yA)
can be divided in two sets, (yA) = (xλ, ui), λ = 1 . . . n and i = 1 . . . m, such that the
submanifold L is locally described as the graph of a vector function ui = f i(x1, . . . , xn).

The chart (xλ, ui) is said to be a divided chart which is concordant to L. Here, and
in what follows, Greek indices run from 1 to n and Latin indices run from 1 to m unless
otherwise specified.

Let ι : L →֒ E and ι′ : L′ →֒ E be two submanifolds, and p ∈ L ∩ L′. We say that L
and L′ have a contact of order r at p if ι and ι′ have a contact of order r at p. Locally,
this means that the Taylor expansion of (ι− ι′) around p in a chart which is concordant
with respect to both L and L′ vanishes up to the order r. This property is invariant by
coordinate transformations.

The above relation is an equivalence relation; an equivalence class is denoted by [L]rp.
The set of such classes is said to be the r-jet of n-dimensional submanifolds of E and
it is denoted by Jr(E, n).

The set Jr(E, n) has a natural manifold structure. Namely, let σ = (σ1, σ2, . . . , σk),
with 1 ≤ σ1 ≤ · · · ≤ σk ≤ n and r ∈ N, be a multi-index, and |σ| def

= k. Any divided
chart (xλ, ui) at p ∈ E induces the local chart

(

xλ, ui
σ

)

at [L]rp ∈ Jr(E, n), where

|σ| ≤ r and the functions uj
σ

are determined by ui
σ
◦ jrL = ∂|σ|ιi

/

∂xσ. The dimension
of Jr(E, n) is readily computed:

(1) dim Jr(E, n) = n + m
r

∑

h=0

(

n + h − 1

n − 1

)

= n + m

(

n + r

r

)

.

We have the following natural maps:

1. the embedding jrL : L → Jr(E, n), p 7→ [L]rp ,

2. the projection πk,h : Jk(E, n) → Jh(E, n), [L]kp 7→ [L]hp k ≥ h.
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We denote by L(r) the image of jrL. We call the tangent plane Tθr
L(r) at θr =

[L]rp an R-plane. It is easy to realize that to each point θr+1 ∈ Jr+1(E, n) such that

πr+1,r(θr+1) = θr there corresponds the R-plane Rθr+1 = Tθr
L(r).

The span Cr
θr

of all R-planes at θr is said to be the contact plane (or Cartan plane).
The correspondence θr 7→ Cr

θr

is said to be the contact distribution. The contact distri-
bution on Jr(E, n) is generated by the vectors

Dλ
def
= =

∂

∂xλ
+ uj

σλ

∂

∂uj
σ

and
∂

∂uj
τ

,

where 0 ≤ |σ| ≤ r − 1, |τ | = r and σλ denotes the multi-index (σ1, . . . , σr−1, λ).
The vector fields Dλ are said to be total derivatives, and are tangent to any prolonged
n-dimensional submanifold of E.

A diffeomorphism of Jr(E, n) preserving the contact distribution is called a contact
transformation. Analogously, a vector field Ξ ∈ χ(Jr(E, n)) is said to be a contact
vector field if [Ξ, Y ] is a vector field lying in Cr whenever Y is a vector field lying in Cr.

We can lift a contact transformation G : Jr(E, n) → Jr(E, n) to a contact trans-
formation G(1) : Jr+1(E, n) → Jr+1(E, n) in the following way: take an element
θr+1 ∈ Jr+1(E, n) and identify it with Rθr+1 . Then define G(1) as the map that takes
Rθr+1 to Tθr

G(Rθr+1). We call such an operation the 1-lift. By induction, we can de-
fine the k-lift of a contact transformation. By using this reasoning, we can lift contact
fields by lifting the corresponding one-parameter group of contact transformations. In
coordinates, if Ξ = Ξλ∂/∂xλ + Ξi∂/∂ui is a vector field on E, then its k-lift Ξ(k) has
the coordinate expression

(2) Ξ(k) = Ξλ ∂

∂xλ
+ Ξi

σ

∂

∂ui
σ

,

where Ξj
τ ,λ = Dλ(Ξ

j
τ
) − uj

τ ,βDλ(Ξ
β) with |τ | < k.

According to a classical result by Lie and Bäcklund, any contact transformation on
Jr(E, n) is the lifting: 1) of a contact transformation of J1(E, n) if m = 1; 2) of a
diffeomorphism of J0(E, n) = E (which we call point transformation) if m > 1. An
analogous result holds for contact vector fields.

1 Remark. If E is endowed with a fibring π : E → M where dim M = n, then we can
reproduce all the above constructions (see [6, 32, 33, 43]). The space Jrπ of r-th jets of
(local) sections s : M → E of π is an open dense subset of Jr(E, n). In fact, it coincides
with the subset of r-th jets of submanifolds of the type s(M), which are transverse to
the fibring. Jets of maps f : N → P between two manifolds N and P are easily shown
to coincide with jets of the trivial fibring N × P → N .

A differential equation E of order r on n-dimensional submanifolds of a manifold E
is a submanifold of Jr(E, n). The manifold Jr(E, n) is called the trivial equation.

The 1-prolongation E1 of the equation E is the set of first order “differential conse-
quences” of E . Geometrically:

E1 = {θr+1 ∈ Jr+1(E, n) | θr ∈ E , Rθr+1 ⊂ Tθr
E},
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with πr+1,r(θr+1) = θr. By iteration, we can define the k-prolongation Ek. The equation
E is said to be formally integrable if Ek+1 → Ek are smooth fibre bundles. Locally, if
the equation E is described by {F i = 0}, with F i ∈ C∞(Jr(E, n)), then Ek is described
by {Dσ(F i) = 0} with 0 ≤ |σ| ≤ k, where Dσ = Dσ1 ◦ Dσ2 ◦ · · · ◦ Dσn

.

An infinitesimal classical (external) symmetry of the equation E ⊂ Jr(E, n) is a
contact vector field on Jr(E, n) which is tangent to E . An infinitesimal point symmetry
of E is an infinitesimal classical external symmetry which is the prolongation on Jr(E, n)
of a vector field on E.

Let E be locally described by {F i = 0}, i = 1 . . . k with k < dim Jr(E, n). Then
finding point symmetries amounts to solve the system

Ξ(r)
(

F i
)

= 0 whenever F i = 0

for some Ξ ∈ χ(E).

We denote by sym(E) the Lie algebra of infinitesimal point symmetries of the equa-
tion E .

By an r-th order differential invariant of a Lie subalgebra s of χ(E) we mean a
smooth function F : Jr(E, n) → R such that for all Ξ ∈ s we have Ξ(r)(F ) = 0.

The problem of determining the Lie algebra sym(E) is said to be direct Lie problem.
Conversely, given a Lie subalgebra s ⊂ χ(Jr(E, n)) of contact vector fields, we consider
the inverse Lie problem, i.e., the problem of classifying the equations E ⊂ Jr(E, n) such
that sym(E) = s [2, 16].

Within the context of inverse Lie problem an interesting question may arise whether
there exist non-trivial equations which are in one-to-one correspondence with their
algebra of point symmetries. A detailed analysis of this problem is the content of next
section.

3 Lie remarkable equations

Here we give the definition of Lie remarkable equations in the framework of jets of
submanifolds. The same construction holds in an obvious way in the case of jets of
fibrings.

2 Definition. Let E be a manifold, dim E = n + m, and let r ∈ N, r > 0. An
l-dimensional equation E ⊂ Jr(E, n) is said to be

• weakly Lie remarkable if E is the only maximal (with respect to the inclusion)
l-dimensional equation in Jr(E, n) passing at any θ ∈ E admitting sym(E) as
subalgebra of the algebra of its infinitesimal point symmetries.

• strongly Lie remarkable if E is the only maximal (with respect to the inclusion)
l-dimensional equation in Jr(E, n) admitting sym(E) as subalgebra of the algebra
of its infinitesimal point symmetries.
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Of course, a strongly Lie remarkable equation is also weakly Lie remarkable.
We assume throughout this section an (n + m)-dimensional manifold E and an

l-dimensional differential equation E ⊂ Jr(E, n), with l < dim Jr(E, n).
Let us analyze some direct consequences of our definitions. For each θ ∈ Jr(E, n)

denote by Sθ(E) ⊂ TθJ
r(E, n) the subspace generated by the values of infinitesimal

point symmetries of E at θ. In particular, if θ ∈ E , then Sθ(E) ⊆ TθE . Let us set

S(E) def
=

⋃

θ∈Jr(E,n)

Sθ(E).

In general, dim Sθ(E) may change with θ ∈ Jr(E, n). The action on Jr(E, n) of the
algebra of point symmetries is called regular if S(E) is a distribution.

The following inequality holds:

(3) dim sym(E) ≥ Sθ(E), ∀ θ ∈ Jr(E, n),

where dim sym(E) is the dimension, as real vector space, of the Lie algebra of infinites-
imal point symmetries sym(E) of E . If the rank of S(E) at each θ ∈ Jr(E, n) is the
same, then S(E) is an involutive (smooth) distribution.

A submanifold N of Jr(E, n) is an integral submanifold of S(E) if TθN = Sθ(E)
for each θ ∈ N . Of course, an integral submanifold of S(E) is an equation in Jr(E, n)
which admits all elements in sym(E) as infinitesimal point symmetries. Moreover, due
to the fact that point symmetries of E are tangent to E , we have dim Sθ(E) ≤ l.

3 Proposition. The points of Jr(E, n) of maximal rank of S(E) form an open set of
Jr(E, n).

Proof. Let us consider a chart U at a point θ of maximal rank. Let us consider a finite
number of symmetries {Ξj} spanning Sθ(E) at θ. In the chart U let us consider the
matrix (Ξi

j), where Ξi
j is the i-th component of the j-th point symmetry of E . The rank

of such a matrix decreases if the determinant of some submatrix vanishes. The points
which satisfy such a condition form a closed set of U which does not contain θ. If we
remove it from U , we obtain a neighborhood of p of maximal rank.

4 Corollary. The equation E can not coincide with the set of points of maximal rank
of S(E).

Proof. It follows from the condition dim E < dim Jr(E, n).

5 Theorem. 1. A necessary condition for E to be strongly Lie remarkable is that
dim sym(E) > dim E.

2. A necessary condition for E to be weakly Lie remarkable is that dim sym(E) ≥
dim E.

Proof. 1. Let U ⊂ Jr(E, n) be an open neighborhood at θ /∈ E where the rank of
S(E) is maximal (see the proposition and corollary above). Let q be this rank. By
contradiction, let q ≤ dim sym(E). Then consider an l-dimensional submanifold
of Jr(E, n) passing at θ made up by q-dimensional leaves of S(E)|U . This implies
that the equation E is not strongly Lie remarkable.
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2. If dim sym(E) < dim E , then there would be several submanifolds of Jr(E, n)
passing at a point θ ∈ E which are tangent to vector fields in sym(E), which
contradicts the weak Lie remarkability.

6 Theorem. If S(E)|E is an l-dimensional distribution on E ⊂ Jr(E, n), then E is a
weakly Lie remarkable equation.

Proof. Of course, an equation Ẽ passing at θ ∈ E admitting sym(E) as subalgebra of
point symmetries and such that TθẼ 6= TθE can not exist. So, suppose that there is an
l-dimensional equation Ẽ passing at θ ∈ E with TθẼ = TθE . A symmetry X ∈ sym(E)
would be tangent to both Ẽ and E , and, in particular, Xθ ∈ TθẼ = TθE . Then, X would
have two distinct integral curves passing at θ, leading to a contradiction.

7 Theorem. Let S(E) be such that for any θ 6∈ E we have dim Sθ(E) > l. Then E is a
strongly Lie remarkable equation.

Proof. By contradiction, let Ẽ be another l-dimensional equation passing at θ /∈ E
and admitting sym(E) as subalgebra of point symmetries. Then TθẼ ( Sθ(E). This
would imply that Ẽ would not have sym(E) as a subalgebra of the algebra of its point
symmetries.

8 Remark. In the proofs of previous theorems we construct some submanifold of the
jet space without caring if this submanifold is a formally integrable equation. However,
we would like to stress that in the scalar case any submanifold of codimension 1 is
always a formally integrable equation. In our examples we will mainly be concerned
with this last case.

The fact that an equation E is uniquely determined by its point symmetry algebra
has consequences on the local, and in some cases global, topological structure of E as a
manifold.

We recall (see, e.g., [35]) that a (left) action of a Lie group G on a manifold M is a
smooth map a : G×M → M such that a(g, a(h, x)) = a(gh, x) and a(e, x) = x for all g,
h ∈ G, x ∈ M , e being the identity in G. This concept has a local analogue (see, e.g.,
[32]). From theorems XI, p. 58 and IV, p. 98 of [35] we obtain the following theorem.

9 Theorem. Let s be a l-dimensional subalgebra of sym(E). Let {Ξ
(r)
i }1≤i≤l be a basis

of s. Let us suppose that span{Ξ
(r)
i (θ)}1≤i≤l = Sθ(E) = TθE for any θ ∈ E. Then E has

the structure of a local Lie group.
More precisely, there exists a Lie group S whose Lie algebra is s, and a local dif-

ferentiable action ϕ : S × E → E by point symmetries of E whose tangent map is the
inclusion of s into sym(E). If the vector fields Ξi are complete (in particular if E is a
compact manifold), then the action is global.

Note that if the hypotheses of the above corollary are satisfied, then, following the
terminology of [35], the Lie algebra s is a Kobayashi Lie algebra. For this reason, if
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the action of S on E is global, then a necessary and sufficient condition that the map
ϕ(·, θ) : S → E be a diffeomorphism for θ ∈ E is that the isotropy group of the action
at θ is trivial [35, p. 105].

The previous theorem deals with topological aspects of the equation. In this pa-
per we will not study topological aspects of Lie remarkability, even if they are quite
interesting (see for instance proposition 18). We will postpone this aspect for a future
investigation.

Many differential equations are given as the zero set of just one differentiable func-
tion. Indeed, the former definition and examples of Lie remarkable equations have been
formulated by one of us [30] in this case (see also [26]). We may rediscover the former
definition as a particular case of our present more comprehensive theory.

10 Proposition. Let s be a Lie subalgebra of χ(Jr(E, n)). Let us suppose that the
r-prolongation subalgebra of s acts regularly on Jr(E, n) and that the set of r-th order
functionally independent differential invariants of s reduces to a unique element I ∈
C∞(Jr(E, n)). Then the submanifold of Jr(E, n) described by ∆(I) = 0 (in particular
I = k for any k ∈ R), with ∆ an arbitrary smooth function, is a weakly Lie remarkable
equation.

Proof. It follows in view of the fact that ∆(I) = 0 is the most general equation admitting
s as a Lie subalgebra of point symmetries [32, 33].

When one speaks about Lie remarkable equations, a natural question arises. Namely,
about Lie remarkability of the first prolongation E1 of E whenever E is Lie remarkable.
Then we immediately realize (see theorem 5) that Lie remarkability is a property that,
for dimensional reasons, generally does not hold on prolongations. But there is a special
class of differential equations for which this is true. For instance, let an equation E be
the image of a section ∇ : Jr−1(E, n) → Jr(E, n). Such equations can be thought
as ‘generalized sprays’ [36]. Examples of such equations are, for instance, the totally
geodesic submanifold equation. With such an equation it is possible to associate the
n-dimensional distribution R ◦ ∇ on Jr−1(E, n) defined by θ 7→ R∇(θ) (re recall that
R∇(θ) is a R-plane, see section 2). We call such equation integrable if this distribution
is integrable.

11 Theorem. Let E be the image of a section ∇ : Jr−1(E, n) → Jr(E, n). Let E be
integrable. If E is weakly Lie remarkable, then also Ek is weakly Lie remarkable.

Proof. Of course, it is sufficient to prove the proposition for k = 1. Following the same
reasoning as in [25], we see that the prolongation (∇(θ))(1) of a point ∇(θ) is the point
represented by the pair

(

∇(θ), Tθ∇(R∇(θ))
)

. Let us note that Tθ∇(R∇(θ)) is a R-plane

in view of the integrability. If we define ∇(1) by ∇(1)(θ) = (∇(θ))(1), then

C∇(1)(θ)

(

E1
)

≃ Tθ∇
(1)

(

R∇(θ)

)

≃ R∇(θ).

Therefore, E1 is completely identified with E , and point symmetries of both equations
are vector fields on E whose (r − 1)-prolongations are symmetries of the distribution
R ◦ ∇.
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We have the following interesting result.

12 Theorem. Let E be the image of a section ∇ : Jr−1(E, n) → Jr(E, n). Let E be
integrable. If it is weakly Lie remarkable, then any solution is invariant with respect to
a 1-dimensional subalgebra of its algebra of point symmetries.

Proof. In view of our previous discussion, we can identify E with Jr−1(E, n), and a
solution with an integrable submanifold of the distribution R ◦ ∇. Let θ ∈ Jr−1(E, n)

and L be the unique solution passing at θ. Let vθ ∈ TθL. By hypothesis, vθ = aiΞ
(r)
i (θ)

with ai ∈ R and Ξi ∈ χ(E). Let us consider the vector field Ξ(r) = aiΞ
(r)
i . In view of

the fact that Ξ(r) is still a point symmetry, and then sends solutions into solutions, we
obtain that Ξ(r) is tangent to L.

4 Lie remarkability of minimal submanifold equa-

tions

Let E be a Riemannian manifold with metric g. There are several interesting differential
equations which are formulated on submanifolds of E (see, for example, [11]). Here we
mostly deal with local geometric aspects of such equations (see [27] for an intrinsic
treatment).

We show that the minimal surface equation in R3 and R6 are weakly Lie remarkable
(provided we exclude from them the differential equation of planes), whereas in R4 and
R5 they are not. Moreover, we will show how the Gaussian curvature of a surface is
related with the strong Lie remarkability of the geodesic equation.

Now, we recall the main geometric concepts that we will use in this paper.

If L ⊂ E is a submanifold of E, then we can consider the restriction of the metric g to
the tangent space TL, which is a subspace of the tangent space of E. Such a restriction,
denoted by gL, is said to be the first fundamental form. The first fundamental form
depends only on the first-order jet of L. So, there exists a tensor on J1(E, n), the
universal first fundamental form gH , which has the coordinate expression

(4) gH = (gλµ + gλju
j
µ + giµu

i
λ + giju

i
λu

j
µ)dxλ ⊗ dxµ.

Here dxλ is a one-form induced on J1(E, n) by dxλ by restricting it to total derivatives
Dµ. Of course, for any submanifold ι : L →֒ E we have gL = ι∗gH ; this is the reason of
the term ‘universal’.

Now, on one hand, gL produces a Levi-Civita connection on L, on the other hand the
Levi-Civita connection of the environment space can be restricted to act on vector fields
tangent to L. The difference between the two is a bilinear form II on TL with values
in the normal space NL to L. The form II depends only on second-order jets of L. So,
there exists a symmetric bilinear form on J2(E, n), the universal second fundamental
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form IIH , which has the coordinate expression

(5) IIH =
(

ui
ρν + Γν

i
ρ + Γk

i
ρu

k
ν + Γν

i
ku

k
ρ + Γj

i
ku

j
νu

k
ρ

− ui
σ(Γν

σ
ρ + Γk

σ
ρu

k
ν + Γν

σ
ku

k
ρ + Γj

σ
ku

j
νu

k
ρ)

)

dxρ ⊗ dxν ⊗ Ni.

Here the Γ’s are the standard Christoffel symbols, and for each function (ui(xλ)) the
vectors Ni = ∂/∂ui − (gµi + giju

j
µ)((gH)−1)µλDλ are a basis of the normal space to the

graph (xλ, ui(xλ)). From the above map we obtain the mean curvature vector by a
metric contraction

(6) HH =
1

n
(gH)−1

y(IIH) = ((gH)−1)νρ
(

ui
ρν + Γν

i
ρ + Γk

i
ρu

k
ν + Γν

i
ku

k
ρ + Γj

i
ku

j
νu

k
ρ

− ui
σ(Γν

σ
ρ + Γk

σ
ρu

k
ν + Γν

σ
ku

k
ρ + Γj

σ
ku

j
νu

k
ρ)

)

Ni.

In the case m = 1 (L hypersurface) and if L is orientable, then a unit normal vector
allows us to convert II into a (1, 1) tensor field, and H into a function, the mean
curvature scalar. Then, it turns out that the invariants of II are its eigenvalues, which
are said to be the principal curvatures of L, and its determinant, which is said to be
the Gaussian curvature G. In a way analogous to eqs. (5) and (6) we obtain a function
GH on J2(E, n) whose coordinate expression is

(7) GH = det
(

((gH)−1)σνIIH
ν
1
ρ ‖N1‖

)

.

The submanifold (IIH)−1(0) ⊂ J2(E, n) is the equation of totally geodesic n-dimen-
sional submanifolds.

The submanifold (HH)−1(0) ⊂ J2(E, n) is the equation of minimal n-dimensional
submanifolds.

In the case n = 1 the equation of minimal 1-dimensional submanifolds and the
equation of totally geodesic 1-dimensional submanifolds reduce to the equation of un-
parametrized geodesics (this means that its solutions are geodesics as 1-dimensional
submanifolds, i.e., with no distinguished parametrization).

4.1 Minimal n-dimensional submanifolds in Rn+m.

In our formalism, minimal surfaces in Rn+m are n-dimensional submanifolds L in Rn+m

which are solutions of the equation HH = 0, i.e. HH |L(2) = 0. The Euclidean metric
of Rn+m is δij with respect to cartesian coordinates, hence all Γ’s are zero. The local
form of the equation of minimal n-dimensional submanifolds in Rn+m can be obtained
by (6). For instance, in the case n = 2 and m = 1 we have

gH =

(

1 + u2
x uxuy

uxuy 1 + u2
y

)

,

11



and HH = hH N1/‖N1‖, where hH is the scalar mean curvature whose coordinate
expression is

hH =
1

2

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy

(1 + u2
x + u2

y)
3/2

.

Then the local representation of the equation of minimal surfaces of R3 is

(8) (1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0.

The equation of totally geodesic submanifolds of R3 is

(9) uxx = uxy = uyy = 0.

Also, we note that the Gaussian curvature GH has the coordinate expression

(10) GH =
uxxuyy − u2

xy

(1 + u2
x + u2

y)
2
.

Eq. (8) is globally the union of the 3 zero sets of H (or, equivalently, h) in J2(R3, 2)
each of which is obtained in a cartesian coordinate set by cycling the dependent variable.
This means that one should consider the zero sets also in the charts (x, u, y) and (u, x, y)
and glue them into the submanifold (HH)−1(0).

To compute the expression of the equation of minimal n-dimensional submanifolds
in Rn+m we need (gH)−1, for which we do not have a general expression. Anyway,
it seems to us to be reasonable to conjecture that the only point symmetries of the
minimal submanifold equation in Rn+m are isometries and homotheties (or dilatations,
i.e., homogeneous scalings of the coordinates). In view of theorem 5, we infer that
possible candidates of Lie remarkable minimal submanifold equations are characterized
by having dimension less than or equal to the dimension of the Lie algebra generated by
infinitesimal isometries and homotheties.

13 Lemma. Let d be the dimension of the equation of minimal n-dimensional subman-
ifolds in Rn+m, with n ≥ 2, m ≥ 1. Let i be the dimension of the Lie algebra generated
by infinitesimal isometries and homotheties in Rn+m. Then,

1. the only integer solutions2 of the equation d = i are (n,m) = (2, 1) and (n,m) =
(2, 4);

2. if n = 2 the inequality d > i holds for m = 2, m = 3.

3. if m = 1 the inequality d > i holds for n > 2.

Proof. From (1) we have d = dim J2(E, n)−m = n+m
(

n+2
2

)

−m, where m is the number
of dependent variables and coincides with the number of components of HH . Moreover,
i = 1/2 (n + m)(n + m + 1) + 1. A direct computation proves the statements.

2G. Lo Faro, private communication.
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14 Theorem. The equation of minimal surfaces in R4 and R5 is nor strongly neither
weakly Lie remarkable, whereas it is weakly Lie remarkable in R3 and R6, provided we
remove a singular equation.

Proof. The point symmetries of the equation of minimal surfaces in R3, R4, R5 and R6

are the isometries and homotheties. Then the first part of the theorem follows in view
of the above lemma and of theorem 5. In fact, we have that if n = m = 2 then d = 12
and i = 11, while if n = 2, m = 3 then d = 17 and i = 16. Now, let us consider the
case of R3. Eq. (8) admits a 7–parameter group of point symmetries whose Lie algebra
is spanned by the vector fields

Ξ1 =
∂

∂x
, Ξ2 =

∂

∂y
, Ξ3 =

∂

∂u
,(11a)

Ξ4 = y
∂

∂x
− x

∂

∂y
, Ξ5 = u

∂

∂x
− x

∂

∂u
, Ξ6 = u

∂

∂y
− y

∂

∂u
.(11b)

Ξ7 = x
∂

∂x
+ y

∂

∂y
+ u

∂

∂u
,(11c)

The second order prolonged vector fields give rise to a distribution of rank 7 on the
whole jet space provided that we exclude the 6–dimensional submanifold of J2(R3, 2)
locally described by the system

(12)

{

(1 + u2
y)uxx − (1 + u2

x)uyy = 0,
(1 + u2

y)uxy − uxuyuyy = 0,

where the rank is less or equal to 6.
The above submanifold intersects (8) in (9). We note that on (9) the rank reduces

to 5. Furthermore, the equation of vanishing Gaussian curvature (see (10))

(13) uxxuyy − u2
xy = 0

admits symmetries (11) and intersects Eq. (8) in Eq. (9).
Thus, according to theorem 6, the theorem follows in the case of R3. Similar rea-

sonings and computations lead to the proof in the case of R6, then we omit it.

15 Remark. The unique second order differential invariant of (11) is

I =

(

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy

)2

(1 + u2
x + u2

y)(uxxuyy − u2
xy)

,

which can be expressed as the ratio I = (2hH)2/GH .
Therefore, it follows that the most general second order scalar partial DE invariant

by (11) must be given as ∆(I) = 0.
We note that:

• the system {hH = GH = 0} reduces to Eq. (9).

13



• the system {hH = 0, GH 6= 0}, that is I = 0, is Eq. (8).

• the system {hH 6= 0, GH = 0}, that is 1/I = 0, is Eq. (13).

According to proposition 10, the above equations result weakly Lie remarkable. Also,
we note that Eq. (13) is of Monge-Ampère type. Its Lie remarkability will be considered
in theorem 16.

4.2 Geodesic equation on surfaces

As a particular case of equation of totally geodesic submanifolds, we have the equation of
geodesics in a (m+1)-dimensional Riemannian manifolds E. In a local chart (x, ui

x, u
i
xx)

of J2(E, 1) it has the form

(14) uh
xx + Γ0

h
0 + 2uj

xΓ0
h

j + ui
xu

j
xΓi

h
j − uh

x(Γ0
0
0 + 2uj

xΓ0
0
j + ui

xu
j
xΓi

0
j) = 0.

This equation plays a key role in the discussion of projectively equivalent connections
[25]. In fact, point symmetries of Eq. (14) are the projective vector fields of the manifold
E, and conversely. We shall analyze the case m = 1; we show that its invariant solutions
behave as predicted by theorem 12.

16 Theorem. Let E be a complete simply connected Riemannian 2-dimensional man-
ifold. Then Eq. (14) is strongly Lie remarkable if and only if E has constant Gaussian
curvature. Furthermore, it is locally isomorphic to the group of isometries of E.

Proof. Let us suppose that Eq. (14) is strongly Lie remarkable. Then, taking into
consideration that dim E = 3, in view of theorem 5, we conclude that E must have
constant Gaussian curvature. In fact, a classical result of projective geometry stays that
the dimension of the algebra of projective vector fields on a 2-dimensional Riemannian
manifold can be 1, 2, 3, or 8, where the maximal dimension is attained just in the case
of constant Gaussian curvature (see for instance [21, 22]).

Now let us suppose that E has constant Gaussian curvature. Then, due to well-
known results of Riemannian geometry, E is isometric to either the Euclidean plane, or
the sphere, or the hyperbolic plane, depending on the sign of the Gaussian curvature. In
the table below we show as, in these cases, the 8-dimensional algebra of point symmetries

14



is realized as vector fields on E:

dx2 + du2 dx2 + sin2(x)du2 1
u2 (dx2 + du2)

Ξ1 ∂x ∂u ∂x

Ξ2 ∂u − cos(u)∂x + cot(x) sin(u)∂u x∂x + u∂u

Ξ3 x∂u − u∂x sin(u)∂x + cot(x) cos(u)∂u (x2 − u2)∂x + 2xu∂u

Ξ4 x∂u sin(2x)∂x 2x(x2 + u2)∂x + u4−x4

u
∂u

Ξ5 u∂u sin2(x) cos(u)∂x −(3x2 + u2)∂x + 2x3

u
∂u

Ξ6 x∂x sin2(x) sin(u)∂x
x
u
∂u

Ξ7 xu∂x + u2∂u − sin(2x) cos(2u)
2

∂x + sin(2u)∂u
1
u
∂u

Ξ8 x2∂x + xu∂u
sin(2x) sin(2u)

2
∂x + cos(2u)∂u

x2+u2

u
∂u

We see that in these three cases we have that the algebra of point symmetries spans a
distribution of rank 4 on the whole jet spaces except for the equation under considera-
tion. Then the theorem follows in view of theorem 7.

The second part of the theorem follows taking into account that Ξ1, Ξ2 and Ξ3

form a basis of the Lie algebra of local isometries of the corresponding metrics. Since
the prolongations span a distribution of rank 3 on the equation, by using the same
arguments after Eq. (9), the assertion is proved in view of theorem 9.

17 Remark. Actually, in the case in which the Lie algebra of point symmetries of
equation (14), for m = 1, is 8-dimensional, then the equation is point equivalent to
yxx = 0. Then the Lie remarkability in the case of constant curvature could be reduced
to study the equation yxx = 0.

It could be interesting to see when an equation of type (IIH)−1(0) (see (5)) satisfies
the hypotheses of theorems 11 and 12. A first step in this direction is given by the
previous theorem. In fact, in the hypotheses of the theorem, Eq. (14) is strongly (and
then weakly) Lie remarkable, and invariant solutions always exist. Actually, we can
assume weaker hypotheses (for instance, to work in the case when there are only three
point symmetries), and to see if we get a weakly Lie remarkable equation. This will be
the object of a future work.

18 Proposition.

• The geodesic equation on R2 is diffeomorphic to the group of isometries of R2.
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• The geodesic equation on S2 is diffeomorphic to the connected component of the
identity of the group of isometries of S2.

Proof. We have J1(R2, 1) ≃ R2×S1 and J1(S2, 1) ≃ SO(3), and the geodesic equations
are diffeomorphic to the respective first jet spaces (see also the proof of theorem 11).

5 Lie remarkability of Monge–Ampère equations

In this section we apply our results to Monge–Ampère equations of various order. Since
we deal with local point symmetries of these equations, as we are interested at the
moment to local aspects, we will interpret them as submanifolds of jets of a trivial
bundle R2 × R → R2. See [23] for a geometric treatment of second-order Monge–
Ampère equations.

5.1 Second order Monge-Ampère equation

In 1968 Boillat [8] discovered a remarkable characterization of the celebrated Monge–
Ampère equation [45]. In fact, he proved that the most general scalar second order
partial DE for the unknown u(x, y), assumed to be hyperbolic (so one of the independent
variables has the meaning of time), having the property of complete exceptionality
[7, 20], is given as a linear combination of all minors extracted from the Hessian matrix
with coefficients depending on the independent variables x and y, the dependent variable
u and first order derivatives ux and uy, that is

(15) κ1(uxxuyy − u2
xy) + κ2uxx + κ3uxy + κ4uyy + κ5 = 0,

where κi = κi(x, y, u, ux, uy) (i = 1, . . . , 5) are arbitrary functions.
The complete exceptionality requirement allowed to derive Monge–Ampère equa-

tions for the unknown u depending on three independent variables [41], on four in-
dependent variables [14], and on arbitrary number of independent variables [9]: all
these equations share the property of being given as linear combinations of all mi-
nors extracted from the Hessian matrix with coefficients depending on the independent
variables, the dependent variable u and first order derivatives.

Also, Boillat [10], by using once again the criterion of complete exceptionality, de-
rived the partial DEs of higher order and called them higher order Monge–Ampère
equations: all these equations are given as a linear combination of all minors extracted
from suitable Hankel matrices built with the higher order derivatives.

Now, let us restrict ourselves to consider Eq. (15) in the case in which the coefficients
κi are constant (in particular we assume κ1 6= 0 in order to have a nonlinear equation).

Through the substitution u → u + α1x
2 + α2xy + α3y

2, where α1 = −κ4/2κ1,
α2 = κ3/2κ1, α3 = −κ2/2κ1, Eq. (15) is mapped to

(16) uxxuyy − u2
xy = κ,

where κ = (4κ2κ4 − 4κ1κ5 − κ2
3)/4κ

2
1.
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If κ = 0 we have the homogeneous Monge-Ampère equation for the surface u(x, y)
with zero Gaussian curvature.

19 Theorem. Eq. (16) is weakly Lie remarkable if κ 6= 0, whereas it is strongly Lie
remarkable if κ = 0.

Proof. If κ 6= 0, then Eq. (16) admits a 9–parameter group of point symmetries whose
Lie algebra is spanned by the vector fields

Ξ1 =
∂

∂x
, Ξ2 =

∂

∂y
, Ξ3 =

∂

∂u
,(17a)

Ξ4 = x
∂

∂y
, Ξ5 = y

∂

∂x
, Ξ6 = x

∂

∂u
,(17b)

Ξ7 = y
∂

∂u
, Ξ8 = x

∂

∂x
+ u

∂

∂u
, Ξ9 = y

∂

∂y
+ u

∂

∂u
.(17c)

The second order prolonged vector fields give rise to a distribution of rank 7 on
the whole jet space provided that we exclude the 5–dimensional submanifold locally
described by (9) where the rank reduces to 5. We note that (9) is not a submanifold
of (16), then the above second order vector fields give rise to a distribution on Eq. (16)
of rank 7. Thus, according to theorem 6, Eq. (16) results weakly Lie remarkable.

On the contrary, if κ = 0, Eq. (16) admits a 15–parameter group of point symmetries
whose Lie algebra is spanned by the vector fields

(18)
∂

∂a
, a

∂

∂a
, a

∂

∂b
, a

(

x
∂

∂x
+ y

∂

∂y
+ u

∂

∂u

)

,

∀ a, b ∈ {x, y, u}.
In this case, the second order prolonged vector fields give rise to a distribution of

rank 8 on the whole jet space provided that we exclude the 7-dimensional submanifold
locally described by the equation (13), where the rank reduces to 7, provided we exclude
the 5-dimensional submanifold of (13) locally described by (9), where the rank reduces
to 5. Thus, according to theorem 7, Eq. (13) results strongly Lie remarkable.

There are various 7-dimensional Lie subalgebras of the 9-dimensional Lie algebra of
the symmetries of Eq. (13) whose second order prolonged vector fields give rise to a
distribution of rank 7. For instance, we can consider the subalgebra whose generators
are {Ξ1, Ξ2, Ξ3, Ξ4, Ξ6, Ξ7, Ξ8}. Then, in view of theorem 9, this equation has the struc-
ture of a local Lie group diffeomorphic to a local subgroup of the group of its point
symmetries.

Moreover, it is natural to ask if among the 15-dimensional algebra of point symme-
tries of (13) it is possible to extract some subalgebra with respect to Eq. (13) is still
strongly Lie remarkable. In fact, in view of theorems 5 and 7, it could be sufficient
an 8-dimensional Lie subalgebra. We see that there are many 8-dimensional Lie sub-
algebras whose second order prolonged vector fields generate a distribution of rank 8
(provided we exclude, of course, Eq. (13)), even if we confine ourselves to consider the
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8-dimensional subalgebras spanned by subsets containing 8 elements chosen in the set
of basic vector fields given by (18). Here we quote the Lie subalgebra spanned by the
operators

∂

∂x
,

∂

∂y
,

∂

∂u
, x

∂

∂x
, y

∂

∂y
, u

∂

∂u
, x

∂

∂y
, x

∂

∂u
.

20 Remark. In [38] the author showed that the dimension of the subalgebra of the
algebra of point symmetries of Eq. (13) which determines this equation has to be at
least 8, which we can easily obtain from theorem 5. Furthermore, in [38, 39, 40] it is
claimed that the 6–dimensional subalgebra

∂

∂x
,

∂

∂y
,

∂

∂u
, x

∂

∂x
, x

∂

∂y
, x

∂

∂u
.

characterizes completely Eq. (13) provided we restrict our attention to fully symmetric
systems. This last requirement is essential as the previous symmetries can not determine
Eq. (13) in view of theorem 5. For instance, the equation ∆(uy, uyy) = 0 where ∆ is an
arbitrary smooth function, admits the same 6-dimensional Lie subalgebra.

21 Remark. We observe that I = uxxuyy − u2
xy is a second order differential invariant

of (17), and then, in view of Lie remarkability, it is unique up to functional dependence.
Therefore it follows that the most general second order scalar partial DE invariant
by (17) must be given as ∆(I) = 0, where ∆ is an arbitrary function of the invariant.
For instance, I = κ, with κ ∈ R, results again a weakly Lie remarkable in view of
proposition 10.

5.2 Third order Monge-Ampère equation

The third order Monge-Ampère equation [10, 15] in two independent variables is built
by starting with the Hankel matrix

H3 =

[

uxxx uxxy uxyy

uxxy uxyy uyyy

]

and taking a linear combination (with coefficients depending on independent variables,
dependent variable and derivatives up to the order 2) of all minors extracted from the
matrix H3:

(19) κ1(uxxyuyyy − u2
xyy) + κ2(uxxxuyyy − uxxyuxyy) + κ3(uxxxuxyy − u2

xxy)

+ κ4uxxx + κ5uxxy + κ6uxyy + κ7uyyy + κ8 = 0.

By limiting ourselves to consider the coefficients κi (i = 1, . . . , 8) to be constant and
using the substitution u → u + a1x

3 + a2x
2y + a3xy2 + a4y

3, with suitable coefficients
ai (i = 1, . . . , 4), we are led to the equation

(20) κ1(uxxyuyyy − u2
xyy) + κ2(uxxxuyyy − uxxyuxyy) + κ3(uxxxuxyy − u2

xxy) + κ = 0,
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where κ is constant.
In general, this equation admits a 10-dimensional Lie algebra of point symmetries;

since the dimension of the jet space is 12 it follows (see theorem 5) that Eq. (20) is
neither strongly nor weakly Lie remarkable.

An interesting case of Eq. (20) is obtained by choosing κ1 = κ2
2/κ3, whereupon

Eq. (20) becomes

(21) (uxxyuyyy − u2
xyy) + λ(uxxxuyyy − uxxyuxyy) + λ2(uxxxuxyy − u2

xxy) + µ = 0

with λ = κ3/κ2, µ = κκ3/κ
2
2. In such a case the following theorem holds true.

22 Theorem. Eq. (21) is weakly Lie remarkable (provided we remove a singular subset).

Proof. The Lie algebra of the admitted point symmetries of Eq. (21) is infinite–dimen-
sional and is spanned by the vector fields

Ξ1 =
∂

∂x
, Ξ2 =

∂

∂y
, Ξ3 =

∂

∂u
,

(22a)

Ξ4 = (x − λy)
∂

∂x
+ u

∂

∂u
, Ξ5 = (x − λy)

∂

∂y
− λu

∂

∂u
, Ξ6 = λy

∂

∂x
+ y

∂

∂y
+ 2u

∂

∂u
,

(22b)

Ξ7 = x
∂

∂u
, Ξ8 = y

∂

∂u
, Ξ9 = x2 ∂

∂u
,

(22c)

Ξ10 = xy
∂

∂u
, Ξ11 = y2 ∂

∂u
, Ξ12 = F (x − λy)

∂

∂u
,

(22d)

where F is an arbitrary function of the indicated combination of x and y.
If F ′′′ 6= 0 (where the ′ denotes the differentiation with respect to the argument),

the corresponding third order prolonged vector fields give rise to a distribution of rank
11 on the whole jet space, provided that we exclude:

• The 11-dimensional submanifold locally described by the equation

λ3uxxx + 3λ2uxxy + 3λuxyy + uyyy = 0,

• The 10-dimensional submanifolds locally described by the following systems:

{

2λ3uxxx − 3λuxyy − uyyy = 0,
λuxxx + uxxy = 0;

(23a)

{

5λ3uxxx + 3λ2uxxy + 2uyyy = 0,
λ2uxxx − λuxxy − 2uxyy = 0.

(23b)
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It remains to remove from equation (21) the points lying in the above submanifolds.
By excluding the operator Ξ5, and taking F (x − λy) = (x − λy)3 in (22), we have

a 11-dimensional Lie subalgebra whose vector fields prolonged up to the third order
generate a distribution of rank 11.

23 Remark. By following the reasoning of remarks 15 and 21, we see that the unique
third order differential invariant of (21), up to functional dependence, is

(24) I = (uttxuxxx − u2
txx) + λ(utttuxxx − uttxutxx) + λ2(utttutxx − u2

ttx).

5.3 Fourth order Monge-Ampère equation

Finally, let us consider the fourth order Monge-Ampère equation [10] in two independent
variables; it is built by starting with the Hankel matrix

H4 =





uxxxx uxxxy uxxyy

uxxxy uxxyy uxyyy

uxxyy uxyyy uyyyy





and taking a linear combination (with coefficients depending on independent variables,
dependent variable and derivatives up to the order 3) of all minors (including the
determinant of H4) extracted from the matrix H4:

(25) κ1 det(H4) + κ2 det(H
(1,1)
4 ) + κ3 det(H

(1,2)
4 ) + κ4 det(H

(1,3)
4 )

+ κ5 det(H
(2,2)
4 ) + κ6 det(H

(2,3)
4 ) + κ7 det(H

(3,3)
4 )

+ κ8uxxxx + κ9uxxxy + κ10uxxyy + κ11uxyyy + κ12uyyyy + κ13 = 0,

where H
(i,j)
4 denotes the 2 × 2 matrix obtained by removing from H4 the i-th row and

the j-th column. By limiting ourselves to consider the coefficients κi (i = 1, . . . , 13) to
be constant and using the substitution u → u + a1x

4 + a2x
3y + a3x

2y2 + a4xy3 + a5y
4,

with suitable coefficients ai (i = 1, . . . , 5), we are led to the equation

(26) κ1 det(H4) + κ2 det(H
(1,1)
4 ) + κ3 det(H

(1,2)
4 ) + κ4 det(H

(1,3)
4 )

+ κ5 det(H
(2,2)
4 ) + κ6 det(H

(2,3)
4 ) + κ7 det(H

(3,3)
4 ) + κ = 0,

where κ is constant.
The Lie algebra of point symmetries of Eq. (26) is 13-dimensional; since Eq. (26)

defines in the jet space a submanifold of dimension 17, in general Eq. (26) is neither
strongly nor weakly Lie remarkable (see theorem 5). Nevertheless, if we consider the
special case det(H4) = 0, then the following theorem holds true.

24 Theorem. The equation

(27) det(H4) = 0,

is weakly Lie remarkable (provided we remove a singular subset).
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Proof. The Lie algebra of the admitted point symmetries of Eq. (27) is 19–dimensional
and is spanned by the vector fields

Ξ1 =
∂

∂x
, Ξ2 =

∂

∂y
, Ξ3 =

∂

∂u
,(28a)

Ξ4 = x
∂

∂u
, Ξ5 = y

∂

∂u
, Ξ6 = x2 ∂

∂u
,(28b)

Ξ7 = xy
∂

∂u
, Ξ8 = y2 ∂

∂u
, Ξ9 = x3 ∂

∂u
,(28c)

Ξ10 = x2y
∂

∂u
, Ξ11 = xy2 ∂

∂u
, Ξ12 = y3 ∂

∂u
,(28d)

Ξ13 = x
∂

∂x
, Ξ14 = y

∂

∂x
, Ξ15 = x

∂

∂y
,(28e)

Ξ16 = y
∂

∂y
, Ξ17 = u

∂

∂u
,(28f)

Ξ18 = x

(

x
∂

∂x
+ y

∂

∂y
+ 3u

∂

∂u

)

, Ξ19 = y

(

x
∂

∂x
+ y

∂

∂y
+ 3u

∂

∂u

)

.(28g)

The corresponding fourth order prolonged vector fields give rise to a distribution
of rank 16 on the whole jet space, provided that we exclude the points of the singular
subset, i.e. the solutions of the following systems:







uxxxxu
1/2
xyyy + 2u

3/2
xxxy = 0,

uyyyyu
1/2
xxxy + 2u

3/2
xyyy = 0,

uxxyy + (uxxxyuxyyy)
1/2 = 0;

(29a)







uxxxxu
1/2
xyyy + u

3/2
xxxy = 0,

uyyyyu
1/2
xxxy + u

3/2
xyyy = 0,

uxxyy + (uxxxyuxyyy)
1/2 = 0;

(29b)







uxxxxu
1/2
xyyy − 2u

3/2
xxxy = 0,

uyyyyu
1/2
xxxy − 2u

3/2
xyyy = 0,

uxxyy − (uxxxyuxyyy)
1/2 = 0;

(29c)

{

2uxxxxu
2
xyyy − 3uxxxyuxxyyuxyyy + uxxxyuxyyy(9u

2
xxyy − 8uxxxyuxyyy)

1/2 = 0,
2uxxxyuyyyy + 3uxxyyuxyyy − uxyyy(9u

2
xxyy − 8uxxxyuxyyy)

1/2 = 0;
(29d)

{

2uxxxxu
2
xyyy − 3uxxxyuxxyyuxyyy − uxxxyuxyyy(9u

2
xxyy − 8uxxxyuxyyy)

1/2 = 0,
2uxxxyuyyyy − 3uxxyyuxyyy − uxyyy(9u

2
xxyy − 8uxxxyuxyyy)

1/2 = 0;
(29e)

{

uxxxxu
2
xyyy + 2u3

xxyy − 3uxxxyuxxyyuxyyy − 2(u2
xxyy − uxxxyuxyyy)

3/2 = 0,
uyyyyu

2
xxxy + 2u3

xxyy − 3uxxxyuxxyyuxyyy + 2(u2
xxyy − uxxxyuxyyy)

3/2 = 0;
(29f)

{

uxxxxu
2
xyyy + 2u3

xxyy − 3uxxxyuxxyyuxyyy + 2(u2
xxyy − uxxxyuxyyy)

3/2 = 0,
uyyyyu

2
xxxy + 2u3

xxyy − 3uxxxyuxxyyuxyyy − 2(u2
xxyy − uxxxyuxyyy)

3/2 = 0;
(29g)

It remains to remove from the equation (27) the points fulfilling one of the above systems
of equations.
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Finally, it is worth of noticing that the vector fields {Ξ1, . . . , Ξ16} span a 16-dimen-
sional Lie subalgebra whose fourth order prolongations provide a distribution of rank
16.

25 Remark. Again, by following the reasoning of remarks 15 and 21, we see that the
unique fourth order differential invariant of (27), up to functional dependence, is

(30) I = utttt(uttxxuxxxx − u2
txxx) + 2utttxuttxxutxxx − u3

ttxx − u2
tttxuxxxx.
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conformal groups in two-dimensional space-time, J. Math. Phys., 31 (5) (1990), 1095–1105.

[38] V. Rosenhaus On one-to-one correspondence between the equation and its group. The Monge-
Ampère equation. Preprint F. 18 Acad. Sci. Estonian SSR – Tartu (1982).

[39] V. Rosenhaus: The unique determination of the equation by its invariance group and field-
space symmetry, Algebras, Groups and Geometries, 3 (1986), 148–166.

[40] V. Rosenhaus: Groups of invariance and solutions of equations determined by them, Algebras,
Groups and Geometries, 5 (1988), 137–150.

[41] T. Ruggeri: Su una naturale estensione a tre variabili dell’equazione di Monge-Ampère, Rend.
Acc. Naz. Lincei, 55 (1973), 445–449.

[42] T. Ruggeri: Galilean invariance and entropy principle for systems of balance laws. The struc-
ture of extended thermodynamics, Continuum Mech. Termodyn., 1 (1989), 3–20.

[43] D. J. Saunders: The Geometry of Jet Bundles, Cambridge Univ. Press (1989).

[44] S. M. Shugrin: Galilean systems of differential equations, Differential Equations, 16 (1981),
1402–1413.
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