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Abstract

In a recent paper [12], within the framework of the inverse Lie
problem, the definitions of strongly as well as weakly Lie remarkable
equations have been introduced. Strongly Lie remarkable equations
are uniquely determined by their Lie point symmetries, whereas weakly
Lie remarkable equations are equations which do not intersect other
equations admitting the same symmetries. In this paper we start from
some relevant algebras of vector fields on R

k (such as the isometric,
affine, projective or conformal algebra), and characterize strongly Lie
remarkable equations admitted by the considered Lie algebras.

MSC 2000 classification: 58J70, 58A12
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1 Introduction

One of the most successful achievements in the geometric theory of differen-
tial equations (DEs), either ordinary or partial, is the theory of symmetries
[1, 2, 3, 4, 9, 10, 15, 16, 17]. Symmetries of DEs are (finite or infinitesimal)
transformations of the independent and dependent variables and derivatives
of the latter with respect to the former, with the further property of sending
solutions into solutions. The knowledge of the symmetries of a DE may lead

1Work supported by PRIN 2005/2007 (“Propagazione non lineare e stabilità nei pro-
cessi termodinamici del continuo” and “Leggi di conservazione e termodinamica in mec-
canica dei continui e in teorie di campo”), GNFM, GNSAGA, Universities of Lecce and
Messina.
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to compute some of its solutions, or to transform to in a more convenient
form; in the case of an ordinary differential equation (ODE) it may allow
to reduce the order, determine integrating factors, etc. Among symmetries,
there is a distinguished class, that of symmetries coming from a transforma-
tion of the independent and dependent variables: point symmetries. In this
paper we focus our attention on this kind of symmetries.

The problem of finding the symmetries of a DE has associated a natural
“inverse” problem, namely, the problem of finding the most general form
of a DE admitting a given Lie algebra as subalgebra of infinitesimal point
symmetries.

A way which leads to the solution of this problem is to classify all possi-
ble realizations of the given Lie algebra as algebra of vector fields on the base
manifold. The second step is to find differential invariants Ii of the realiza-
tion under consideration (see for instance [8, 18]). Then, it is well known
(see [16]) that, under suitable hypotheses of regularity, the most general DE
admitting a given Lie algebra as subalgebra of point symmetries is locally
given by Fµ(I1, I2, . . . , Ik) = 0 where Fµ are arbitrary smooth functions.

In this paper we specialize the above problem in the following way: we
would like to find the unique DE which admits a given Lie algebra as subal-
gebra of its point symmetries. An aspect of this problem has been considered
in [12], where the authors, starting from a given DE, found necessary and
sufficient conditions for it to be uniquely determined by its point symmetries.
By following the terminology already used in [11, 12, 13, 14], we call such a
DE Lie remarkable. A similar problem was also considered by Rosenhaus in
[19, 20, 21]; in fact, among various results, the author proved that the equa-
tion of vanishing Gaussian curvature of surfaces in R

3 is the unique second
order equation admitting the projective algebra of R

3 as point symmetries.

The plan of the paper is the following.
In section 2, we introduce a DE of order r as a submanifold of a suit-

able jet space (of order r), which is a manifold whose coordinate functions
of a chart can be interpreted as “independent” and “dependent” variables,
and by the derivatives of the latter with respect to the former up to the
order r. Then we introduce two distinguished types of Lie remarkable equa-
tions: strongly and weakly Lie remarkable equations. Strongly Lie remark-
able equations are uniquely determined by their point symmetries in the
whole jet space; on the contrary, weakly Lie remarkable equations are equa-
tions which do not intersect other equations admitting the same symmetries.
Then we recall the main results obtained in [11]. More precisely, we report
necessary as well as sufficient conditions for an equation to be strongly or
weakly Lie remarkable.

In section 3, we find strongly Lie remarkable equations associated with
isometric, affine, projective and conformal algebra of R

k, where R
k is pro-

vided with metrics of various signatures. Since we start from concrete al-
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gebras and not from abstract ones, we do not have the problem of realizing
them as vector fields. In particular, with regard to the affine algebra in R

k

we recover the homogeneous second order Monge-Ampère equations [5], and
in R

3 also a third order PDE that, to the author’s knowledge has not been
described heretofore in literature. Also in the case of conformal algebra in
R

3, an interesting second order PDE is recovered, i.e. the equation for a
surface u(x, y) having the square of the (scalar) mean curvature equal to the
Gaussian curvature.

2 Theoretical framework

Here we recall some basic facts regarding jet spaces (for more details, see
[4, 15, 22]) and the basic theory on DEs determined by their Lie point
symmetries [12].

All manifolds and maps are supposed to be C∞. If E is a manifold then
we denote by χ(E) the Lie algebra of vector fields on E. Also, for the sake
of simplicity, all submanifolds of E are embedded submanifolds.

Let E be an (n+m)-dimensional smooth manifold and L an n-dimensional
embedded submanifold of E. Let (V, yA) be a local chart on E. The co-
ordinates (yA) can be divided in two sets, (yA) = (xλ, ui), λ = 1 . . . n and
i = 1 . . .m, such that the submanifold L is locally described as the graph
of a vector function ui = f i(x1, . . . , xn). In what follows, Greek indices run
from 1 to n and Latin indices run from 1 to m unless otherwise specified.

The set of equivalence classes [L]rp of submanifolds L having at p ∈ E a
contact of order r is said to be the r-jet of n-dimensional submanifolds of E
(also known as extended bundles [15]), and is denoted by Jr(E, n). If E is
endowed with a fibring π : E → M where dim M = n, then the r-th order jet
Jrπ of local sections of π is an open dense subset of Jr(E, n). We have the
natural maps jrL : L → Jr(E, n), p 7→ [L]rp, and πk,h : Jk(E, n) → Jh(E, n),

[L]kp 7→ [L]hp , k ≥ h.
The set Jr(E, n) is a smooth manifold whose dimension is

(1) dimJr(E, n) = n + m
r
∑

h=0

(

n + h − 1

n − 1

)

= n + m

(

n + r

r

)

,

whose charts are (xλ, ui
σ
), where ui

σ
◦ jrL = ∂|σ|f i/∂xσ, where 0 ≤ |σ| ≤

r. On Jr(E, n) there is a distribution, the contact distribution, which is
generated by the vectors

Dλ
def

=
∂

∂xλ
+ uj

σλ

∂

∂uj
σ

and
∂

∂uj
τ

,

where 0 ≤ |σ| ≤ r−1, |τ | = r and σλ denotes the multi-index (σ1, . . . , σr−1, λ).
The vector fields Dλ are the (truncated) total derivatives. Any vector field
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X ∈ χ(E) can be lifted to a vector field X(r) ∈ χ(Jr(E, n)) which preserves
the contact distribution. In coordinates, if Ξ = Ξλ∂/∂xλ + Ξi∂/∂ui is a
vector field on E, then its k-lift Ξ(k) has the coordinate expression

(2) Ξ(k) = Ξλ ∂

∂xλ
+ Ξi

σ

∂

∂ui
σ

,

where Ξj
τ ,λ = Dλ(Ξj

τ) − uj
τ ,βDλ(Ξβ) with |τ | < k.

A differential equation E of order r on n-dimensional submanifolds of a
manifold E is a submanifold of Jr(E, n). The manifold Jr(E, n) is called
the trivial equation. An infinitesimal point symmetry of E is a vector field
of the type X(r) which is tangent to E .

Let E be locally described by {F i = 0}, i = 1 . . . k with k < dimJr(E, n).
Then finding point symmetries amounts to solve the system

Ξ(r)
(

F i
)

= 0 whenever F i = 0

for some Ξ ∈ χ(E).
We denote by sym(E) the Lie algebra of infinitesimal point symmetries

of the equation E .
By an r-th order differential invariant of a Lie subalgebra s of χ(E) we

mean a smooth function I : Jr(E, n) → R such that for all Ξ ∈ s we have
Ξ(r)(I) = 0.

The problem of determining the Lie algebra sym(E) is said to be the
direct Lie problem. Conversely, given a Lie subalgebra s ⊂ χ(E), we consider
the inverse Lie problem, i.e., the problem of characterizing the equations
E ⊂ Jr(E, n) such that s ⊂ sym(E) [2, 7].

In what follows, we will devote ourselves to the analysis of the inverse
Lie problem. We start by the definition and main properties, contained in
[12], of DEs which are uniquely determined by their point symmetries, that
we call Lie remarkable DEs.

1 Definition. Let E be a manifold, dimE = n + m, and let r ∈ N, r > 0.
An l-dimensional equation E ⊂ Jr(E, n) is said to be

1. weakly Lie remarkable if E is the only maximal (with respect to the
inclusion) l-dimensional equation in Jr(E, n) passing at any θ ∈ E
admitting sym(E) as subalgebra of the algebra of its infinitesimal point
symmetries;

2. strongly Lie remarkable if E is the only maximal (with respect to the
inclusion) l-dimensional equation in Jr(E, n) admitting sym(E) as sub-
algebra of the algebra of its infinitesimal point symmetries.

Of course, a strongly Lie remarkable equation is also weakly Lie remark-
able. Some direct consequences of our definitions are due. For each θ ∈
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Jr(E, n) denote by Sθ(E) ⊂ TθJ
r(E, n) the subspace generated by the values

of infinitesimal point symmetries of E at θ. Let us set S(E) def

=
⋃

θ∈Jr(E,n) Sθ(E).
In general, dimSθ(E) may change with θ ∈ Jr(E, n). The following inequal-
ity holds:

(3) dim sym(E) ≥ Sθ(E), ∀ θ ∈ Jr(E, n),

where dim sym(E) is the dimension, as real vector space, of the Lie algebra
of infinitesimal point symmetries sym(E) of E . If the rank of S(E) at each
θ ∈ Jr(E, n) is the same, then S(E) is an involutive (smooth) distribution.

A submanifold N of Jr(E, n) is an integral submanifold of S(E) if TθN =
Sθ(E) for each θ ∈ N . Of course, an integral submanifold of S(E) is an
equation in Jr(E, n) which admits all elements in sym(E) as infinitesimal
point symmetries. The points of Jr(E, n) of maximal rank of S(E) form an
open set of Jr(E, n) [12]. It follows that E can not coincide with the set of
points of maximal rank of S(E). The following theorems [12] can be proved.

2 Theorem.

1. A necessary condition for the differential equation E to be strongly Lie
remarkable is that

dim sym(E) > dim E .

2. A necessary condition for the differential equation E to be weakly Lie
remarkable is that

dim sym(E) ≥ dim E .

In [12] also sufficient conditions have been established, that reveal useful
when computing examples and applications.

3 Theorem.

1. If S(E)|E is an l-dimensional distribution on E ⊂ Jr(E, n), then E is
a weakly Lie remarkable equation.

2. Let S(E) be such that for any θ 6∈ E we have dimSθ(E) > l. Then E is
a strongly Lie remarkable equation.

The next theorem [12] gives the relationship between Lie remarkability
and differential invariants.

4 Theorem. Let s be a Lie subalgebra of χ(Jr(E, n)). Let us suppose that
the r-prolongation subalgebra of s acts regularly on Jr(E, n) and that the
set of r-th order functionally independent differential invariants of s reduces
to a unique element I ∈ C∞(Jr(E, n)). Then the submanifold of Jr(E, n)
described by ∆(I) = 0 (in particular I = k for any k ∈ R), with ∆ an
arbitrary smooth function, is a weakly Lie remarkable equation.
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Several examples of strongly and weakly Lie remarkable equations are
provided in [12]. We recall some of them.

1. The equation of minimal surfaces in R
4 or R

5 is nor strongly neither
weakly Lie remarkable, whereas it is weakly Lie remarkable in R

3 and
R

6, provided we remove singular equations.

2. The equation of unparametrized geodesic on a complete simply con-
nected Riemannian 2–dimensional manifold E is strongly Lie remark-
able if and only if E has constant Gaussian curvature.

3. The equation uxxuyy − u2
xy = κ is weakly Lie remarkable if κ 6= 0,

whereas it is strongly Lie remarkable if κ = 0.

4. Some higher order Monge-Ampère equations [6] are weakly Lie re-
markable, provided we remove singular subsets.

3 Strongly Lie remarkable equations determined

by Lie algebras of vector fields on R
k

In what follows we shall consider only scalar partial differential equations
(PDEs), that is, according to our notations, we restrict our attention to
the case m = 1. We denote by I(Rn+1), A(Rn+1), P(Rn+1) and C(Rn+1),
respectively, the isometric, affine, projective and conformal algebra of R

n+1

with respect to the metric g =
∑n

i=1 kidxi ⊗ dxi + du ⊗ du, where ki (i =
1, . . . , n) are non-vanishing real constants (in the following, in the case when
n = 2, to light the notation, we use the variables x and y instead of x1 and
x2, respectively). Even if the algebras I(Rn+1) and C(Rn+1) depend on ki,
we shall continue to denote them by the same symbol. For instance I(R4)
can represent both the Euclidean and Poincaré algebra for suitable values
of ki. For each of the previous algebras we shall determine strongly PDEs
of various order associated with them.

We first study the case of the algebra I(Rn+1). To explain how the meth-
ods exposed in section 2 works, in the next section we make computations
in the case of R

3 provided with the metric k1dx⊗ dx + k2dy⊗ dy + du⊗ du.
For the remaining algebras, we will give just the results together with some
useful comments.

3.1 The case of I(Rn+1)

The algebra I(Rn+1) has dimension equal to (n+1)(n+2)/2. Then, in view
of theorem 2, strongly Lie remarkable equations can be of order 1. In view
of 2) of theorem 3, in order to get them, we have to construct the matrix
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M =
(

Ξ
(1) j
i

)

of the 1-prolongations of the isometries, characterized by the

following vector fields:

(4)

Ξ1 =
∂

∂x
, Ξ2 =

∂

∂y
, Ξ3 =

∂

∂u
,

Ξ4 = k2y
∂

∂x
− k1x

∂

∂y
, Ξ5 = u

∂

∂x
− k1x

∂

∂u
, Ξ6 = u

∂

∂y
− k2y

∂

∂u
.

Then we have to see if the rank of this matrix is 5 on J1(R3, 2) except for
a 4-dimensional submanifold where the rank decreases. Such a submanifold
will be the strongly Lie remarkable equation which we were looking for.
More precisely, the matrix M is the following:

M =







































1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

y − k1

K2
x 0 k1

k2
uy −ux

u 0 −k1x −k1 − u2
x −uxuy

0 u −k2y −uxuy −k2 − u2
y







































The rank of the previous matrix is 5 except on the submanifold

(5) 1 +
u2

x

k1
+

u2
y

k2
= 0,

which describes the vanishing of the infinitesimal area element, where the
rank decreases. The generalization to arbitrary n is straightforward. The
strongly Lie remarkable equation in this case is

(6) 1 +
n
∑

i=1

u2
xi

ki
= 0

Of course, in order that equations (5) and (6) to be nonempty, we have
to require that not all ki are positive.

3.2 The case of A(Rn+1)

The algebra A(Rn+1) has dimension n2 + 3n + 2. By using theorem 2, we
see that a strongly Lie remarkable equation can be of order 2 or 3 in the
case n = 2, and of order 2 if n ≥ 3.
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The infinitesimal generators of this algebra are

(7)
∂

∂a
, a

∂

∂a
, a

∂

∂b

∀ a, b ∈ {x1, x2, . . . , xn, u}.

We see that the strongly Lie remarkable second order equation in J2(R3, 2)
is the homogeneous Monge-Ampère equation

(8) uxxuyy − u2
xy = 0,

which describes surfaces of R
3 with vanishing Gaussian curvature.

Moreover, there exists also a strongly Lie remarkable equation of third
order in J3(R3, 2) which has the following local expression:

u3
xxu2

yyy + u2
xxxu3

yy + 6uxxuxxxuxyuyyuyyy − 6uxxxuxxyuxyu
2
yy(9)

−6uxxuxxxuxyyu
2
yy − 6u2

xxuxyuxyyuyyy − 6u2
xxuxxyuyyuyyy

−8uxxxu3
xyuyyy + 9uxxu2

xxyu
2
yy + 9u2

xxu2
xyyuyy

+12uxxxu2
xyuxyyuyy + 12uxxuxxyu

2
xyuyyy − 18uxxuxxyuxyuxyyuyy = 0.

To the authors’ knowledge, equation (9) has not been heretofore de-
scribed in literature; nevertheless, at the present we are not able to give for
it a geometrical or a physical interpretation. Further investigations are in
progress.

Now it remains to find the equations which live in J2(Rn+1, n) with
n ≥ 3. In this case, for each n, we still have a strongly Lie remarkable
equation, namely

(10) det

(

∂2u

∂xi∂xj

)

= 0,

that is, the second order homogeneous Monge-Ampère equation in n vari-
ables [5].

3.3 The case of P(Rn+1)

The algebra P(Rn+1) has dimension n2 +4n+3. Its infinitesimal generators
are

(11)
∂

∂a
, a

∂

∂a
, a

∂

∂b
, a

(

n
∑

i=1

xi ∂

∂xi
+ u

∂

∂u

)

,

for all a, b ∈ {x1, x2, . . . , xn, u}.
Then we realize that we have to look for strongly Lie remarkable equa-

tions in the same jet spaces we considered in the previous section. Fur-
thermore, we have to discuss also the case of an equation which lives in
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J3(R4, 3). We realize that equations (8), (9), (10) are strongly Lie remark-
able also in this case, and that there are no strongly Lie remarkable equations
in J3(R4, 3). In fact, the prolongations of vector fields (11) span, at each
point of J3(R4, 3), a subspace of dimension at most 20. Since the dimension
of the equation we are looking for is 22, in view of theorem 2, we have no
chances to find a strongly Lie remarkable equation.

3.4 The case of C(Rn+1)

The algebra C(Rn+1) has dimension equal to (n + 2)(n + 3)/2. We have to
look for second order strongly Lie remarkable equations.

We start with n = 2. The infinitesimal generators of this algebra are the
generators (4) together with

(12)



































































1

2

k1x
2 − k2y

2 − u2

k1

∂

∂x
+ xy

∂

∂y
+ xu

∂

∂u

xy
∂

∂x
+

1

2

k2y
2 − k1x

2 − u2

k1

∂

∂y
+ yu

∂

∂u

xu
∂

∂x
+ yu

∂

∂y
+

1

2
(u2 − k1x

2 − k2y
2)

∂

∂u

x
∂

∂x
+ y

∂

∂y
+ u

∂

∂u

Before computing strongly Lie remarkable equations, let us recall some
basic notions of the theory of surfaces in R

3.
Let us consider the metric k1dx⊗ dx + k2dy ⊗ dy + du⊗ du on R

3, with
ki non-vanishing real constants. Then the (scalar) mean curvature H of a
generic surface u = u(x, y) is

(13) H =
1

2

(k2 + u2
y)uxx − 2uxuyuxy + (k1 + u2

x)uyy

(k1k2 + k2u2
x + k1u2

y)
3

2

,

and the Gaussian curvature G is

(14) G =
uxxuyy − u2

xy

(k1k2 + k2u2
x + k1u2

y)
2
.

Then, by analyzing the rank of the matrix of 2-prolongations of the
vector fields (4) and (12), we realize the the unique second order equation
which is strongly Lie remarkable with respect to the conformal algebra is

(15) G = H2.
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5 Remark. By a direct computation, we realize that the unique second
order scalar differential invariant I of the algebra formed by I(R3) with the
addition of homotheties of R

3 is I = H2/G. Then I = k, with k constant, is
a weakly Lie remarkable equation in view of theorem 4. Therefore we could
look for strongly Lie remarkable equations among the equations I = k. In
fact, from the above discussion, we realize that I = 1 is the strongly Lie
remarkable equation we were looking for.

Now we analyze the case n = 3. Then we have to search strongly Lie
remarkable equations in the jet space J2(R4, 3). In this case, we realize that
we have not strongly Lie remarkable equations. In fact, the prolongations
of vector fields forming the algebra C(R4), at each point of J2(R4, 3), span
a subspace of dimension at most 12. Since the dimension of the equation
we are looking for is 12, in view of theorem 2, we have no chances to find a
strongly Lie remarkable equation. The same negative result is achieved by
considering the algebra C(Rn+1), where n > 3.

Acknowledgments.

We thank E Ferapontov, V. Rosenhaus and G. Saccomandi for stimulating
discussions.

References

[1] G. Baumann: Symmetry analysis of differential equations with Mathematica,
Springer, Berlin (2000).

[2] G. W. Bluman, J. D. Cole: Similarity methods of differential equations, Springer,
New York (1974).

[3] G. W. Bluman, S. Kumei: Symmetries and differential equations, Springer, New
York (1989).

[4] A. V. Bocharov, V. N. Chetverikov, S. V. Duzhin, N. G. Khor′kova, I. S.

Krasil′shchik, A. V. Samokhin, Yu. N. Torkhov, A. M. Verbovetsky and

A. M. Vinogradov: Symmetries and Conservation Laws for Differential Equations
of Mathematical Physics, I. S. Krasil′shchik and A. M. Vinogradov eds., Translations
of Math. Monographs 182, Amer. Math. Soc. (1999).

[5] G. Boillat: Sur l’équation générale de Monge-Ampère à plusieurs variables, C. R.
Acad. Sci. Paris, 313 (1991), 805–808.

[6] G. Boillat: Sur l’équation générale de Monge–Ampère d’ordre supérieur, C. R.
Acad. Sci. Paris Sér. I. Math., 315 (1992), 1211–1214.

[7] W.I. Fushchych: Collected Works, Kyiv, 2000.

[8] W.I. Fushchych, I. Yehorchenko: Second-order differential invariants of the
rotation group O(n) and of its extension: E(n), P(1,n), G(1,n), Acta App. Math.,
28, (1992), 69–92.



G. Manno, F. Oliveri, R. Vitolo 11

[9] N. H. Ibragimov: Transformation groups applied to mathematical physics, D. Rei-
del Publishing Company, Dordrecht (1985).

[10] N. H. Ibragimov: Handbook of Lie group analysis of differential equations (3 vol-
umes), CRC Press, Boca Raton, 1994, 1995, 1996.

[11] G. Manno, F. Oliveri, R. Vitolo: On an inverse problem in group analysis of
PDEs: Lie-remarkable equations, in Wascom 2005, Proc. XIII Int. Conf. on Waves
and Stability in Continuous Media (R. Monaco, G. Mulone, S. Rionero, T. Ruggeri
editors), World Scientific, Singapore, 2005, 420–432.

[12] G. Manno, F. Oliveri, R. Vitolo: On differential equations characterized by their
Lie point symmetries, to appear in J. Math. Anal. Appl. (2006/2007).

[13] F. Oliveri: Lie symmetries of differential equations: direct and inverse problems,
Note di Matematica, 23 (2004/2005), no. 2, 195–216.
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