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Abstract

We prove that the Kupershmidt deformation of a bi-Hamiltonian system is it-
self bi-Hamiltonian. Moreover, Magri hierarchies of the initial system give rise to
Magri hierarchies of Kupershmidt deformations as well. Since Kupershmidt de-
formations are not written in evolution form, we start with an outline a geometric
framework to study Hamiltonian properties of general non-evolution differential
equations, developed in [2] (see also [4]).

Keywords: Nonlinear differential equations, variational Schouten bracket,
Hamiltonian structures, symmetries, conservation laws
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1 Introduction

Recently, in the paper [3] the authors derived the new equation

(1) (∂2x + 8ux∂x + 4uxx)(ut + uxxx + 6u2x) = 0,
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E.I.N.S.T.E.IN Consortium grant 06-01-92060 (IK, AV, and RV), and RFBR-CRNS grant 08-07-92496
(IK and AV).
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2 Integrability of Kupershmidt deformations

called the KdV6 equation, which turned out to pass the Painlevé test. The authors
introduced the new variables v = ux and w = ut+uxxx+6u2x, transforming (1) into the
system

(2) vt + vxxx + 12vvx − wx = 0, wxxx + 8vwx + 4wvx = 0,

and posed the problem to study conservation laws and Hamiltonian structures of the
above system.

In [6], Kupershmidt proved the existence of an infinite series of conservation laws
for (2) in the following way. He noted that (2) can be written in the form

(3) F + A∗
1(w) = 0, A∗

2(w) = 0,

where F = 0 is the KdV equation in the unknown v, and A1, A2 are the two standard
Hamiltonian operators for F = 0. So, (3) can be considered to be a deformation
of F = 0; we call it the Kupershmidt deformation. The following result yields an
infinite series of conservation laws for (3).

Theorem (Kupershmidt). Let F = ut−f = 0 be an evolution bi-Hamiltonian system,
with A1, A2 being the corresponding Hamiltonian operators. If this equation has a Magri

hierarchy of conserved densities dHi

dt
= 0, A1

(

δHi

δu

)

= A2

(

δHi+1

δu

)

, then H1, H2, . . . are

conserved densities for (3).

Proof.

dHi

dt
=

〈

δHi

δu
, f + A1(w)

〉

=

〈

−A1

(

δHi

δu

)

, w

〉

=

〈

−A2

(

δHi+1

δu

)

, w

〉

=

〈

δHi+1

δu
,A2(w)

〉

= 0.

Further, Kupershmidt conjectured that these conservation laws commute (in a sense)
so that (3) is integrable.

What makes this conjecture especially interesting is that system (3) is not in evolu-
tion form. Recently, in [2] (see also [4]) we, together with S. Igonin, have introduced a
generalization of Hamiltonian formalism for general, not necessarily evolution, systems.

In the present paper, we apply this formalism to the Kupershmidt conjecture.
Namely we prove that the Kupershmidt deformation of every bi-Hamiltonian equa-
tion is again a bi-Hamiltonian system and that every hierarchy of conservation laws of
the original bi-Hamiltonian system gives rise to a hierarchy of conservation laws of the
Kupershmidt deformation.
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2 Preliminaries

An adequate setting for dealing with symmetries and conservation laws of differential
equations is provided by jet bundles. Our main sources are [1, 5]; we will shortly
describe our notation below.

From now on all manifolds and maps are C∞.

Jets and differential equations. Let π : E → M be a vector bundle. We denote
by Jk(π) the corresponding jet manifold and by πk,l : J

k(π) → J l(π) for k > l and
πk : J

k(π) → E the standard projections. The inverse limit of the chain of projections
· · · → πk+1,k → πk,k−1 → · · · is said to be the infinite order jet space and is denoted by
J∞(π).

Let x1, . . . , xn be local coordinates in M , u1, . . . , um and be local fiber coordinates
in E. Then ujσ, where σ is a multiindex of arbitrary length, denote local derivative
coordinates on the fibers of J∞(π). If s : M → E is a section then its prolongation
j∞s : M → J∞(π) fulfills ujσ ◦ j∞s = ∂|σ|(uj ◦ s)/∂xσ.

We denote by F (π) the algebra of smooth functions on J∞(π). This is defined as
the direct limit of the chain of inclusions of smooth functions on Jk(π) into smooth
functions on Jk+1(π) via pull-back. The F (π)-module Λ∗(π) of differential forms on
J∞(π) is defined in the similar way.

A horizontal module is the F (π)-module of sections of π∗
∞(α), where α is a vector

bundle over M . Denote by κ(π) the horizontal module corresponding to the bundle π
itself.

Let P1(π) and P2(π) be horizontal modules. A linear differential operator ∆: P1(π) →
P2(π) is called C -differential if it can be restricted to the graphs of all infinitely pro-
longed sections of the bundle. The set of all C -differential operators from P1(π) to P2(π)
is denoted by CDiff(P1(π), P2(π)). In coordinates, C -differential operators have the
form of a matrix (aσijDσ), where a

σ
ij ∈ F (π), Dσ = Di1 ◦ · · · ◦Dir for σ = i1 . . . ir and

Di = ∂/∂xi + ujσi∂/∂u
j
σ is the total derivative operator with respect to xi1.

A π∞-vertical vector field on J∞(π) is called an evolutionary field if it commutes
with all Di (this property does not depend on the choice of coordinates). In coordinates,
each evolutionary field is of the form Зϕ = Dσ(ϕ

j)∂/∂ujσ, where ϕ
j ∈ F (π). It can

be proved that each evolutionary vector field is uniquely determined by its generating
function ϕ ∈ κ(π) and vice verse to any ϕ ∈ κ(π) there corresponds an evolutionary
field Зϕ.

Let P (π) be a horizontal module. For each element p ∈ P (π) there is a C -differential
operator ℓp : κ(π) → P (π) called the universal linearization of p and defined by ℓp(ϕ) =
Зϕ(p), with ϕ ∈ κ(π). In coordinates, ℓp is the matrix of the form (∂pi/∂ujσ ·Dσ).

A differential form ω ∈ Λq(π) on J∞(π) is called a Cartan form if its pull-back
through any prolonged section vanishes. In coordinates, Cartan forms contain factors
of the type ωjσ = dujσ−u

j
σi dx

i. Denote the module of all Cartan q-forms by CΛq(π). It is
not difficult to show that d(CΛq(π)) ⊂ CΛq+1(π). Therefore the quotient d̄ of d, acting

1The Einstein summation convention will be used throughout the paper.



4 Integrability of Kupershmidt deformations

on Λ̄∗(π) = Λ∗(π)/CΛ∗(π), is well defined. The module Λ̄∗(π) is identified with the
submodule in Λ∗(π) generated by π∗

∞Λ∗(M). Elements of Λ̄q(π) are called horizontal
forms. In coordinates, Λ̄q(π) is generated by f dxi1 ∧ · · · ∧ dxiq , where f ∈ F (π),
and d̄(f dxi1 ∧ · · · ∧ dxiq) = Di(f) dx

i ∧ dxi1 ∧ · · · ∧ dxiq . The cohomology H̄ i(π) of
the complex (Λ̄∗(π), d̄) is said to be the horizontal cohomology, and coincides with the
de Rham cohomology of M for all degrees i up to n− 1.

If P (π) is an F (π)-module, we write P̂ (π) = HomF (π)(P (π), Λ̄
n(π)) and consider

the natural pairing 〈· , ·〉 : P̂ (π) × P (π) → Λ̄n(π). We recall that for each operator
∆ ∈ CDiff(P1(π), P2(π)) there exists a unique operator ∆∗ ∈ CDiff(P̂2(π), P̂1(π)) such
that

[〈p̂2,∆(p1)〉] = [〈∆∗(p̂2), p1〉], p̂2 ∈ P̂2(π), p1 ∈ P1(π),

where [ω] denotes the horizontal cohomology class of ω ∈ Λ̄n. The operator ∆∗ is called
adjoint to ∆. In coordinates, (aσijDσ)

∗ = ((−1)|σ|Dσ ◦ a
σ
ji), where a

σ
ij ∈ F (π).

A differential equation is a submanifold E ⊂ Jk(π). We assume that E = {F = 0},
where F ∈ π∗

k(α) is a section of the pull-back bundle of a vector bundle α on M .
Let us set P (π) = π∗

∞(α). The equation E can be prolonged to a submanifold of
J∞(π), that we still denote by E . In local coordinates, we have E = {DσF

k = 0} for
such a prolongation. Throughout the paper we will assume equations to be regular :
this means that any function f ∈ F (π) vanishing on E can be expressed as f = ∆(F ),
where ∆ ∈ CDiff(P (π),F (π)).

Symmetries. For any horizontal module Q(π) we will denote by Q the restriction of
Q(π) to E . We denote by ℓE : κ → P the restriction of the universal linearization ℓF to
E . The space ker ℓE coincides with the space SymE of symmetries of the differential
equation E . The space ker ℓ∗

E
is the space of cosymmetries, and is denoted by CoSymE .

It can be proved that there exists a sequence

(4) 0 → CDiff(P,F ) → CDiff(κ,F ) → CΛ1 → 0.

Here the first nontrivial map is defined by ∆ 7→ ∆ ◦ ℓE and the second one is a natural
projection (see [1, 5] for details). The differential equation E is said to be normal
if the above sequence is exact. In other words, E is normal, if the equality ∆ ◦ ℓE
implies ∆ = 0. Most differential equations of mathematical physics fulfill this property;
however, the gauge equations do not.

Conservation laws. Consider the horizontal de Rham complex (Λ̄q, d̄) on E . A
conservation law is an element [ω] ∈ H̄n−1/Hn−1(M) (we quotient out the topological
conservation laws). The Vinogradov C -spectral sequence, see [1, 5, 7] for a detailed
treatment) yields the complex (E∗,n−1

1 , d1) which plays the same role as the de Rham
complex on jets. In particular the first two terms of the complex are E0,n−1

1 = H̄n−1 and
E1,n−1

1 = ker ℓ∗
E
= CoSymE , and the first differential d1 : E

0,n−1
1 → E1,n−1

1 is defined by

d1([ω]) = ∆∗(1), where ∆ ∈ CDiff(P, Λ̄n) fulfills d̄ω = ∆(F ). The element ∆∗(1) ∈ P̂
is said to be a generating function of the conservation law [ω].
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A C -spectral sequence argument shows that there exists an exact sequence 0 →
Hn−1 → H̄n−1 → ker ℓ∗

E
, where the last map is just d1. So, the space of conservation

laws cl(E ) = H̄n−1/Hn−1(M) is a subset of the kernel of ℓ∗
E
, cl(E ) ⊂ ker ℓ∗

E
= CoSymE .

3 Hamiltonian bivectors on general equations

In this section we collect formulas related to the Hamiltonian formalism on general
equations. For details and geometric definitions we refer the reader to [2] (see also [4]).

Let E ⊂ J∞(π) be a normal equation given by F = 0.
A variational bivector on E is the equivalence class of C -differential operators

A : P̂ → κ on E that satisfy the condition

(5) ℓE ◦ A = A∗ ◦ ℓ∗E ,

where two operators are equivalent if they differ by an operator of the form � ◦ ℓ∗
E
,

� = �
∗ : κ̂ → κ.

It is straightforward to see that an action of variational bivectors on cosymmetries
(and, in particular, on conservation laws) is well-defined and the result is a symmetry.

If A is a bivector then on J∞(π) we have

(6) ℓF ◦ A− A∗ ◦ ℓ∗F = B(F, · ),

where A is extended onto J∞(π), B : P (π)× P̂ (π) → P (π) is a C -differential operator.
We denote by B∗ : P̂ × P̂ → P̂ the operator adjoint to the operator B in the first
argument and restricted to E .

Consider an equivalence relation on the set of operators CDiff(P̂ × P̂ , P̂ ) on E such
that two operators are equivalent if they differ by an operator of the form

(7) �1(ℓ
∗
E ( · ), · ) +�2( · , ℓ

∗
E ( · )),

where �1 : κ̂ × P̂ → P̂ , �2 : P̂ × κ̂ → P̂

1 Proposition. For every bivector A the equivalence class of B∗ is uniquely defined
and contains a skew-symmetric operator B∗ : P̂ × P̂ → P̂ .

2 Remark. If E is written in evolution form (in this case P = κ) then we can put
B∗(ψ1, ψ2) = ℓ∗A,ψ2

(ψ1), here we use the notation ℓ∆,p = ℓ∆(p)−∆◦ℓp. Skew-symmetricity
follows from the formula

(8) ℓ∗∆,p(q̂) = ℓ∗∆∗,q̂(p).

The Schouten bracket of two bivectors is defined by the formula

(9)

[[A1, A2]](ψ1, ψ2)

= ℓA1,ψ1(A2(ψ2))− ℓA1,ψ2(A2(ψ1))

+ ℓA2,ψ1(A1(ψ2))− ℓA2,ψ2(A1(ψ1))

− A1(B
∗
2(ψ1, ψ2))− A2(B

∗
1(ψ1, ψ2)),
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where ψ1, ψ2 ∈ P̂ and B1, B2 are the operators which play the role of B in Eq. (6) for
A1, A2, respectively.

The Schouten bracket is a bracket between multivectors. This means that it is
defined on a wide class of operators. In particular, 0-vectors are conservation laws and
the bracket between a variational bivector A and a conservation law ω has the form

[[A, ω]] = A(ψ),

where ψ = d1[ω] is the generating function of ω; 1-vectors are symmetries, the bracket
between a symmetry ϕ and a conservation law [ω]:

[[ϕ, ω]] = Lϕ(ω) = Зϕ(ψ) + ∆∗(ψ),

where Lϕ is the Lie derivative and the operator ∆: P → P is defined by the relation
ℓF (ϕ) = ∆(F ) on J∞ (for equations in evolution form one can take ∆ = ℓϕ); the bracket
between two symmetries

[[ϕ1, ϕ2]] = [ϕ1, ϕ2] (the usual commutator).

and the bracket between two conservation laws

[[ω1, ω2]] = 0.

A bivector A is called Hamiltonian if [[A,A]] = 0.

A Hamiltonian bivector A on E gives rise to a Lie algebra structure on the space of
conservation laws of E :

{ω1, ω2}A = [[[[A, ω1]], ω2]].

An equation E is called bi-Hamiltonian if it has two Hamiltonian bivectors A1 and A2

such that [[A1, A2]] = 0.

Magri hierarchy on a bi-Hamiltonian equation E is an infinite sequence ω1, ω2, . . .
of conservation laws of E such that A1(ψi) = A2(ψi+1).

3 Proposition. For Magri hierarchy we get

{ωi, ωj}A1 = 0, {ωi, ωj}A2 = 0

{ϕi, ϕj} = 0,

where ϕi = A1(ψi) = A2(ψi+1) are symmetries and the bracket between them is the
commutator: З{ϕi,ϕj} = [Зϕi

,Зϕ2 ].

4 Remark. The reader is invited to check that, if E has an evolutionary form, then
the above Hamiltonian formalism reduces to the usual one.
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4 The Kupershmidt deformation

Let E be a bi-Hamiltonian equation with Hamiltonian operators A1 and A2 given by
F = 0 as above. Let us consider the bundle π̂ : Ê = E∗ ⊗M Λn(T ∗M) → M , where
E∗ → M is the dual bundle to π : E → M . We denote by w = (w1, . . . , wm) fiber
coordinates on π̂.

5 Definition. The Kupershmidt deformation Ẽ ⊂ J∞(π)× J∞(π̂) has the form

(10) F + A∗
1(w) = 0, A∗

2(w) = 0.

We will write F̃ = (F + A∗
1(w), A

∗
2(w)) ∈ P̃ = P ⊕ P , so that Ẽ is given by F̃ = 0.

The linearization ℓ
Ẽ
: κ ⊕ κ̂ → P ⊕ P and its adjoint have the form

(11) ℓ
Ẽ
=

(

ℓF+A∗

1(w)
A∗

1

ℓA∗

2(w)
A∗

2

)

, ℓ∗
Ẽ
=

(

ℓ∗F+A∗

1(w)
ℓ∗A∗

2(w)

A1 A2

)

The linearizations in the left- and right-hand sides of these formulas have different
meaning: the left-hand ones are usual linearizations on Ẽ , while the right-hand ones
are linearizations with respect to the dependent variables u only, that is, linearizations
on J∞(π).

In what follow we use the following notational rule: linearization of something
marked with tilde is the J∞(π)×J∞(π̂)-linearization (i.e., the linearization with respect
to the dependent variables u, w), otherwise it is the J∞(π)-linearization.

Below we often use the obvious relation ℓA∗,w = ℓA∗(w), which is true since the
linearization here is the J∞(π)-linearization.

6 Lemma. We have the following equalities:

ℓF+A∗

1(w)
◦ A1 − A∗

1 ◦ ℓ
∗
F+A∗

1(w)
= B1(F + A∗

1(w), ·)(12a)

ℓF+A∗

1(w)
◦ A2 − A∗

1 ◦ ℓ
∗
A∗

2(w)
− A∗

2 ◦ ℓ
∗
F+A∗

1(w)
− ℓA∗

2(w)
◦ A1

= B2(F + A∗
1(w), ·) +B1(A

∗
2(w), ·)(12b)

ℓA∗

2(w)
◦ A2 − A∗

2 ◦ ℓ
∗
A∗

2(w)
= B2(A

∗
2(w), ·).(12c)

Proof. We will only prove the statement for the first operator. For every ψ1, ψ2 ∈ P̂
we have the following equalities modulo im d̄:

〈ℓF (A1(ψ1)) + ℓA∗

1,w
(A1(ψ1)), ψ2〉 − 〈ℓF (A1(ψ2)) + ℓA∗

1,w
(A1(ψ2)), ψ1〉

= 〈(ℓF ◦ A1 − A∗
1 ◦ ℓ

∗
F )(ψ1), ψ2〉+ 〈A1(ψ1), ℓ

∗
A∗

1,w
(ψ2)〉 − 〈A1(ψ2), ℓ

∗
A∗

1,w
(ψ1)〉

= 〈B1(F, ψ1), ψ2〉+ 〈A1(ψ1), ℓ
∗
A1,ψ2

(w)〉 − 〈A1(ψ2), ℓ
∗
A1,ψ1

(w)〉

= 〈B∗
1(ψ2, ψ1), F 〉+ 〈(ℓA1,ψ2(A1(ψ1))− ℓA1,ψ1(A1(ψ2))), w〉

= 〈B∗
1(ψ2, ψ1), F 〉+ 〈A1(B

∗
1(ψ2, ψ1)), w〉

= 〈B∗
1(ψ2, ψ1), F + A∗

1(w)〉

= 〈B1(F + A∗
1(w), ψ1), ψ2〉.
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The equalities in the statement turn out to be true in view of the fact that both
sides of the above equalities are linear (zero order) operators in ψ2, and the only linear
operator which is the composition of d̄ and an operator in ψ2 is the zero operator.

The other two equalities are proved similarly.

Of course the right-hand sides of the equations in Lemma 6 vanish on Ẽ , hence the
following corollary.

7 Corollary. The following operators are selfadjoint on Ẽ :

ℓF ◦ A1 + ℓA∗

1(w)
◦ A1

ℓF ◦ A2 + ℓA∗

1(w)
◦ A2 − A∗

1 ◦ ℓ
∗
A∗

2,w

ℓA∗

2(w)
◦ A2.

In our computations we will also need the linearization of Eqs. (12).

8 Lemma. The linearization of Eqs. ( 12) computed in ψ1 ∈ P̂ yields the equations

ℓℓF+A∗

1(w),A1(ψ1) + ℓF+A∗

1(w)
◦ ℓA1,ψ1 − ℓA∗

1,ℓ
∗

F+A∗

1(w)
(ψ1) − A∗

1 ◦ ℓℓ∗F+A∗

1(w)
,ψ1

= B1(·, ψ1) ◦ ℓF+A∗

1(w)

(13a)

ℓℓF+A∗

1(w),A2(ψ1) + ℓF+A∗

1(w)
◦ ℓA2,ψ1 − ℓA∗

1,ℓ
∗

A∗

2(w)
(ψ1) − A∗

1 ◦ ℓℓ∗A∗

2(w)
,ψ1

− ℓA∗

2,ℓ
∗

F+A∗

1(w)
(ψ1) − A∗

2 ◦ ℓℓ∗F+A∗

1(w)
,ψ1 + ℓℓA∗

2(w),A1(ψ1) + ℓA∗

2(w)
◦ ℓA1,ψ1

= B2(·, ψ1) ◦ ℓF+A∗

1(w)
+ B1(·, ψ1) ◦ ℓA∗

2(w)

(13b)

ℓℓA∗

2(w),A2(ψ1) + ℓA∗

2(w)
◦ ℓA2,ψ1 − ℓA∗

2,ℓ
∗

A∗

2(w)
(ψ1) − A∗

2 ◦ ℓℓ∗A∗

2(w)
,ψ1 = B2(·, ψ1) ◦ ℓA∗

2(w)

(13c)

up to terms which vanish on Ẽ .

Proof. We make use of the formula

ℓ∆◦�(α) = ℓ∆,�(α) +∆ ◦ ℓ�,α +∆ ◦� ◦ ℓα.

Let us apply the above formula to Eq. (12a) computed at ψ1:

ℓℓF+A∗

1(w),A1(ψ1) + ℓF+A∗

1(w)
◦ ℓA1,ψ1 + ℓF+A∗

1(w)
◦ A1 ◦ ℓψ1

− ℓA∗

1,ℓ
∗

F+A∗

1(w)
(ψ1) − A∗

1 ◦ ℓℓ∗F+A∗

1(w)
,ψ1 − A∗

1 ◦ ℓ
∗
F+A∗

1(w)
◦ ℓψ1

= ℓB1(·,·),(F+A∗

1(w),ψ1) + B1(·, ψ1) ◦ ℓF+A∗

1(w)
+ B1(F + A∗

1(w), ·) ◦ ℓψ1 .

We obtain Eq. (13a) by observing that the term ℓB1(·,·),(F+A∗

1(w),ψ1) vanishes on Ẽ and
that terms composed with ℓψ1 cancel by virtue of Eq. (12a). The two remaining equa-
tions can be derived with similar reasoning.
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Now let us consider the operators Ã1, Ã2 : P̂ ⊕ P̂ → κ ⊕ κ̂ defined by

(14) Ã1 =

(

A1 −A1

0 ℓ∗F+A∗

1(w)+A
∗

2(w)

)

, Ã2 =

(

A2 −A2

−ℓ∗F+A∗

1(w)+A
∗

2(w)
0

)

.

9 Proposition. We have the equalities

ℓF̃ ◦ Ã1 − Ã∗
1 ◦ ℓ

∗
F̃
= B̃1(F̃ , ·)(15)

ℓF̃ ◦ Ã2 − Ã∗
2 ◦ ℓ

∗
F̃
= B̃2(F̃ , ·)(16)

where

B̃1((p1, p
′
1), (ψ2, ψ

′
2)) =

(B1(p1, ψ2)− B1(p1, ψ
′
2),−B1(p1, ψ2)− B2(p1, ψ

′
2)−B1(p

′
1, ψ

′
2)−B2(p

′
1, ψ

′
2))(17)

B̃2((p1, p
′
1), (ψ2, ψ

′
2)) =

(B1(p1, ψ2) + B2(p1, ψ2) + B1(p
′
1, ψ2) + B2(p

′
1, ψ

′
2), B2(p

′
1, ψ2)−B2(p

′
1, ψ

′
2))(18)

It follows that the operators Ã1, Ã2 define two variational bivectors on Ẽ .

Proof. We have

ℓF̃ ◦ Ã1 − Ã∗
1 ◦ ℓ

∗
F̃

=

(

ℓF+A∗

1(w)
A∗

1

ℓA∗

2(w)
A∗

2

)

·

(

A1 −A1

0 ℓ∗F+A∗

1(w)+A
∗

2(w)

)

−

(

A∗
1 0

−A∗
1 ℓF+A∗

1(w)+A
∗

2(w)

)

·

(

ℓ∗F+A∗

1(w)
ℓ∗A∗

2(w)

A1 A2

)

=

(

B1(F + A∗
1(w), ·) −B1(F + A∗

1(w), ·)
−B1(F + A∗

1(w), ·) −B2(F + A∗
1(w), ·)− (B1 + B2)(A

∗
2(w), ·)

)

,

where the last equality is obtained by Lemma 6. Eqs. (16) and (18) can be proved in
the same way.

The last statement follows directly from the definitions (Eqs. (5) and (6)).

Our next task is to prove that the bivectors from the above proposition endow Ẽ

with a bi-Hamiltonian structure. To this aim we have to compute the Schouten brackets
[[Ãi, Ãj ]] for i, j = 1, 2. To do this, we have to compute the linearization ℓÃi,(ψ1,ψ

′

1)
and

the operators B̃∗
i , with i = 1, 2 (here the adjoint is taken with respect to the first

argument). We have

(19) ℓÃ1,(ψ1,ψ
′

1)
=

(

ℓA1,ψ1 − ℓA1,ψ
′

1
0

ℓℓ∗
F+A∗

1(w)+A∗

2(w)
,ψ′

1
ℓ∗A1+A2,ψ

′

1

)

,

and

(20) ℓÃ2,(ψ1,ψ
′

1)
=

(

ℓA2,ψ1 − ℓA2,ψ
′

1
0

−ℓℓ∗
F+A∗

1(w)+A∗

2(w)
,ψ1 −ℓ∗A1+A2,ψ1

)

directly from the definitions.



10 Integrability of Kupershmidt deformations

10 Lemma. We have

B̃∗
1((ψ1, ψ

′
1), (ψ2, ψ

′
2))

= (B∗
1(ψ1, ψ2)−B∗

1(ψ1, ψ
′
2)−B∗

1(ψ
′
1, ψ2)− B∗

2(ψ
′
1, ψ

′
2),−B

∗
1(ψ

′
1, ψ

′
2)−B∗

2(ψ
′
1, ψ

′
2))

(21)

B̃∗
2((ψ1, ψ

′
1), (ψ2, ψ

′
2))

= (B∗
1(ψ1, ψ2) + B∗

2(ψ1, ψ2), B
∗
1(ψ1, ψ2) + B∗

2(ψ1, ψ
′
2) + B∗

2(ψ
′
1, ψ2)−B∗

2(ψ
′
1, ψ

′
2))

(22)

Proof. In fact we can write

B̃1((p1, p
′
1), (ψ2, ψ

′
2)) =

(

B1(·, ψ2)− B1(·, ψ
′
2) 0

−B1(·, ψ2)−B2(·, ψ
′
2) −B1(·, ψ

′
2)−B2(·, ψ

′
2)

)

·

(

p1
p′1

)

.

It follows that

B̃∗
1((ψ1, ψ

′
1), (ψ2, ψ

′
2)) =

(

B∗
1(·, ψ2)−B∗

1(·, ψ
′
2) −B∗

1(·, ψ2)−B∗
2(·, ψ

′
2)

0 −B∗
1(·, ψ

′
2)−B∗

2(·, ψ
′
2)

)

·

(

ψ1

ψ′
1

)

.

The other identity follows in an analogous way.

Note that B̃∗
1 and B̃∗

2 are skew-symmetric with respect to the interchange of the
arguments (ψ1, ψ

′
1) and (ψ2, ψ

′
2).

11 Theorem. The Kupershmidt deformation Ẽ is a bi-Hamiltonian equation with re-
spect to the variational bivectors Ã1, Ã2.

Proof. We have to prove the conditions

(23)

[[Ãi, Ãj ]]((ψ1, ψ
′
1), (ψ2, ψ

′
2))

= ℓÃi,(ψ1,ψ
′

1)
(Ãj(ψ2, ψ

′
2))− ℓÃi,(ψ2,ψ

′

2)
(Ãj(ψ1, ψ

′
1))

+ ℓÃj ,(ψ1,ψ
′

1)
(Ãi(ψ2, ψ

′
2))− ℓÃj ,(ψ2,ψ

′

2)
(Ãi(ψ1, ψ

′
1))

− Ãi(B̃
∗
j ((ψ1, ψ

′
1), (ψ2, ψ

′
2)))− Ãj(B̃

∗
i ((ψ1, ψ

′
1), (ψ2, ψ

′
2))) = 0,

for i, j = 1, 2. We will only prove them for i = 1, j = 2, other computations being very
similar. First of all we compute the summands in the expression (23):

ℓÃ1,(ψ1,ψ
′

1)
(Ã2(ψ2, ψ

′
2))

=
(

(ℓA1,ψ1 − ℓA1,ψ
′

1
)(A2(ψ2)− A2(ψ

′
2)),

L (ψ1, A2(ψ2)− A2(ψ
′
2)) + ℓ∗A1+A2,ψ1

(−ℓ∗F+A∗

1(w)+A
∗

2(w)
(ψ′

2))
)

,

ℓÃ2,(ψ1,ψ
′

1)
(Ã1(ψ2, ψ

′
2))

=
(

(ℓA2,ψ1 − ℓA2,ψ
′

1
)(A1(ψ2)− A1(ψ

′
2)),
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− L (ψ1, A1(ψ2)− A1(ψ
′
2))− ℓ∗A1+A2,ψ1

(ℓ∗F+A∗

1(w)+A
∗

2(w)
(ψ′

2))
)

,

Ã1(B̃
∗
2((ψ1, ψ

′
1), (ψ2, ψ

′
2)))

= (A1(B
∗
2(ψ1, ψ2)− B∗

2(ψ1, ψ
′
2)−B∗

2(ψ
′
1, ψ2) +B∗

2(ψ
′
1, ψ

′
2)),

ℓ∗F+A∗

1(w)+A
∗

2(w)
(B∗

1(ψ1, ψ2) + B∗
2(ψ1, ψ

′
2) + B∗

2(ψ
′
1, ψ2)− B∗

2(ψ
′
1, ψ

′
2))),

Ã2(B̃
∗
1((ψ1, ψ

′
1), (ψ2, ψ

′
2)))

= (A2(B
∗
1(ψ1, ψ2)− B∗

1(ψ1, ψ
′
2)−B∗

1(ψ
′
1, ψ2) +B∗

1(ψ
′
1, ψ

′
2)),

− ℓ∗F+A∗

1(w)+A
∗

2(w)
(B∗

1(ψ1, ψ2)−B∗
1(ψ1, ψ

′
2)− B∗

1(ψ
′
1, ψ2)−B∗

2(ψ
′
1, ψ

′
2))),

were we introduced the notation L (ψ1, ϕ2) = ℓℓ∗
F+A∗

1(w)+A∗

2(w)
,ψ1(ϕ2). Let us set

(ϕ3, ψ
′
3) = [[Ã1, Ã2]]((ψ1, ψ

′
1), (ψ2, ψ

′
2)).

We have

ϕ3 = [[A1, A2]](ψ1, ψ2) + [[A1, A2]](ψ
′
1ψ

′
2)− [[A1, A2]](ψ

′
1, ψ2)− [[A1, A2]](ψ1, ψ

′
2) = 0

because [[A1, A2]] = 0.
As for the second component ψ′

3, we first observe that the operator

(24) L (ψ′
1, ·) : κ → κ̂

is selfadjoint. Now, we take the adjoint of Eqs. (13) and compute them in ψ2 ∈ P̂ using
Eq. (8). We obtain

ℓ∗ℓ∗
F+A∗

1(w)
,ψ2

(A1(ψ1)) + ℓ∗A1,ψ1
(ℓ∗F+A∗

1(w)
(ψ2))

− ℓ∗A1,ψ2
(ℓ∗F+A∗

1(w)
(ψ1))− ℓ∗ℓ∗

F+A∗

1(w)
,ψ1

(A1(ψ2)) = ℓ∗F+A∗

1(w)
(−B∗

1(ψ1, ψ2))

(25a)

ℓ∗ℓ∗
F+A∗

1(w)
,ψ2

(A2(ψ1)) + ℓ∗A2,ψ1
(ℓ∗F+A∗

1(w)
(ψ2))− ℓ∗A1,ψ2

(ℓ∗A∗

2(w)
(ψ1))− ℓ∗ℓ∗

A∗

2(w)
,ψ1

(A1(ψ2))

− ℓ∗A2,ψ2
(ℓ∗F+A∗

1(w)
(ψ1))− ℓ∗ℓ∗

F+A∗

1(w)
,ψ1

(A2(ψ2)) + ℓ∗ℓ∗
A∗

2(w)
,ψ2

(A1(ψ1)) + ℓ∗A1,ψ1
(ℓ∗A∗

2(w)
(ψ2))

= ℓ∗F+A∗

1(w)
(−B∗

2(ψ1, ψ2)) + ℓ∗A∗

2(w)
(−B1(ψ1, ψ2)),

(25b)

ℓ∗ℓ∗
A∗

2(w)
,ψ2

(A2(ψ1)) + ℓ∗A2,ψ1
(ℓ∗A∗

2(w)
(ψ2))− ℓ∗A2,ψ2

(ℓ∗A∗

2(w)
(ψ1))− ℓ∗ℓ∗

A∗

2(w)
,ψ1

(A2(ψ2))

= ℓ∗A∗

2(w)
(−B∗

2(ψ1, ψ2)).

(25c)

Then, we sum the above three equations to get one single equation, that we compute
two times in (ψ1, ψ

′
2) and (ψ′

1, ψ2) respectively. By replacing the result into ψ′
3 we obtain

ψ′
3 = L (ψ′

2, A1(ψ1) + A2(ψ
′
1)) + L (ψ2, A1(ψ1) + A2(ψ

′
1))



12 Integrability of Kupershmidt deformations

− L (ψ′
1, A1(ψ2) + A2(ψ

′
2))− L (ψ1, A1(ψ2) + A2(ψ

′
2)).

We define the operators

�1,�
′
1 : (κ̂ × κ)× (P̂ × P̂ ) → (κ × κ̂), �2,�

′
2 : (P̂ × P̂ )× (κ̂ × κ) → (κ × κ̂),

as follows:

�1((ϕ1, ϕ
′
1), (ψ2, ψ

′
2)) = (0,−L (ψ′

2, ϕ
′
1)), �2((ψ1, ψ

′
1), (ϕ2, ϕ

′
2)) = (0,L (ψ′

1, ϕ
′
2)),

�
′
1((ϕ1, ϕ

′
1), (ψ2, ψ

′
2)) = (0,L (ψ2, ϕ

′
1)), �

′
2((ψ1, ψ

′
1), (ϕ2, ϕ

′
2)) = (0,+L (ψ1, ϕ

′
2)).

We have

(0, ψ′
3) = �1(ℓ

∗
Ẽ
(ψ1, ψ

′
1), (ψ2, ψ

′
2)) +�2((ψ1, ψ

′
1), ℓ

∗
Ẽ
(ψ2, ψ

′
2))

+�
′
1(ℓ

∗
Ẽ
(ψ1, ψ

′
1), (ψ2, ψ

′
2)) +�

′
2((ψ1, ψ

′
1), ℓ

∗
Ẽ
(ψ2, ψ

′
2)),

hence the three-vector [[Ã1, Ã2]] is zero up to the equivalence relation (7).

12 Theorem. Let ω1, ω2, . . . is a Magri hierarchy for E . Suppose that there exist
extensions of ωi, A1, and A2 onto J∞ such that on J∞ we have

d̄ωi = 〈ψi, F 〉,

A1(ψi) = A2(ψi+1),

here ψi is an extension of the generating function of ωi. Then (ψi,−ψi+1), i = 1, 2, . . . is
a Magri hierarchy for the Kupershmidt deformation Ẽ .

Proof. On J̃∞ we have

d̄ωi = 〈ψi, F 〉 = 〈ψi, F + A∗
1(w)〉 − 〈ψi, A

∗
1(w)〉

= 〈ψi, F + A∗
1(w)〉 − 〈A1(ψi), w〉+ d̄χ1

= 〈ψi, F + A∗
1(w)〉 − 〈A2(ψi+1), w〉+ d̄χ1

= 〈ψi, F + A∗
1(w)〉 − 〈ψi+1, A

∗
2(w)〉+ d̄χ2.

Thus, the form ωi − χ2 is a conservation law with the generating function (ψi,−ψi+1).
The condition Ã1(ψi,−ψi+1) = Ã2(ψi+1,−ψi+2) can be easily checked by direct compu-
tation.
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