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Abstract

We introduce the general concept of higher order absolute con-
tact differentiation that is based on the idea of semiholonomic contact
elements. We clarify how the moving frame method leads to the co-
ordinate functions of the field of r-th order contact elements on a
submanifold of Klein space and of the r-th absolute contact differen-
tial of a submanifold of Cartan space. We point out that the standard
geometric objects of submanifolds are defined on contact elements,
so that they are of universal character. In examples, we use heavily
the concept of universal horizontal and vertical bundle over contact
elements.
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Introduction

The present paper was initiated by a conference talk by the second author
on the contact element approach to geometric objects of submanifolds of
Riemannian manifolds, [24]. Generally speaking, he pointed out that these
objects are of universal character. Indeed, they are defined on the bundles of
contact (n, r)-elements, so that they can be applied to every n-submanifold
and are independent of its parametrization. This fact was also observed
by the first author for submanifolds of Klein spaces in connection with the
Cartan method of moving frames, [14], as well as for submanifolds of Cartan
spaces, [13]. (We replace the term “Cartan geometry” from [22] by “Cartan
space”, see Section 3 for justification.)

In the course of the present research we realized that our approach to sub-
manifolds of Cartan spaces is essentially based on the ideas of semiholonomic
contact element and absolute contact differentiation. So, in the present paper
we start with basic properties of nonholonomic and semiholonomic contact
elements. In Section 2 we introduce the general concept of r-th order ab-
solute contact differentiation, that leads to semiholonomic contact elements.
Section 3 is devoted to two equivalent definitions of Cartan space. The in-
terrelations between both points of view are essential for our research.

In Section 4 we recall, in the case of an arbitrary Klein space S = G/H,
how the moving frame approach leads to the coordinate functions of the field
of r-th order contact elements determined by a submanifold N ⊂ S. Then we
present the general concept of r-th order geometric object for n-submanifolds
of S that is motivated by the computational procedures related with the
Cartan method of moving frames from [17]. We also clarify that the Cartan
prolongation procedure leads to the equations of the infinitesimal action of
H on the standard fiber of the bundle of contact (n, r)-elements on S, that
can be used for evaluating the geometric objects. In Section 5 we modify
these ideas to submanifolds of a Cartan space S of type S. This is based on
the concept of semiholonomic (n, r)-object. In Section 6, Proposition 8 reads
that if S is torsion-free, then the values of the second order absolute contact
differentiation are holonomic. In particular, this is true for the submanifolds
of a Riemannian manifold, that is considered as a Cartan space with respect
to the Levi-Civita connection.
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In Section 7 we define the universal horizontal and vertical bundles for
n-submanifolds. As an example, we discuss the universal version of the fun-
damental vertical-valued quadratic form for submanifolds of affine spaces. In
Section 8 we introduce the concept of reduced torsion and clarify that its
universal version coincides with the difference tensor of second order semi-
holonomic contact elements. This yields another proof of Proposition 8.
At this occasion we also illustrate the use of the algorithm from Section 5.
Further we point out that in the case of a 2-submanifold of a 3-space with
projective connection, the reduced torsion gives rise to an invariant discov-
ered already by É. Cartan in [4]. In the last section, we extend the idea of
universality to a wide class of geometric objects for submanifolds.

All manifolds and maps are assumed to be infinitely differentiable. Unless
otherwise specified, we use the terminology and notation from [16].

1 Semiholonomic contact elements

The bundle of contact (n, r)-elements Kr
nM on a manifold M can be defined

as the factor space

(1) Kr
nM = reg T r

nM/Gr
n, n < m = dimM

of the space of regular (n, r)-velocities on M with respect to the right ac-
tion, determined by the jet composition, of the r-th differential group Gr

n in
dimension n, [16]. So every n-submanifold N ⊂ M defines a contact (n, r)-
element krxN for every x ∈ N . This gives rise to a map krN : N → Kr

nM ,
that can be viewed as a section of the restriction (Kr

nM)N of Kr
nM over N .

We write k : reg T r
nM → Kr

nM for the factor projection and denote by the
same symbol the induced map k : reg Jr(N,M) → Kr

nM . We remark that
these classical contact elements are also discussed by P.J. Olver, [20], and
are called jets of submanifolds in [1].

We extend the idea of nonholonomic and semiholonomic jets by C. Ehres-
mann [5, p. 361] to contact elements. To this aim, we recall the definition
of jet prolongations of fibered manifolds, [15]. Let p : Y → M be a fibered
manifold and JrY denote the bundle of standard (holonomic) r-jets of local
sections of Y . The r-th nonholonomic jet prolongation J̃rY is defined by
the induction J̃1Y = J1Y , J̃rY = J1(J̃r−1Y → M). The r-th semiholo-
nomic jet prolongation J̄rY is defined by induction as the space of first-order
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jets j1xs of local sections s of J̄r−1Y → M such that s(x) = j1x(βr−1 ◦ s),
where βr−1 : J̄

r−1Y → J̄r−2Y is defined in the induction procedure with
J̄1Y = J1Y → Y . We have the inclusions JrY ⊂ J̄rY ⊂ J̃rY . The first one
is given by the iteration jrxs 7→ j1x(u 7→ jr−1

u s), the second one is straightfor-
ward. If p : Y = M × N → M is the first product projection, then we set
J̃r(M,N) = J̃r(M ×N) and J̄r(M,N) = J̄r(M ×N).

Definition 1. The space K̃r
nM of nonholonomic contact (n, r)-elements on

M is defined by the iteration K̃r
nM = K1

n(K̃
r−1
n M), K̃1

nM = K1
nM .

Hence K̃r
nM → K̃r−1

n M is a fibered manifold. The injection Kr
nM →֒

K̃r
nM is determined by the rule

krxN 7→ k1X(k
r−1
N ), X = kr−1

x N,

where kr−1
N is interpreted as a submanifold of Kr−1

n M ⊂ K̃r−1
n M .

We are going to clarify up to what extent the manifold of nonholonomic
contact elements can be regarded as a quotient manifold analogously to (1).
To this aim, we recall the definition of composition of nonholonomic jets [5],
[15]. Let M , N , Q be three manifolds. For r = 1 we have the standard
composition of 1-jets in J1(N,Q) with 1-jets in J1(M,N), yielding 1-jets in
J1(M,Q). If β : J̃r−1(M,N) → N is the target jet projection, X = j1xs(u) ∈
J̃r
x(M,N)y, u ∈M , and Z = j1yσ ∈ J̃r

y (N,Q)z, y = β(s(x)), then we define

Z ◦X = j1x(σ(β(s(u))) ◦ s(u)) ∈ J̃r
x(M,Q)z

with the composition of nonholonomic (r − 1)-jets on the right hand side.
We say that X ∈ J̃r

x(M,N)y is regular, if there exists Z ∈ J̃r
y (N,M)x such

that Z ◦X = jrx idM . There are r underlying 1-jets of X and X is regular iff
all of them correspond to injective linear maps TxM → TyN .

We define T̃ r
nM = J̃r

0 (R
n,M). This is extended into a bundle functor T̃ r

n

on Mf in the standard way, [5]. A natural equivalence of functors

µr
M : T̃ r

nM → T 1
n(T̃

r−1
n M)

is defined as follows. EveryX ∈ T̃ r
nM is of the formX = j10ϕ, where ϕ : R

n →
J̃r−1(Rn,M) is a section of the source projection J̃r−1(Rn,M) → Rn. On the
other hand, Z ∈ T 1

n(T̃
r−1
n M) means Z = j10ψ with ψ : Rn → J̃r−1

0 (Rn,M).
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Write tu : R
n → Rn for the translation x 7→ x+ u. Then u 7→

(
ϕ(u) ◦ jr−1

0 tu
)

is a map Rn → J̃r−1
0 (Rn,M) and we set

µr
M(X) = j10

(
ϕ(u) ◦ jr−1

0 tu
)
.

To obtain the inverse map, we consider u 7→ ψ(u) ◦ jr−1
u t−1

u . Then we have

(µr
M)−1(Z) = j10

(
ψ(u) ◦ jr−1

u t−1
u

)
.

One verifies easily that µr
M maps reg T̃ r

nM into reg T 1
n(reg T̃

r−1
n M).

On every fibered manifold p : Y →M , a contact element X ∈ K1
nY is said

to be transversal, if the underlying linear n-space of X has zero intersection
with the vertical tangent space of Y . We write trK1

nY ⊂ K1
nY for the

subset of all transversal contact (n, 1)-elements on Y . This is an open subset
of K1

nY and trK1
nY → Y is a fibered manifold. For r ≥ 2, the bundle

tr K̃r
nM ⊂ K̃r

nM of nonholonomic transversal contact (n, r)-elements on M
is defined by the iteration

tr K̃r
nM = trK1

n(tr K̃
r−1
n M →M).

We recall that G̃r
n = reg J̃r

0 (R
n,Rn)0 is a group with respect to the composi-

tion of nonholonomic jets.

Proposition 1. We have

(2) tr K̃r
nM = reg T̃ r

nM
/
G̃r

n.

We write k : reg T̃ r
nM → tr K̃r

nM for the factor projection.

Proof. Assume by induction tr K̃r−1
n M = reg T̃ r−1

n M
/
G̃r−1

n . So we have

defined k : reg T̃ r−1
n M → tr K̃r−1

n M . Consider X ∈ reg T 1
n(reg T̃

r−1
n M),

X = j10ϕ(u), ϕ : R
n → T̃ r−1

n M . Then u 7→ k
(
ϕ(u)

)
is the parametriza-

tion of an n-dimensional submanifold of tr K̃r−1
n M that is transversal to

tr K̃r−1
n M → M . Hence we have k

(
j10(k(ϕ(u)))

)
∈ tr K̃r

nM . Consider an-

other ψ(v) : Rn → T̃ r−1
n M such that k

(
j10k(ψ(v))

)
= k

(
j10k(ϕ(u))

)
. First of

all, there is a map v = f(u) such that

j10k
(
ψ(f(u))

)
= j10k

(
ϕ(u)

)
.

By the induction hypothesis, there is a map g : Rn → G̃r−1
n such that ψ

(
f(u)

)
◦

g(u) = ϕ(u). We have j10f ∈ G1
n and j10g ∈ T 1

nG̃
r−1
n and our construction is

in accordance with the well known expression G̃r
n = G1

n ⋊ T 1
nG̃

r−1
n , [16].



6 Absolute differentiation in Cartan spaces

Definition 2. The bundle of semiholonomic contact (n, r)-elements K̄r
nM ⊂

K̃r
nM is the subset of all k1XQ such thatQ ⊂ K̄r−1

n M , X = k1βr−1(X)

(
βr−1(Q)

)
,

where βr−1 : K̄
r−1
n M → K̄r−2

n M is defined in the induction procedure starting
with the bundle projection K1

nM →M .

We easily deduce K̄r
nM ⊂ tr K̃r

nM and Kr
nM ⊂ K̄r

nM . Analogously to
Proposition 1, we obtain

(3) K̄r
nM = reg T̄ r

nM
/
Ḡr

n,

where Ḡr
n = reg J̄r

0 (R
n,Rn)0 is a subgroup of G̃r

n. The canonical projection
to lower order semiholonomic contact elements will be denoted by the same
symbol πr

s , s < r, as in the jet case.
The underlying contact (n, 1)-element X1 of X ∈ (Kr

nR
m)x is identified

with a linear n-space in TxR
m. Write Rn,m−n for the product bundle Rn ×

Rm−n and π : Rm → Rn for its bundle projection. Denote by τKr
nR

m ⊂
Kr

nR
m the open subset of all X such that X1 is transversal to π. It is well

known that τKr
nR

m is identified with the jet prolongation JrRn,m−n, [16].
In the nonholonomic case X ∈ K̃r

nR
m, we have r underlying contact

(n, 1)-elements X
(1)
1 , . . . , X

(r)
1 . Write τK̃r

nR
m ⊂ K̃r

nR
m for the open subset of

all X such that all X
(1)
1 , . . . , X

(r)
1 are transversal to π.

Proposition 2. τK̃r
nR

m is identified with the r-th nonholonomic prolonga-
tion J̃rRn,m−n.

Proof. By Proposition 1, X ∈ τK̃r
nR

m can be expressed as X = Z ◦ G̃r
n with

Z ∈ (reg T̃ r
nR

m)x. Write Z
(1)
1 , . . . , Z

(r)
1 for the underlying 1-velocities of Z.

Then j1xπ ◦ Z
(1)
1 , . . . j1xπ ◦ Z

(r)
1 are invertible 1-jets, so that ζ := (jrxπ) ◦ Z ∈

J̃r
0 (R

n,Rn) is invertible. Then Z ◦ ζ−1 satisfies (jr0π) ◦ (Z ◦ ζ−1) = jrπ(x) idRn ,

which implies Z ◦ ζ−1 ∈ J̃rRn,m−n.

In the semiholonomic case X ∈ K̄r
nR

m, we have X
(1)
1 = · · · = X

(r)
1 =: X1.

We write τK̄r
nR

m ⊂ K̄r
nR

m for the open subset of all X such that X1 is
transversal to π : Rm → Rn. In the same way as in Proposition 2, we con-
struct an identification

(4) τK̄r
nR

m ≈ J̄rRn,m−n,

where J̄rRn,m−n denotes the r-th semiholonomic prolongation of Rn,m−n. In
particular, for n = 1 we have K̄r

1M = Kr
1M .
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2 The absolute contact differentiation

Consider a principal bundle P (M,G) with a principal connection Γ, a left
G-space F and the associated bundle E = P [F ]. For every section s of E,
its absolute differential can be viewed as a section

∇Γs : M →
⋃

x∈M

J1
x(M,Ex)s(x),

[16]. If Γ(u) = j1xρ for a local section ρ of P , then (∇Γs)(x) is transformed
by ũ−1 into

(5) j1x
(
ρ̃(y)

−1
(s(y))

)
∈ J1

x(M,F ), y ∈M,

where ũ : F → Ex denotes the frame map corresponding to u ∈ P (see also
the beginning of Section 4).

Having in mind submanifolds of Cartan spaces, we introduce the concept
of absolute contact differential. Replace M by N and assume n = dimN <
dimF . Clearly, all spaces K1

n(Ex), x ∈ N , form an associated bundle

⋃

x∈N

K1
n(Ex) = P [K1

nF ].

Assume further that each ∇Γs(x) is a regular 1-jet.

Definition 3. The absolute contact differential k∇Γ of s is defined by

(
(k∇Γ)s

)
(x) = k

(
(∇Γs)(x)

)
, x ∈ N.

Hence k∇Γs is a section N → P [K1
nF ]. Since we have a section of another

bundle associated to P , we can construct

∇Γ

(
(k∇Γ)s

)
: N →

⋃

x∈N

J1
x

(
N,K1

n(Ex)
)
.

This is formed by regular 1-jets and we define

((k∇2
Γ)s)(x) = k

(
∇Γ((k∇Γ)s)(x)

)
.

One verifies easily that this is an element of K̄2
n(Ex). Hence (k∇2

Γ)s is a
section N → P [K̄2

nF ].
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Definition 4. The r-th absolute contact differential of s is defined by the
iteration

(6)
(
(k∇r

Γ)s
)
(x) = k

(
∇Γ((k∇

r−1
Γ )s)(x)

)
.

By the very definition of semiholonomic contact (n, r)-elements, we de-
duce that (6) form a section

(k∇r
Γ)s : N → P [K̄r

nF ].

Remark 1. If Γ is curvature free, then P can be locally viewed as the product
N × G with the canonical flat connection. Then (5) implies that the values
of (k∇r

Γ)s are holonomic contact elements for every section s : M → E.

3 Cartan spaces

We recall that a Klein space is a manifold S with a transitive left action
(g, x) 7→ gx of a Lie group G. Fix a point c ∈ S and write H for its stability
group. Then S coincides with the coset space S = G/H, c = {H} and G can
be viewed as a principal H-bundle over S with bundle projection g 7→ gc.
Every g ∈ G(S,H) is interpreted as a frame g̃ : S → S, g̃(a) = ga, a ∈ S.

A “curved” version of S can be defined in two formally different ways.
First we present the viewpoint from the book by Sharpe, [22]. Consider a
pair (G,H) of a Lie group G and a closed subgroup H ⊂ G.

Definition 5a. Cartan geometry of type (G,H) is a principal bundle Q(M,H)
with 1-form ω : TQ→ g (which is said to be Cartan connection) such that

(i) ω(u) : TuQ→ g is a linear isomorphism for every u ∈ Q,

(ii) (Rh)
∗ω = Ad(h−1) ◦ ω for every h ∈ H,

(iii) ω
(
X∗(u)

)
= X for every X ∈ h and every u ∈ Q, where X∗ is the

fundamental vector field on Q induced by X.

We remark that, in addition to [22], further interesting examples of Car-
tan spaces can be found in [2] and [23].

In what follows we assume G acts effectively on the coset space G/H. So
S = G/H is a Klein space. Clearly, TcS = g/h.

On the other hand, consider P (M,G), F , E = P [F ] as in Section 2 and
fix a section s : M → E. The following definition in [10] or [11] was based
directly on some ideas by Ehresmann, [5].
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Definition 5b. Space with Cartan connection of type (G,H) over M is a
quadruple S = S(M) =

(
P (M,G), Γ, E = P [G/H], s

)
such that dimM =

dimS and the absolute differential ∇Γs is formed by regular 1-jets.

We deduce that both concepts are naturally equivalent. In the case b), s
defines a reduction to subgroup H

Q =
{
u ∈ P, ũ(c) = s(p(u))

}
,

where p : P →M is the bundle projection. Write ω for the restriction of the
connection form ωΓ : TP → g to Q. Clearly, ω : TQ → g satisfies (ii) and
(iii) from Definition 5a.

Lemma 1. ω satisfies (i), iff the 1-jets (∇Γs)(x) are regular for all x ∈M .

Proof. The vertical tangent bundle V E is an associated bundle P [TS] and

T ũ : TS → TEx is the induced frame map on V E. Consider X = dγ(0)
dt

∈
TxM , γ : R →M . Then

(T ũ)−1
(
(∇Γs)(X)

)
=

d

dt

∣∣
0
̺̃
(
γ(t)

)−1(
s(γ(t))

)
.

Since G acts transitively on S, we have

̺̃
(
γ(t)

)−1(
s(γ(t))

)
= δ(t)c, δ : R → G.

Write Z = d
dt

∣∣
0
̺
(
γ(t)

)
δ(t) ∈ TuQ. By the definition of the connection form,

we have
(T ũ)−1

(
(∇Γs)(X)

)
= ω(Z) + h ∈ TcS.

These vectors are linearly independent for a basis of TxM , iff ω(u) is a linear
isomorphism.

Using Lemma 1 one easily verifies that Definitions 5a and 5b are equiv-
alent. In what follows, S(M) will be called a Cartan space and ω will be
called its connection form.

Consider an n-submanifold N ⊂M . If we restrict all objects in question
over N , we obtain

(PN ,ΓN , EN , sN) = SN = (QN , ωN).

Then we have the situation from Section 2. By induction we deduce that(
(k∇r

ΓN
)sN

)
(x) depends on krxN only. Write Sr

n = (Kr
nS)c and S̄

r
n = (K̄r

nS)c.
Clearly, both Sr

n and S̄r
n are H-spaces.
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Definition 6. The map

Γr
n : K

r
nM → Q[S̄r

n], Γr
n(k

r
xN) =

(
(k∇r

ΓN
)sN

)
(x)

is called the formal absolute contact (n, r)-differentiation on S. The map

Γr
N = Γr

n ◦ k
r
N : N → QN [S̄

r
n]

is said to be the r-th absolute contact differential of N .

If S is the Klein space G/H with the canonical flat connection, we have
Q[Sr

n] = Kr
nS. Then, by Remark 1, Γr

n is the identity of Kr
nS composed with

the injection Kr
nS →֒ K̄r

nS = Q[S̄r
n].

Remark 2. In [13], our investigation of the r-th absolute contact differen-
tial of N was based on Ehresmann’s idea of higher order prolongations of
connection Γ. But (5) implies directly that both approaches coincide. So we
can use our results from [13] in what follows.

4 Submanifolds of Klein spaces

If N is a submanifold of Klein space S, we write GN for the restriction of
principal bundle G(S,H) over N . Then krN is a section N → GN [S

r
n], that is

sometimes called the fundamental r-th order field on N . It was pointed out
by G. F. Laptev, [17] (but in a computational form only), that a modification
of the Cartan method of moving frames leads to the coordinate functions of
krN .

In general, consider a principal G-bundle p : P → M , a left G-space F
and the associated bundle E = P [F ] = P ×G F . Every u ∈ Px, x ∈ M , is
interpreted as the frame map ũ : F → Ex, ũ(a) = {u, a}, a ∈ F . For every
section s : M → E, the induced map

(7) P → F, u 7→ ũ−1
(
s(p(u))

)

is said to be the frame form of s, [16]. If za are some local coordinates on F ,
then the locally defined compositions of (7) with za are called the coordinate
functions of s.

Further, every left action l : G× F → F induces the infinitesimal action
λ : g×F → TF . The Maurer-Cartan form ϕ : TG→ g yields an identification
G× g ≈ TG. This defines an involutive distribution Λ on G× F ,

Λ(g, z) =
{(

(g,X), λ(X, z)
)
;X ∈ g

}
, g ∈ G, z ∈ F,
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whose integral manifolds determine action l. If we consider some local co-
ordinates za on F and a basis of g, the coordinate expression of λ is of the
form

dza = ηaI (z)ξ
I , (ξI) ∈ g, I = 1, . . . , dimG.

Then the equations of Λ are

dza − ηaI (z)ϕ
I = 0, ϕ = (ϕI).

They are usually called the equations of the infinitesimal action λ of G on
F .

The elements of GN are said to be zero order frames of N . They are
characterized by the property that the image g̃(c) of c ∈ S under the frame
map g̃ lies in N . So the frame form of krN is a map GN → Sr

n. Consider the
canonical coordinates

xi, xp, i = 1, . . . , n, p = n+ 1, . . . ,m

on Rn,m−n. The induced coordinates on the r-th jet prolongation JrRn,m−n

are
xpi , x

p
ij , . . . , x

p
i1...ir

.

Choose a local coordinate system xi, xp on S centered at c. This identifies
locally Sr

n with Jr
0R

n,m−n. We write

(8) (api , a
p
ij , . . . , a

p
i1...ir

) : GN → Sr
n

for the locally defined coordinate functions of section krN of GN [S
r
n].

The algorithm for finding (8) by the Cartan-like procedure from [17] is
described in [14]. This general approach is based on the use of zero order
frames of N . However, the evaluations in zero order frames are top-heavy
because of the nontrivial topological character of the classical Grassmann
manifolds. Thus, in practice one always uses the first order frames of N . So,
also here we restrict ourselves to the first order frames.

Assume that H acts transitively on S1
n, which is satisfied for all classical

Klein spaces. Choose a point cn ∈ S1
n, write H1 for its stability group and

Sr
n1 for the fiber of Sr

n → S1
n over cn. Clearly, Sr

n1 is an H1-space. A frame
g̃ ∈ GN is said to be first order frame of N , if g̃(cn) = TgcN . Clearly, the
space GN1 of all first order frames of N is a principal bundle GN1(N,H1).
If we restrict ourselves to the first order frames, the frame form of krN is a
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map GN1 → Sr
n1. Assume further that the equations of cn are dxp = 0. In

other words, the jet coordinates of cn are xpi = 0. So the first order frames
of N are characterized by api = 0. The induced global coordinates on Sr

n1

are xpij, . . . , x
p
i1...ir

. If we interpret krN as a section of the associated bundle
GN1[S

r
N1], then its coordinate functions

(apij, . . . , a
p
i1...ir

) : GN1 → Sr
n1

are globally defined.
The simpliest algorithm appears in the case there exists an Abelian sub-

group K ⊂ G such that g is the product k×h. (But all classical Klein spaces
have this property. For example, if Am is an m-dimensional affine space,
we have G = GA(m), H = GL(m) and K = Rm ⊂ GA(m) is the Abelian
subgroup of all translations on Am.) We choose a basis of g

eα, eλ, α, β = 1, . . . ,m, λ, µ, ν = m+ 1, . . . , dimG

such that eλ lie in h and eα is a basis of k.
This assumption is equivalent to the following relations on the structure

constants of G

(9) cαβγ = 0, cλαβ = 0, cαλµ = 0.

Hence the coordinate form of the structure equations dϕ + 1
2
[ϕ, ϕ] = 0 of ϕ

is

(10)
dϕα = cαλβϕ

β ∧ ϕλ,

dϕλ = cλαµϕ
µ ∧ ϕα − 1

2
cλµνϕ

µ ∧ ϕν .

We shall write πλ for the restriction of ϕλ to H. The bundle projection
G→ S identifies locally K with S. So the basis eα defines local coordinates
xα on S, with (xα) = (xi, xp).

In what follows we shall write ϕ for the restriction ϕN1 of ϕ to GN1, as
usual in concrete investigations. So our starting point are the equations

ϕp = 0.

If we substitute them into (10), we obtain

0 = cpiλϕ
λ ∧ ϕi.
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Using the Cartan lemma, we find

(11) cpiλϕ
λ = apijϕ

j, apij = apji,

where apij are some functions on GN1.
In [14], we deduced

Proposition 3. apij coincide with the coordinate functions of k2N on GN1.

In particular, (11) implies that the differential equations of H1 are

cpiλπ
λ = 0.

Now we apply exterior differentiation to (11). Using the structure equa-
tions, we obtain an expression of the form

(12)
[
dapij − Φp

ijλ(a
q
kl)ϕ

λ
]
∧ ϕj = 0.

If we apply Cartan lemma to (12), we obtain

dapij − Φp
ijλ(a

q
kl)ϕ

λ = apijkϕ
k.

(We shall see that apijk are the additional coordinate functions of k
3
N on GN1.)

This procedure can be iterated. Assume by induction that after r-3 steps
we have the equations of the infinitesimal action of H1 on Sr−2

n1

dxpij − Φp
ijλ(x

q
kl)π

λ = 0,

...

dxpi1...ir−2
− Φp

i1...ir−2λ
(xqkl, . . . , x

q
j1...jr−2

)πλ = 0

with cpiλπ
λ = 0, and it holds

cpiλϕ
λ = apijϕ

j,

...

dapi1...ir−2
− Φp

i1...ir−2λ
(aqj1j2 , . . . , a

q
j1...jr−2

)ϕλ = api1...ir−2j
ϕj.

If we apply exterior differentiation to the last row and use all these equations,
we obtain certain relations of the form

[
dapi1...ir−2k

− Φp
i1...ir−2kλ

(aqj1j2 , . . . , a
q
j1...jr−1

)ϕλ
]
∧ ϕk = 0.

In [14], we deduced
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Proposition 4. The additional equations of the infinitesimal action of H1

on Sr−1
n1 are

dxpi1...ir−1
− Φp

i1...ir−1λ
(xqj1j2 , . . . , x

q
j1...jr−1

)πλ = 0 with cpiλπ
λ = 0.

The additional coordinate functions api1...ir of krN on GN1 satisfy

dapi1...ir−1
− Φp

i1...ir−1λ
(aqj1j2 , . . . , a

q
j1...jr−1

)ϕλ = api1...irϕ
ir .

The Cartan method of moving frames is usually used for finding differen-
tial invariants of N ⊂ S and for solving the equivalence problem for N . The
fact that the above procedure yields the equations of the infinitesimal action
of H1 on S

r
n1 was used in [17] for local computations of the geometric objects

of N . Our analysis of these algorithms led us to the following conceptual
definition, [14]. Let A be an H-space.

Definition 7. A geometric (n, r)-object on S is anH-equivariant map µ : Sr
n →

A.

Since µ is anH-map, it induces the associated bundle morphism µ̄ : Kr
nS →

G[A]. The map
µN = µ̄ ◦ krN : N → GN [A]

is called the value of geometric (n, r)-object µ on N . More generally, let
W ⊂ Sr

n be an H-invariant submanifold. An n-submanifold N ⊂ S is said to
be of typeW , if the values of krN lie in GN [W ]. We can introduce a geometric
object of type W as an H-map µ : W → A. For a submanifold N of type
W , µ̄ ◦ krN is the value of µ on N . Very simple examples of W are elliptic,
parabolic and hyperbolic contact (2, 2)-elements on Euclidean 3-space.

The equations of the infinitesimal action can be used, at least locally, for
constructing the equivariant maps. A general global result is due to R. Palais,
[21]. We refer the reader to [14] for more details concerning the case of contact
elements. We underline that the globality of the infinitesimally equivariant
maps frequently follows from the geometrical interpretation of the results of
evaluations.

In practice, one constructs the geometric objects of N by using the first
order frames. If we interpret H as a principal H1-bundle H(H/H1, H1), then
Sr
n coincides with the associated bundle H[Sr

n1]. The left action of H on Sr
n

has the form
h̄{h, y} = {h̄h, y}, h, h̄ ∈ H, y ∈ Sr

n1.
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Let B be an H1-space. The associated bundle H[B] is an H-space with
respect to the action

h̄{h, z} = {h̄h, z}, h, h̄ ∈ H, z ∈ B.

This definition is correct, for h̄{hh1, h
−1
1 z} = {h̄hh1, h

−1
1 z} = h̄{h, z}, h1 ∈

H1. For every H1-map ν : Sr
n1 → B, the induced map ν̄ : H[Sr

n1] → H[B]
is H-equivariant. So every H1-map ν : Sr

n1 → B gives rise to a geometric
(n, r)-object on S.

We underline that the concept of r-th order geometric object for n-sub-
manifolds of S is of universal character. Its specification to an n-submanifold
N ⊂ S (or to a submanifold of typeW ) is constructed by means of the contact
elements, so that it is independent of parametrizations of N .

The differential invariants of submanifolds are the simpliest example of
geometric objects. In this case, A = R with the identity action ofH. Further,
if we consider the action of H on R by means of homotheties, we obtain the
so-called relative invariants.

Remark 3. According to the Cartan-like algorithm of this section (see [14]
for the use of zero order frames), the geometric objects of a submanifold
N ⊂ S are determined by the restriction ϕN of the Maurer-Cartan form of
G over N . This corresponds to the well known role of ϕN in the equivalence
problem for N , see [3], [7]. We recall that this role is based on the fact that,
for a connected manifold N , two maps f1, f2 : N → G are congruent, i.e.
there exists g ∈ G such that f1(x) = gf2(x) for all x ∈ N , if and only if
ϕ ◦ Tf1 = ϕ ◦ Tf2 : TN → g.

5 Submanifolds of Cartan spaces

Consider a Cartan space S(M) such that H acts transitively on S1
n. Let

N ⊂ M be an n-submanifold. The elements of QN are zero order frames of
N , they are characterized by ũ(c) ∈ sN(N). A frame u ∈ (QN)x is said to
be first order frame of N , if ũ(cn) = Γ1

N(x). Analogously to Section 4, these
frames form a reduction QN1 of QN to H1. In this situation, a frame u ∈ QN

is a first order frame of N , iff ωp
N(u) = 0. We write S̄r

n = (K̄r
nS)c. Then K̄

r
nS

is an associated bundle G[S̄r
n]. Further, we write S̄r

n1 for the fiber S̄r
n → S1

n

over cn.
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The r-th absolute contact differential Γr
N can be viewed as a section of

the associated bundle QN1[S̄
r
n1]. By (4), the coordinates xi, xp identify S̄r

n

locally with J̄r
0R

n,m−n. Hence the induced coordinates on S̄r
n1 are

xpij, . . . , x
p
i1...ir

arbitrary in all subscripts. The coordinate functions of Γr
N

(bpij, . . . , b
p
i1...ir

) : QN1 → S̄r
n1

are globally defined.

Assume the existence of K ⊂ G as in Section 4. Then we have the
following simple procedure for finding the coordinate functions of Γr

N , in
which the role of the Maurer-Cartan form ϕ from Section 4 is replaced by
the connection form ω. We write ω for the restriction ωN1 of ω to QN1. So
our starting point are the equations

ωp = 0.

In [13], we deduced

Proposition 5. We have

(13) cpiλω
λ = bpijω

j.

The algorithm from Section 4 is now modified as follows, [13]. Write
formally the relations, with arbitrary xpij ,

(14) cpiλϕ
λ = xpijϕ

j.

Applying exterior differentiation to (14), using the structure equations of ϕ
and ϕp = 0, we find an expression of the form

[
dxpij −Ψp

ijλ(x
q
kl)ϕ

λ
]
∧ ϕj = 0.

Proposition 6. The equations of the infinitesimal action of H1 on S̄2
n1 are

dxpij −Ψp
ijλ(x

q
kl)π

λ = 0 with cpiλπ
λ = 0.
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This procedure can be iterated. Assume that after r-3 steps we have
deduced the equations of the infinitesimal action of H1 on S̄r−2

n1

(15)

dxpij −Ψp
ijλ(x

q
kl)π

λ = 0,

...

dxpi1...ir−2
−Ψp

i1...ir−2λ
(xqkl, . . . , x

q
j1...jr−2

)πλ = 0

with cpiλπ
λ = 0. Then we write formally the relations, with arbitrary xpi1...ir−2j

,

(16) dxpi1...ir−2
−Ψp

i1...ir−2λ
(xqj1j2 , . . . , x

q
j1...jr−2

)ϕλ = xpi1...ir−2j
ϕj.

Applying exterior differentiation to (16) with ϕp = 0, using the structure
equations of ϕ and (15), we obtain an expression of the form

[
dxpi1...ir−2j

−Ψp
i1...ir−2jλ

(xqj1j2 , . . . , x
q
j1...jr−1

)ϕλ
]
∧ ϕj = 0.

Proposition 7. The additional equations of the infinitesimal action of H1

on S̄r
n1 are

dxpi1...ir−1
−Ψp

i1...ir−1λ
(xqj1j2 , . . . , x

q
j1...jr−1

)πλ = 0 with cpiλπ
λ = 0.

The coordinate functions bpij, . . . , b
p
i1...i2

of Γr
N on QN1 satisfy (13) and

dbpij −Ψp
ijλ(b

q
kl)ω

λ = bpijkω
k,

...

dbpi1...ir−1
−Ψp

i1...ir−1λ
(bqj1j2 , . . . , b

q
j1...jr−1

)ωλ = bpi1...ir−1j
ωj.

Remark 4. We underline that the absolute contact differential of any order
of N is determined by the restriction ωN of the connection form ω over N .
This is an important analogy of Remark 3. Clearly, Section 4 can be viewed
as a special case, provided we consider S as a flat Cartan space.

Now we generalize the concept of geometric (n, r)-object to Cartan spaces.
Let A be an H-space.

Definition 8. A geometric (n, r)-object on S(M) is an H-equivariant map
µ : S̄r

n → A.
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We also say that µ is a semiholonomic (n, r)-object. For n = 1 we have
S̄r
1 = Sr

1 , so that there exist holonomic (1, r)-objects only.
So we have the induced bundle morphism µ̄ : Q[S̄r

n] → Q[A]. For a sub-
manifold N ⊂M , the composition

µN = µ̄ ◦ Γr
N : N → QN [A]

is called the value of µ on N . More generally, if W ⊂ S̄r
n is an H-invariant

submanifold, then the (n, r)-objects of type W are defined analogously to
Section 4. Clearly, one can restrict himself to the first order frames of N in
the same way as above.

6 The torsion-free case

For a Cartan space S(M), Sharpe defines its curvature Ω by

(17) dω + 1
2
[ω, ω] = Ω,

[22]. So Ω is the restriction of the curvature ΩΓ of Γ to Q. It is well known
that ΩΓ can be interpreted as a map

ΩΓ : P ×M

2∧
TM → g.

Hence we may consider Ω as a map

(18) Ω: Q×M

2∧
TM → g.

The coordinate form of (17) is

(19) dωI +
1

2
cIJKω

J ∧ ωK = RI
αβω

α ∧ ωβ, I, J,K = 1, . . . , dim G.

In [9] we introduced the following concept in a slightly different, but
equivalent way. Write L = g/h = TcS and ψ : g → L for the factor projection.

Definition 9. The composition σ = ψ ◦Ω: Q×M

∧2 TM → L is called the
torsion of S.
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The absolute differentiation with respect to Γ identifies TxM with Ts(x)Ex.
Clearly, L is an H-space and the corresponding associated bundle satisfies

(20) Q[L] ≈
⋃

x∈M

Ts(x)Ex.

Hence σ can be interpreted as a section

(21) σ : M → Q[L⊗
2∧
L∗].

By (19), the coordinate expression of σ is

(22) Rγ
αβω

α ∧ ωβ.

This implies that σ coincides with the standard torsion in the classical case
of an affine connection on the linear frame bundle of M .

Remark 5. The concept of higher order torsions of Cartan spaces is dis-
cussed from a similar point of view in [10].

Our result from [9] can be now formulated as follows. (Another approach
to this assertion will be discussed in Section 8.)

Proposition 8. If the torsion of S vanishes, then the values of Γ2
n are holo-

nomic contact (n, 2)-elements.

In particular, this is true in the case of a Riemannian manifold (M, g),
that is considered as a Cartan space Em(M) with respect to the Levi-Civita
connection. Thus, from the viewpoint of our approach, the second-order
geometric objects on submanifolds of Riemannian spaces are of the same
type as in the case of submanifolds of Euclidean spaces.

7 Universal tensor bundles for submanifolds

We present another situation, in which the idea of universal geometric object
for submanifolds plays a remarkable role. We start with the case of an
arbitrary manifold M . The vertical bundle V N of N ⊂ M is the factor
bundle (TM)N/TN . A section

N →

a⊗
TN⊗

b⊗
V N⊗

c⊗
T ∗N⊗

d⊗
V ∗N
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will be called a tangent-vertical tensor field on N .
For every ξ ∈ (K1

nM)x, we denote by τ(ξ) ⊂ TxM the corresponding
n-dimensional subspace and by ν(ξ) = TxM/τ(ξ) the vertical space. Then

H1
nM =

⋃

ξ∈K1
nM

τ(ξ) and V 1
nM =

⋃

ξ∈K1
nM

ν(ξ)

are vector bundles over K1
nM and we have an exact sequence (see also [19])

(23) 0 → H1
nM →֒ (π1

0)
∗TM → V 1

nM → 0.

Definition 10. The induced bundle over Kr
nM

Hr
nM = (πr

1)
∗H1

nM or V r
nM = (πr

1)
∗V 1

nM

is called the universal horizontal or vertical (n, r)-bundle over M , respec-
tively.

We define

(24) Ir;a,bn;c,dM =
a⊗
Hr

nM⊗
b⊗
V r
nM⊗

c⊗
Hr∗

n M⊗
d⊗
V r∗
n M.

Every section ̺ : Kr
nM → Ir;a,bn;c,dM determines a tangent-vertical tensor field

̺ ◦ krN on every n-submanifold N .
For example, consider the m-dimensional affine space Am and N ⊂ Am.

For a vector X ∈ TxN , we define ϕx(X) ∈ VxN as follows. Take a curve γ(t)

on N such that dγ(0)
dt

= X. In the case of Am, the acceleration d2γ(0)
dt2

belongs

to TxAm. Its projection into VxN depends on dγ(0)
dt

only. This defines a map
ϕx : TxN → VxN , that generates a quadratic V N -valued form ϕN on N . Its
universal version is a section

(25) ϕ : K2
nAm → V 2

nAm ⊗ S2(H2∗
n Am).

Definition 11. We say that ϕ is the universal fundamental form for n-sub-
manifolds of Am.

For every submanifold N ⊂ Am, ϕ ◦ k2N is the fundamental form of N .
We remark that an application of the concept of universal tensor bundles

to the calculus of variations on submanifolds is presented in [18]. Another
interesting application of this concept can be found in [6].

In the semiholonomic case, we construct the pullbacks

H̄r
nM → K̄r

nM and V̄ r
nM → K̄r

nM

in the same way as in Definition 10.
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8 The reduced torsion and the difference ten-

sor

Consider a submanifold N of a Cartan space S(M). In the tangent space
Ts(x)Ex, we have an n-dimensional subspace τΓN(x) corresponding to Γ1

N(x).
The factor space

(26) νΓN(x) = Ts(x)Ex/τ
Γ
N(x)

will be called the vertical space of N at x. Write σN for the restriction of σ
to QN .

Definition 12. The projection σ̃N(x) of σN(x) into ν
Γ
N(x) is called the re-

duced torsion of N at x.

The universal version of the reduced torsion is closely related with the
general concept of difference tensor of semiholonomic contact (n, 2)-elements.
According to [9], every semiholonomic 2-jet X ∈ J̄2

x(M,N)y determines the
difference tensor ∆X ∈ TyN ⊗

∧2 T ∗

xM . If (xi, yα, yαi , y
α
ij) are the canonical

coordinates on J̄2(Rn,Rm), then the coordinate expression of ∆X is

(27)
(
xi, yα, yα[ij]

)
.

So ∆X = 0, iff X is a holonomic 2-jet.
Consider X ∈ reg T̄ 2

nM and ξ = k(X) ∈ K̄2
nM . The underlying 1-jet

π2
1X ∈ reg T 1

nX identifies Rn with τ(ξ1), ξ1 = π2
1ξ. The projection of ∆X

into ν(ξ1) depends on ξ only. This defines

(28) δ(ξ) ∈ ν(ξ1)⊗
2∧
τ(ξ1)

∗,

that will be called the difference tensor of ξ. Hence δ is a section

δ : K̄2
nM → V̄ 2

nM ⊗
2∧
H̄2∗

n M

that is said to be the contact difference tensor. Under the identification (4)
of τK̄2

nR
m with J̄2Rn,m−n, both approaches to the difference tensor coincide.

Clearly, ξ ∈ K2
nM iff δ(ξ) = 0.
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If we analyze σ̃ from the viewpoint of semiholonomic (n, 2)-objects, we
realize that it is determined by an H-map

(29) S̄2
n → (V 1

n S)c ⊗
2∧
(H1∗

n S)c,

that coincides with the contact difference tensor. This yields

Proposition 9. We have σ̃N(x) = 0 iff Γ2
N(x) is holonomic.

Hence Proposition 8 is a direct consequence of Proposition 9.
To illustrate the use of the algorithm from Section 5, we rededuce this

assertion by direct evaluation under the additional assumptions on S1
n and

K. In the first order frames of N , (19) and (22) imply

(30) 0 = cpiλω
i ∧ ωλ +Rp

ijω
i ∧ ωj,

where Rp
ijω

i∧ωj is the coordinate expression of σ̃N . The coordinate functions

of Γ2
N satisfy cpiλω

λ = bpijω
j. Hence σ̃N = 0 is equivalent to bpijω

i ∧ωj = 0, i.e.
bpij = bpji.

As a concrete example, we consider a 2-submanifold N2 ⊂ P3 of a 3-
space with projective connection. The projective 3-space P3 is generated by
an affine 4-space A4 and we write {u} ∈ P3 for the point determined by a
nonzero vector u ∈ A4. We fix a basis u0, u1, u2, u3 of A4 and define c = {u0}
and c2 as the linear space in TcP3 corresponding the 2-plane determined by
{u0}, {u1}, {u2}. The Maurer–Cartan form of the projective group GP (3)
is (ϕb

a) with ϕ
a
a = 0, a, b = 0, 1, 2, 3, and we have

(31) dϕb
a = ϕc

a ∧ ϕ
b
c with ϕa

a = 0.

The differential equations of H are ϕ1
0 = ϕ2

0 = ϕ3
0 = 0. One verifies directly

that condition (9) is satisfied. Then the relation

(32) dϕ3
0 = ϕ0

0 ∧ ϕ
3
0 + ϕ1

0 ∧ ϕ
3
1 + ϕ2

0 ∧ ϕ
3
2 + ϕ3

0 ∧ ϕ
3
3

implies that the additional differential equations of H1 are π3
1 = 0, π3

2 = 0.
The restriction (ωa

b ), ω
a
a = 0 of the connection form ω of P3 to the first

order frames of N2 is characterized by ω3
0 = 0. If we write ω1

0 = ω1, ω2
0 = ω2,

then (13) yields

(33) ω3
1 = b11ω

1 + b12ω
2, ω3

2 = b21ω
1 + b22ω

2.
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Then (30) is of the form

(34) 0 = ω1 ∧ ω3
1 + ω2 ∧ ω3

2 + 2R3
0ω

1 ∧ ω2.

Hence (33) implies 2R3
0 = b21 − b12. So the equations (14) are of the form

(35) ϕ3
1 = x11ϕ

1
0 + x12ϕ

2
0, ϕ3

2 = x21ϕ
1
0 + x22ϕ

2
0.

Applying the procedure from Section 5, we obtain the equations of the in-
finitesimal action of H1 on S̄2

21

dx11 + x11(π
0
0 − 2π1

1 + π3
3)− x12π

2
1 − x21π

2
1 = 0,

dx12 + x12(π
0
0 − π1

1 − π2
2 + π3

3)− x11π
1
2 − x22π

2
1 = 0,

dx21 + x21(π
0
0 − π1

1 − π2
2 + π3

3)− x11π
1
2 − x22π

2
1 = 0,

dx22 + x22(π
0
0 − 2π2

2 + π3
3)− x12π

1
2 − x21π

1
2 = 0.

(36)

In particular,

(37) d(x21 − x12) + (x21 − x12)(π
0
0 − π1

1 − π2
2 + π3

3) = 0,

so that R3
0 is a relative invariant. Further, in the non-parabolic case x12x21−

x11x22 6= 0 we find

d((x21 − x12)
2/(x12x21 − x11x22)) = 0.

Hence (R3
0)

2/(b12b21− b11b22) is an absolute invariant. Its geometric interpre-
tation was found already by É. Cartan [4].

Remark 6. There exists a natural symmetrization Sym: J̄2(M,N) → J2(M,N)
of semiholonomic 2-jets, [11]. In coordinates, one verifies directly that Sym
preserves the jet composition

Sym(Y ◦X) = Sym(Y ) ◦ Sym(X), X ∈ J̄2
x(M1,M2)y, Y ∈ J̄2

y (M2,M3)z.

Hence (3) implies that there is an induced symmetrization of contact (n, 2)-
elements

Sym: K̄2
nM → K2

nM.

We remark that in some geometric constructions Γ2
N(x) enters via its sym-

metrization Sym(Γ2
N(x)). But this is not the case of the preceding example.

Remark 7. Some general aspects of the holonomicity problem for Γr
N in the

case r > 2 are studied in [12]. The case of N2 ⊂ P3 is treated geometrically
in [8].
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9 Induced bundles over submanifolds

We point out that the idea of universality can be applied to a wide class of
r-th order geometric objects over submanifolds. We write reg T r

nM = P r
nM if

we consider it as a principal bundle over Kr
nM with structure group Gr

n. For
every n-submanifold N ⊂M , the map krN induces a bundle (krN)

∗P r
nM → N

that coincides with the r-th order frame bundle P rN . Let B be a Gr
n-space.

Definition 13. The associated bundle P r
nM [B] → Kr

nM is called the uni-
versal B-bundle of type (n, r) over M .

The map krN induces the associated bundle (krN)
∗(P r

nM [B]) ≈ P rN [B].
For q > r, we can construct the pullback (πq

r)
∗P r

nM =: P r,q
n M → Kq

nM .
Then kqN : N → Kq

nM defines (kqN)
∗
(
P r,q
n M [B]

)
≈ P rN [B].

In the case of S = G/H, P r
nS → S can be interpreted as an associated

bundle

(38) P r
nS = G

[
(P r

nS)c
]
, u 7→ {g, g−1u}, g ∈ G, u ∈ (P r

nS)gc

as well. In general, consider a principal bundle P (Z,K) and a left action of
G on P commuting with the right action of K on P , i.e.

(39) g(uk) = (gu)k, g ∈ G, u ∈ P, k ∈ K.

If B is a left K-space, we have an induced left action of G on P [B],

(40) g{u, b} = {gu, b}.

This is a correct definition, for

g{uk, k−1b} = {g(uk), k−1b} = {(gu)k, k−1b} = {gu, b}.

For example, if r = 1 and B = Rn with the standard action of G1
n, then

P 1,q
n M [Rn] = Hq

nM . On the other hand, the vertical bundle V q
nM is not of

this type.
In the case of P r

nS(K
r
nS,G

r
n) and a Gr

n-space B, we obtain a left action
of G on P r

nS[B]. Denote by B̃ =
(
P r
nS[B]

)
c
the fiber over c ∈ S. Hence our

construction yields a left action of H on B̃. Conversely, given a left action
of H on B̃, we have an identification G[B̃] ≈ P r

nS[B],

{
g, {u, b}

}
7→ {gu, b}.
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This is a correct definition, for

{
gh, h−1{uk, k−1b}

}
=

{
gh, {h−1uk, k−1b}

}
=

{
gh, {h−1u, b}

}
= {gu, b}.

Consider another H-space A,

Definition 14. An H-map µ : B̃ → A is called geometric B-object of type
(n, r) over S.

Since G[B̃] = P r
nS[B], the map krN : N → Kr

nS induces

µN : P rN [B] = GN [B] → GN [A],

{u, b} =
{
g, {g−1u, b}

}
7→

{
g, µ({g−1u, b})

}
,

that will be called the value of µ onN . This definition is correct. Indeed, if we
replace g by gh, we have {u, b} =

{
gh, {h−1g−1u, b}

}
7→

{
gh, µ({h−1g−1u, b})

}

=
{
g, µ({g−1u, b})

}
.

There also exists a pullback version of this concept, in which we replace
P r
nS by P r,q

n S. In the case B = pt is a singleton, so that r = 0, we obtain the
concept of (n, q)-object on S introduced in Section 4. Indeed, P q

nS[pt] = Kq
nS.

In particular, a section ̺ : Kr
nS → Ir;a,bn;c,dS can be interpreted as a linear

morphism

̺ :
a⊗
Hr∗

n S⊗

c⊗
Hr

nS →

b⊗
V r
nS⊗

d⊗
V r∗
n S.

If we consider the induced action of G on Ir;a,bn;c,dS and set

B = (
a⊗
Hr∗

n S⊗
c⊗
Hr

nS)c and A = (
b⊗
V r
nS⊗

d⊗
V r∗
n S)c,

we obtain the concept of invariant section ̺.

A simple example to Definition 14 is the classical connection on a subman-
ifold N , i.e. a principal connection on P 1N . This is a second order geometric
object field on N , [16]. The problem of finding an invariant construction of
induced classical connection on a submanifold is important for both affine
and projective differential geometries.
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