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Abstract

In the context of Galilei general relativistic classical and quantum mechanics
we find the spherically symmetric exact solution, giving a result of existence
and uniqueness. From the classical viewpoint, this solution yields a geometrical
interpretation of Newton’s gravitation law in terms of a connection on spacetime
with non vanishing curvature. Moreover, within our covariant geometric approach
to the quantum theory, we find out that from the physical viewpoint there is only
one quantum model for a spinless particle in a spherically symmetric gravitational
field.

Résumé

Dans le cadre de la mécanique classique et quantique dans la théorie de
la relativité générale galiléen nous trouvons la solution exacte sphériquement
symétrique, en donnant un résultat d’existence et d’unicité. Du point de vue
classique, cette solution donne une interpretation géométrique de la loi de grav-
itation de Newton en termes d’une connexion sur l’espace–temps avec une cour-
bure non nulle. En outre, à l’intérieur de notre approche géométrique covari-
ante à la théorie quantique nous trouvons que du point de vue physique il n’y a
qu’un modèle quantique d’une particule sans spin dans un champ gravitationnel
sphériquement symétrique.

1This work is partially supported by MURST (by national and local funds), GNFM of Consiglio
Nazionale delle Ricerche and Consejo Superior de Investigaciones Cient́ıficas of Spain.
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Introduction

The theory of general relativity, as formulated by Einstein, must be taken as a touch-
stone for anyone who wants to study gravitation. Hence, it would be desirable to study
quantum mechanics on an Einstein’s general relativistic background. But the covari-
ant formulation of the quantum theory on a curved spacetime presents several serious
difficulties.

In order to tackle this hard problem it may be useful to start with a Galilei curved
background. In fact, the Galilei general relativity (even if it is clearly less satisfactory
than Einstein’s general relativity from the physical viewpoint) has several important
features in common with Einstein’s theory and, at the same time, it skips some deep
difficulties. So, in the Galilei context, we can learn interesting facts to be applied later
to the Einstein case.

The Galilei general relativity and the related approach to quantum mechanics has
been developed in several different ways by a large number of people; particularly
interesting are the works of [1], [4], [5], [11], [14], [15], [18], [19], [22], [23].

Recently, it was presented a book [10] in which this approach is developed in detail
in a mathematically rigorous and self–contained way.

Here, spacetime is a manifold fibred over absolute (i.e., observer–independent) time
and equipped with a vertical Riemannian metric. The gravitational field is represented
by a time–preserving torsion–free connection on spacetime.

The first field equation is expressed by requiring the closure of a two–form induced
naturally from the metric and the connection; it turns out from this equation that the
connection is metric, but it is not completely determined by the metric due to the
degeneracy of the latter.

The second field equation expresses the coupling of the gravitational field with the
matter sources, and is given by equating the Ricci tensor of the connection to the energy
tensor.

Quantum theory has been developed in [10] for a spinless particle, and then extended
to the spin case in [3]. The assumptions needed to describe quantum mechanics of a
scalar particle are only two: a complex hermitian line bundle based on spacetime, whose
sections will represent quantum histories, and a hermitian universal connection (i.e.,
a family of hermitian connections on the above bundle parametrised by observers on
spacetime) such that its curvature is proportional to the natural two–form on spacetime.
This connection yields a natural quantum Lagrangian, the generalised Schroedinger
equation, and the quantum operators.

It is interesting to find exact solutions of the classical and quantum theory in this
context. This paper is devoted to the study of spherically symmetric solutions (with
respect to a worldline of a particle) of classical Galilei general relativistic spacetime and
of the quantum connection.

The classical part of our work is carried on in the spirit of what was done in Ein-
stein’s general relativity by D. Birkhoff. His theorem [7] yields the uniqueness of the
Schwarzschild’s solution under hypotheses of spherical symmetry given on the metric.
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In Galilei general relativity we need conditions of spherical symmetry both on the
metric and on the connection. We would like our spacetime, metric structure and grav-
itational field to be spherically symmetric around the worldline of a particle; intuitively,
this can be expressed by requiring the non–existence of distinguished points (other than
points on the selected worldline), or distinguished directions (other than radial spacelike
directions). Moreover, being the selected particle the unique source of the gravitational
field, we must allow the field to have a singularity on the worldline.

Following such guidelines, we express spherical symmetry conditions on the metric
by means of techniques of Riemannian geometry that we have developed for this pur-
pose (see Appendix 2). For spacetime connection, we express conditions of spherical
symmetry by means of requirements on the observed trajectory of test particles; we
think that, among all possible approaches, this is the most intuitive and physically
significant one.

These two groups of hypotheses imply the existence and the uniqueness of a spheri-
cally symmetric gravitational field. Indeed, for this field the equation of particle motion
turns out to be equivalent to Newton’s law of gravitation. Also, as a by–product, we
find a unique observer which has a suitable spherical symmetry with respect to the
trajectories of test particles. From the geometrical viewpoint, our spherical symmetry
conditions imply that spacetime is topologically trivial; we stress that this fact is not
assumed a priori .

Finally, we analyse spherical symmetry on the quantum bundle and the quantum
connection. Spherical symmetry of the quantum theory is not obtained by spherical
symmetry of the classical theory, but just reflects the latter. We prove that our quantum
potential can always be seen as the standard Newtonian one, after a change of gauge.

The first section is mainly concerned with the minimal necessary background of
Galilei general relativistic classical and quantum theory. In the second section we add
spherical symmetry assumptions to the model and obtain the main results. In Appendix
2, we present the main facts of Riemannian geometry and develop our definition of
spherically symmetric Riemannian manifold. Finally, in Appendix 2 we give some
elements of the theory of positive spaces, developed in [10], that provides a way to deal
with units of measurement that clarifies the independence of the theory from the choice
of scales.

We emphasise the fact that our procedure will be always covariant; this is guaranteed
by the use of intrinsic techniques of calculus on manifolds. Moreover, we will use jet
spaces as a fundamental tool, that provides the unique framework in which it is possible
to deal with derivatives of maps in an intrinsic way.

Before starting the discussion of the problem, we need some mathematical prelimi-
naries.

Manifolds will be always C∞, second countable and connected. All maps are intended
to be C∞, unless otherwise specified. Among the main mathematical tools will be
fibred manifolds, and among these, bundles. We will follow the conventions of [2] for
main definitions. Finally, we will use intensively the theory of connections; a standard
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reference is [13], while a non–standard approach in terms of jet bundles is developed in
[17].

1 Galilei general relativistic classical and quantum

mechanics

In this section we recall just a few basic facts of Galilei general relativistic classical
and quantum mechanics, which will suffice for our aims. The reader will find a more
detailed account in [9], [10].

Classical theory

Assumption G.1 We assume the spacetime to be a fibred manifold

t : E → T ,

where E is an orientable 4–dimensional manifold and T is a 1–dimensional oriented
affine space associated with the vector space T.

The time form is defined to be the form dt : E → T ⊗ T ∗E.
A time unit of measurement is defined to be a positively–oriented element u0 ∈ T,

or, equivalently, u0 ∈ T
∗. We will denote by (x0, yi), 1 ≤ i ≤ 3, a chart of E adapted

to the fibring t and to the affine structure on T ; this means that x0 coincides with the
pullback of an affine coordinate on T .

In coordinate expressions latin indices i, j, . . . will run from 1 to 3 and will label fibre
coordinates, and the index 0 will label the coordinate on T ; greek indices λ, µ, . . . will
be used to label coordinates both on the fibre and on the base, hence 0 ≤ λ, µ, · · · ≤ 3.

We will denote by (∂λ) and (dλ) the local bases of vector fields and one–forms on E

induced by an adapted chart. Moreover, ∂̇λ will denote the local base of sections of the
vector bundle TTE → TE.

The check (̌ ) will denote vertical restriction. Accordingly, (ďi) will denote the local
base of sections of V ∗E → E.

As an example, it is easy to see that the coordinate expression of the time form is
dt = u0 ⊗ d0.

We will deal with the jet bundle J1E → E; its fibre coordinates will be denoted by
(yi

0). We have the natural fibred affine monomorphism over E

(1) D : J1E → T
∗ ⊗ TE ,

whose coordinate expression is D = u0⊗(∂0+y
j
0∂j); D makes J1E an affine subbundle of

T
∗ ⊗ TE constituted by all elements that project on 1T ∈ T

∗ ⊗T. It is also remarkable
the complementary epimorphism ϑ : J1E → T ∗E ⊗

E

VE, which has the coordinate



Spherical symmetry in Galilei general relativity 5

expression ϑ = ϑj ⊗ ∂j = (dj − yj
0d

0) ⊗ ∂j. A detailed and complete treatment of the
subject can be found in [17].

A motion is defined to be a section s : T → E, and its absolute velocity is defined to
be the section j1s : T → J1E of the bundle J1E → T . We stress that it is not possible
to speak of zero absolute velocity of a motion, due to the affine structure of J1E.

An observer is defined to be a section

o : E → J1E ⊂ T
∗ ⊗ TE .

Let o : E → J1E be an observer. A local section s : I ⊂ T → E is said to be a local
integral section if o ◦ s = Ts. The solutions of this differential equation yield a flow of
local fibred isomorphisms of E → T . Conversely, a flow of local fibred isomorphisms of
E → T determines a unique observer; thus, we have a bijective correspondence between
(local) flows and observers. We say an observer o to be complete if its flow is defined
on T × E.2

Remark 1.1 It is easy to prove that, if E → T is a bundle, then there is a bijective
correspondence between complete observers and splittings of E into a product bundle.
In fact, the existence of a complete observer is due to the theorem that states triviality
of bundles over a contractible base [20, p.53].

It can also be proved that E → T is a bundle if and only if there exists a complete
observer on E.

Assumption G.2 We assume spacetime to be equipped with a scaled vertical Rieman-
nian metric

g : E → A ⊗ (V ∗E ⊗
E

V ∗E) ,

where A is a positive space (see Appendix 2) which represents area units.

It is clear that for all τ ∈ T the fiber Eτ := t−1(τ) is endowed with a scaled Rie-
mannian metric, hence g determines a Riemannian connection on each fibre of E. We
will also denote by g the contravariant form of g.

The coordinate expressions of g and g are:

g = gij ď
i ⊗ ďj, gij ∈ C∞(E,A ⊗ IR), } = }〈‖∂〈 ⊗ ∂‖, }〈‖ ∈ C∞(E,A∗ ⊗ IR).

We define a spacetime connection to be a linear connection K : TE → T ∗E ⊗
TE

TTE

on the vector bundle TE → E such that the following conditions hold:

1. K has vanishing torsion;

2. K is dt-preserving, i.e. ∇dt = 0.

2We stress that in the standard relativity literature the word ‘observer’usually denotes just a single
time–like curve, instead of a time like flow.
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It turns out that the coordinate expression of K is of the type

K = dλ ⊗
(

∂λ +
(

K i
λj ẏ

j +K i
λ0ẋ

0
)

∂̇i

)

, 0 ≤ λ ≤ 3 ;

here, the above two conditions on K are equivalent respectively to K 0
λµ = 0 and K i

λµ =
K i

µλ, for 0 ≤ λ, µ ≤ 3.

It can be shown (see [9], [10]) that there is a natural bijection between spacetime
connections and torsion free affine connections

Γ : J1E → T ∗E ⊗
J1E

TJ1E

on the affine bundle J1E → E (see [9] for a general definition of torsion). Such a
bijection is characterised by the equation Γ i

λµ = K i
λµ.

Assumption G.3 We assume E to be endowed with a spacetime connection K.

We say K3 to be the gravitational field .

Now that we have introduced the main objects of our theory, we have to establish
relations between them, namely the field equations. We will state these equations by
means of the following natural maps:

γ :=D ◦ Γ : J1E → T
∗ ⊗ TJ1E ,

Ω := νΓ∧ϑ : J1E → (T∗ ⊗ A) ⊗ 2∧T ∗J1E ,

where γ is a connection on the bundle J1E → T , νΓ is the vertical projection comple-
mentary to Γ, and ∧ stands for wedge product followed by a metric contraction. The
coordinate expression of γ and Ω turns out to be:

γ = u0 ⊗
(

∂0 + yi
0∂i + γi∂0

i

)

, with γi = K i
hky

h
0y

k
0 + 2K i

h0y
h +K i

00

Ω = giju
0 ⊗

(

di
0 − γid0 −

(

K i
hky

k
0 +K i

h0

)

ϑh
)

∧ ϑj

It can be proved that Ω is the unique scaled two–form on J1E induced naturally by
g and Γ (see [8]).

Assumption G.4 We assume that the following first field equation holds on E for g
and K:

dΩ = 0 .

3In this paper we will not consider the electromagnetic field, because it yields no nontrivial con-
tribution to our search for exact solutions. Henceforth, we will not use the superscript ♮ to label the
gravitational field and related objects, as is done in [10].
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It can be seen [10] that the first field equation is equivalent to the system:

∇Kg = 0 , Ri j
λ µ = Rj i

µ λ .

The first condition reads in coordinates as

Khik = −1

2
(∂hgik + ∂kgih − ∂ighk) , K0ij +K0ji = −∂0gij ,

and implies that the restriction of K on each fibre to coincide with the Riemannian
connection induced by g.

The above assumption can be interpreted also through the observers as follows. Let
o be an observer, and Φ = 2o∗Ω. Then [9], the first field equation is equivalent to the
system

∇K′

g = 0 , dΦ = 0 .

The second condition can be interpreted as the existence of a local potential a : E →
T

∗ ⊗ A ⊗ T ∗E for Φ, i.e. Φ = 2da. We remark that, if (x0, yi) is an adapted chart
in which the coordinate expression of the observer is o = d0 ⊗ ∂0 (such a chart always
exists), then we have:

Φ = −2d0 ⊗ (K0j0d
0 ∧ dj +Kij0d

i ∧ dj) .

Our next assumptions express the coupling of the gravitational field with the matter
sources; this is done by comparing the gravitational Ricci tensor with the energy tensor.

We define the energy tensor to be a given section

T : E → T ∗E ⊗
E

T ∗E .

The energy tensor can often be expressed in terms of a coupling constant. Namely,
if we set M to be the positive space that represents mass units, then we assume that a
gravitational coupling constant K ∈ T

−2 ⊗ A
3

2 ⊗ M
−1 is given.

Assumption G.5 We assume the following second field equation to hold on E for g,
K and T:

(2) r = T ,

where r is the Ricci tensor of K.

Remark 1.2 Just as an example, in the case in which the matter source is constituted
by an incoherent fluid, the energy tensor is given by

T :=Kµ ,

where and µ : E → A
− 3

2 ⊗ M is a mass density .
Anyway, we are interested in exact solutions in the vacuum, so we will take T = 0.

In this case, the vertical restriction of equation (2) yields fibres of E to be Ricci flat
Riemannian manifolds, and hence flat, due to the fact that the dimension of the fibres
is 3.
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Assumption G.6 (Generalised Newton’s law of motion) We assume the law of motion
for a particle, whose motion is s : T → E, to be the equation

∇γj1s = 0 .

Accordingly, a motion s is said to be Newtonian if it fulfills the above assumption.
It is important to note that a motion s is Newtonian if and only if ∇TsTs = 0, exactly
as for Einstein general relativity’s law of motion.

In coordinates, a motion s is Newtonian if the following equation holds:

∂2
00s

i − (K i
hk◦s)∂0s

h∂0s
k − 2(K i

0h◦s)∂0s
h − (K i

00◦s) = 0 .

Quantum theory

Now, we give the assumptions for the quantum theory of a scalar charge–free particle
of given mass m ∈ M.

Assumption G.7 We assume the quantum bundle to be a complex line–bundle Q →
E endowed with a Hermitian fibre metric h.

Quantum histories are represented by quantum sections Ψ : E → Q.
A typical (complex) linear normal chart on the fibres of Q will be denoted by z, and

the corresponding base by b. The coordinate expression of a quantum section turns out
to be Ψ = ψb.

We assume the universal unit of measurement of quantum theory to be the given
Planck’s constant ℏℏℏ ∈ (T+)∗ ⊗ A ⊗ M. If u0 ∈ T

+, then we set ℏ :=ℏℏℏ(u0).
The only object that we need to postulate on Q is the quantum connection Q. Let

us denote by I the Liouville form of Q, i.e.

I : Q → VQ ≃ Q ×
E

Q .

Assumption G.8 We assume that a connection Q on the bundle

Q↑ := J1E ×
E

Q → J1E

is given with the following properties:

1. Q is linear Hermitian;

2. Q is universal (see [17] for the definition);

3. the curvature of Q fulfills the equation:

RQ = i
m

ℏℏℏ
Ω ⊗ I : Q↑ → 2∧T ∗J1E ⊗

J1E

Q↑ ,
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The requirement of universality of Q is equivalent to the statement that Q can be
seen as a system of connections ξQ : J1E ×

E

Q → T ∗E ⊗
E

Q on Q → E, i.e. a family of

connections on Q → E parametrised by observers.
It turns out (see [10]) that, chosen an observer o and a normal base on Q, we have

the coordinate expression with respect to a chart adapted to o:

Q = dλ ⊗ ∂λ + di
0 ⊗ ∂0

i + i
m

ℏ

(

−1

2
gijy

i
0y

j
0d

0 + gijy
i
0d

j + aλd
λ

)

⊗ I ,

where a = aλu
0 ⊗ dλ : E → T

∗ ⊗ T ∗E is a distinguished choice (determined by Q) of a
(local) potential of Φ, that is dependent only on the observer o, and not on the adapted
chart.

Hence, the components of Q are given by Q0 = −H/ℏ, Qj = pj/ℏ and Q
0
j = 0.

Here we have set H = 1
2
gijy

i
0y

j
0 −ma0 and pj = mgijy

i
0 +maj. H and p are the classical

observer–dependent energy and momentum of the particle; they are also dependent on
the choice of a. Equation Q

0
j = 0 just expresses the universality of the connection.

The quantum connection allows us to perform covariant derivatives of quantum
sections by means of pull–back. Accordingly, if Ψ is a quantum section, then we define
the two natural maps

◦
LΨ :=

1

2

(

h

(

Ψ, i
◦
∇Ψ

)

+ h

(

i
◦
∇Ψ,Ψ

))

ν : J1E → L
3

2 ⊗ 4∧T ∗E ,

ĽΨ :=
1

2

ℏℏℏ

m

(

(g ⊗ h)
(

∇̌Ψ, ∇̌Ψ
))

ν : J1E → L
3

2 ⊗ 4∧T ∗E .

Here,
◦
∇ and ∇̌ are, respectively, the horizontal and vertical projection of the co-

variant derivative induced by Q, and

ν :=
√

|g|u0 ⊗ d0 ∧ d1 ∧ d2 ∧ d3 : E → T ⊗ L
3

2 ⊗ 4∧T ∗E

is the canonical scaled volume form on E.
In order to obtain a Lagrangian density defined on J1Q from the above two canonical

maps, it can be proved that the linear combination LΨ =
◦
LΨ − ĽΨ is the unique one

(up to a scalar factor) that projects on E. So, LΨ induces the fibred morphism over E

(3) L : J1Q → L
3

2 ⊗ 4∧T ∗E ,

whose coordinate expression is

L =
1

2

(

− ℏ

m
gij z̄izj − i (z̄0z − z̄z0) +

+ iai (z̄iz − z̄zi) +
m

ℏ

(

2a0 − aia
i
)

z̄z

)

√

|g|d0 ∧ d1 ∧ d2 ∧ d3 .
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We assume L to be the Lagrangian density of quantum theory. The corresponding
Euler–Lagrange equation turns out to be a generalised Schroedinger equation for a
(spinless and chargeless) quantum particle of given mass m, in a curved spacetime with
absolute time, under the action of a given gravitational field.

We have a distinguished Lie algebra of functions defined on J1E, namely the algebra
of quantisable functions , constituted by a certain kind of polynomials of second order in
the velocities. The quantum connection yields a Lie algebra isomorphism of this algebra
into a distinguished algebra of vector fields on Q, namely the algebra of quantum vector
fields . Then, it is possible to introduce quantum operators, and, among them, the
Schroedinger operator. In this way, we have a full implementation of the correspondence
principle in a covariant formulation involving a curved spacetime. It is out of the aims
of this paper to go into details in this direction; the interested reader can consult [3],
[9], [10] for a complete treatment of the subject.

2 Spherically symmetric exact solutions

In this section we introduce a definition of spherical symmetry in Galilei relativity that
is clear and unambiguous from the mathematical viewpoint, and also coincides with the
intuitive physical idea of spherical symmetry.

Classical theory

Assumption S.1 We assume spacetime t : E → T to be a bundle.

Thus, fibres turn out to be all diffeomorphic, and (see 1.1) the family of complete
observers on E is not empty.

Assumption S.2 We assume that a section c : T → E is given.

From the physical viewpoint, the above section represents the worldline of a particle,
which will play the role of center of symmetry.

Assumption S.3 For all τ ∈ T each geodesic in Eτ starting from c(τ) admits a
parametrisation in IR.

As a first consequence, each fibre of E turns out to be a complete, and hence
inextendable, Riemannian manifold (see Appendix 2).

We define the distance function from c(T ) to be the map

r : E → L : e 7→ r(e) := dt(e)(c(t(e)), e) ,

where dt(e) is the distance function induced by the Riemannian metric in Et(e) (see Ap-

pendix 2), and L := A
1

2 is the positive space that represents length units. Accordingly,
a length unit of measurement is defined to be an element l0 ∈ L.
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As it is known (see Appendix 2), r is a continuous function on each fibre of E.
But there could be fibres of E on which r is bounded. Such fibres would be geodesic
spheres, and on each one of this fibers there would also be a point where r would have
a maximum. So, our intuitive view of spherical symmetry would be preserved, in this
case, if, for example, such fibres be diffeomorphic to the sphere S3. In fact, there would
be the same extremal point of the distance function along all directions.

Anyway, we would like to devote ourselves to the study of the simplest and most
physically significant cases of spherically symmetric spacetimes; this is the reason why
we introduce the following assumptions.

Assumption S.4 We assume that, for all τ ∈ T , (Eτ , gτ ) is spherically symmetric
with respect to the point c(τ).

Remark 2.1 4 The above assumption, together with the flatness of fibres required by
the second field equation (see 1.2), imply that the type fibre of E is non compact. In
fact, it is known that any compact 3–manifold which admits an action of SO(3) where
at least one orbit is a sphere has a finite cover diffeomorphic to S3 or S2 × S1. Thus
its universal cover is not diffeomorphic to IR3. On the other hand, each fibre of E

is endowed with a flat Riemannian metric and hence (see [13]) its universal cover is
diffeomorphic to IR3. Hence, a compact fibre would lead to a contradiction.

As a direct consequence (see Appendix 2) the fibres of E turn out to be isometric
to IRn.

Due to the above remark, we are searching for a natural vector bundle structure for
E.

We define the vertical bundle of E along c to be the pullback bundle c∗VE → T .
We can endow this bundle with the scaled fibre metric c∗g : T → A ⊗ (c∗VE ⊗

T

c∗VE), turning it into a Riemannian vector bundle. Due to the canonical isomorphism
V c∗VE ≃ c∗VE×

T

c∗VE, we can also see c∗g as a scaled vertical metric on c∗VE → T .

For all τ ∈ T , we can introduce the exponential map relatively to the Riemannian
manifold Eτ :

expc(τ) : Vc(τ)E → Eτ ;

it turns out from assumptions (S.3), (S.4), that expc(τ) is a diffeomorphism. Indeed, we
have the following stronger result:

Theorem 2.1 The map exp : c∗VE → E is a bundle isomorphism over IdT that
preserves the vertical metrics.

Proof. In fact, the fibres of E must be flat (see 1.2). Corollary 2.5 ensures that exp
restricts to an isometry on each fibre.

We have only to test the differentiability of the map exp. Indeed, exp is the re-
striction of the flow of the bundle geodesic spray [16] induced by the metric g. So, exp
is differentiable because locally it represents the solution of a system of second-order
ordinary differential equations dependent on a parameter in T . �

4The author kindly thanks the anonymous referee, who suggested this remark.
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Corollary 2.1 The map exp |c(T ) endows E → T with the structure of a vector bundle
with a scaled fiber metric c∗g : T → A⊗ (E∗ ⊗

T

E∗), in which the section c turns out to

be the zero section.

Moreover, the map r : E → L is C∞ on E′ := E \ c(T ).
The trivialisation theorem for bundles over contractible bases [20, p.53] tells us that

trivialisations preserve structures; more precisely, we can state the following result.

Corollary 2.2 Let (P , h) be a typical fibre of E → T (h is a Euclidean metric).
Then, there exists a family of complete observers o such that the induced isomor-

phisms φo : E → T × P restricts to isometries on each fibre.

A (complete) observer is said to be isometric if it yields a (global) metric-preserving
splitting of E.

Remark 2.2 It is easy to prove that an observer o is isometric if and only if o fulfills
the equation

Log = 0 ,

that in coordinates adapted to o reads as ∂0g
ij = 0.

In the last part of this section we give spherical symmetry assumptions on the
spacetime connection.

We would like to allow our solution to have a singularity on c(T ); henceforth we
weaken assumption G.3 in the following way.

Assumption S.5 We assume the spacetime connection K to be defined on the sub-
bundle E′ = E \ c(T ) of E.

Now, we show a canonical splitting of the space E′.
For each τ ∈ T we have the ‘IR+–projective’equivalence relation in E′

τ ; namely, for
all e, f ∈ E′

τ we set e ∼ f if and only if there exists k ∈ IR+ such that e = kf . The
quotient set S := E′/∼ can be endowed with the unique bundle structure (over T ) such
that for all l ∈ L the canonical inclusions il : S →֒ E′ turn out to be bundle morphisms.

Proposition 2.1 The bundle E′ splits canonically as follows:

(4) E′ → L × S .

The above splitting can also be seen as the fibred splitting L×
T

S by regarding L as

the trivial bundle T × L → T .
Accordingly, we have the further remarkable splitting:

(5) J1E
′ → (T∗ ⊗ TL) × J1S .

We stress that the bundle S is a trivial bundle, but it is not equipped with a
canonical splitting [20].

As for the vertical metric g, we remark that the splitting (4) is clearly orthogonal.
In fact, we have the following intrinsic objects:
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1. gL : TL ×
L

TL → A ⊗ IR : (u, v) 7→ uv (see Appendix 2) is the canonical scaled

metric on L;

2. gS : V S ×
S

V S → IR is the unique vertical Riemannian metric such that for

all l ∈ L the canonical inclusions il : S →֒ E′ turn out to be fibred isometric
immersions with respect to the scaled vertical Riemannian metrics l2gS and g.

It turns out that the metric g splits as:

g = gL + r2gS .

We would like to characterise the form of complete isometric observers with respect
to the splitting (4). Let I be the family of complete isometric observers.

Proposition 2.2 Let o ∈ I. Then, with respect to the splittings (4), (5), o can be
written as:

o = (oL, oS) ,

oL : T × L → T
∗ ⊗ TL , oS : S → J1S ,

and the components of o fulfill:

oL = 0 , LoS
gS = 0 .

Proof. In fact, o has a flow of fibred isometries; but such isometries must be consti-
tuted by the identity on L and by a flow of time–dependent isometries of S. �

Remark 2.3 Any observer o ∈ I gives rise to a splitting φo : E′ → T × P ′, where
P ′ := P \ 0. Moreover, we can define S := P ′/∼ as in (4), and we obtain the splitting

(6) P ′ → L × S .

Hence, it turns out from the above proposition that φo preserves the splitting (4),
yielding a splitting of S:

φo = (φo
L
, φo

S
) ,(7)

φo
L

= IdL × IdT , φo
S

: S → T × S .(8)

In coordinate expressions we will make use of the splitting of E induced by an
observer o ∈ I, employing adapted charts of the type (x0; r, yα). In particular, we
will use on L the canonical coordinate r, obtained by composing the function r :
E′ → L with a standard isomorphism L → IR+ given by the choice of a length unit
of measurement l0 ∈ L. Moreover, (x0, yα) will be an adapted coordinate system on
S, with α, β running from 1 to 2. For convenience we will choose as (yα) spherical
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coordinates; in this way the Christoffel symbols of the metric part of K will take the
usual form.

Now, we are looking for a spherical symmetry assumption on gravitational fields.
Such an assumption can be given only through an observer; indeed, we could charac-
terise a spherically symmetric field only by means of the trajectory of test particles
(i.e., particles whose mass is so small that it does not perturb the gravitational field).
But this makes sense only with respect to a splitting of E induced by an observer.
Also, due to the splitting (5), while it is possible to speak of zero velocity along L of
a test particle, this makes no longer sense in the case of velocities along S (i.e., radial
velocities). Moreover, this splitting tells us that there is no way to isolate components
in K that are responsible of rotation of test particles.

We have at our disposal the distinguished family of complete isometric observers
I; this family actually is just the family of all complete observers that preserve the
structure that we have on the spacetime E, namely the Riemannian vector bundle
structure. So, it is natural to postulate next assumption by means of observers in I.

We introduce two categories of observers in I; such observers will be characterised
by means of symmetries of test particle motions. Indeed, requiring the existence of such
observers is an assumption on the gravitational field K.

Definition 2.1 An observer o ∈ I is said to be radially symmetric if, with respect to
the splitting E ≃ T ×P induced by o, the Newtonian motion z with initial conditions

z(τ0) = (τ0, l0, s0) ∈ T × L × S and j1z(τ) = v0 ∈ T
∗ ⊗ Tl0L

fulfills the following requirements:

1. z is defined on the whole T ;

2. with respect to the splittings (5), (6), we have

z : T → T × L × S : (τ) 7→ (τ, l(τ), s0) , j1z : T → T
∗ ⊗ TL ,

where l : T → L does not depend on the initial condition s0 ∈ S.

Definition 2.2 An observer o ∈ I is said to be rotationally symmetric if, with respect
to the splitting E ≃ T × P induced by o (see (8)), the motions z, z′ with initial
conditions respectively

z(τ0) = (τ0, l0, s0) ∈ T × L × S j1z(τ) = v0 ∈ T
∗ ⊗ Ts0

S

z′(τ0) = (τ0, l0, s
′
0) ∈ T × L × S j1z

′(τ) = v′0 ∈ T
∗ ⊗ Ts′

0
S

and such that ‖v0‖ = ‖v′0‖ fulfill the following requirement: any isometry I : S → S
such that TIτ (s, v0) = (s′, v′0) maps the motion z into the motion z′, i.e.:

z′ = (IdL, I) ◦ z .
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The spacetime connection K is said to be spherically symmetric if there exists an
observer o ∈ I that is both radially and rotationally symmetric. Accordingly, such an
observer is said to be spherically symmetric.

Assumption S.6 We assume that the spacetime connection K is spherically symmet-
ric.

The analysis of the coefficients of K yields one of the main result.
We denote by Ko the flat connection on E with respect to the affine structure

induced by an observer o ∈ I on E.

Theorem 2.2 Let o be an observer with the properties required in Assumption S.6.
Then K is uniquely determined (up to a time-dependent factor); namely, we have:

K = Ko + dt⊗ dt⊗N ,(9)

N : T × L → T
∗ ⊗ T

∗ ⊗ TL

where:

N =
k

r2
, k : T → T

−2 ⊗ L
3

Proof. The first field equations (1) imply that K i
0j = −K j

0i, hence we have K r
0r =

K α
0α = 0.
Moreover, being K r

rr = 0 the equation of motion along TL takes the form

∂2
00l

r −K r
00 = 0

for a motion l with initial velocity in TL, hence K r
00 is defined on T × L due to

Assumption S.6. The equation of motion along TS turns out to be:

2K α
0r∂0l

r = −K α
00 .

At each point the above equation must hold for all values of ∂0l
r, yielding K α

0r = K r
0α =

K α
00 = 0.
Let us come back to the first field equations. We see that dΦ = 0 is equivalent to

the system

2∂iK0αβd
i ∧ dα ∧ dβ = 0

∂0K0αβ = 0

where the first equation yields ∂rK0αβ = 0.
Now, we use the second field equation in order to complete our information.
The component r0r turns out to be identically 0; moreover, we have

r0θ = ∂φK
φ

0θ = 0 ,

r0φ = ∂θK
θ

0φ − sin θ cos θK θ
0φ = 0 .



16 R. Vitolo

This system has the general solution K θ
0φ = qe

1

2
sin2 θ, where q is a real constant.

From Assumption S.6 (rotational symmetry of o) we can deduce q = 0.
Finally,

r00 = ∂rK
r

00 +
2

r
K r

00 = 0

has the general solution K r
00 = k

r2 , with k : T → IR.
The result is obtained by setting k = k(u0)2 ⊗ (l0)

3. �

Remark 2.4 It turns out that K is a Newtonian connection in the sense of [10]. It is
easy to see that, in this case, the form Ω splits as follows:

Ω = Ωo + ΩN ,(10)

Ωo := νΓo∧ϑ , ΩN :=−N∧ϑ .(11)

Moreover, we obtain

ΩN = 2o∗Ω = Φ : T × L → T
∗ ⊗ A ⊗ 2∧T ∗(T × L) .

We have a stronger characterisation of a spherically symmetric connection. Indeed,
next result shows the uniqueness of the spherically symmetric observer.

Corollary 2.3 Let K be a spherically symmetric connection, and o ∈ I a corresponding
spherically symmetric observer. Then

1. Ko does not depend on the choice of o;

2. there exists a unique spherically symmetric observer.

Proof.

1. From the identity Ko = K − N we deduce that the connection Ko is observer–
independent.

2. Let us denote by K‖ the unique flat connection associated with a spherically
symmetric connection K. There is a unique affine structure on E such that K‖

is the induced canonical flat connection. Due to the fact that each spherically
symmetric observer induces a different affine structure on E, by the first part of
the proof we deduce that there exists exactly one spherically symmetric observer.

�

Remark 2.5 We stress that the connection K is not flat; in fact, we have (up to a
pull–back):

R =
k

r3
(2dt⊗ dt ∧ IdTL −dt⊗ dt ∧ IdTS) 6= 0 .
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With respect to o, the law of motion for a motion s : T → E takes the form:

∇Ko

Ts Ts = N ◦ s .

The above equation can be seen as a reinterpretation of the classical Newton’s gravita-
tional force in terms of a non–vanishing curvature on a topologically trivial spacetime.

Even if our section c is the zero section of E, it makes no sense to ask if c is a
Newtonian motion, because K is not defined on c(T ).

A confrontation with the classical Newton’s law of gravitation suggests that, if we
assume for the particle a mass m ∈ M, then we can assume

k = Km .

Remark 2.6 We could prove that there exists a unique freely falling observer that is
determined by the radial velocity of freely falling particles starting from the infinity
with radial velocity 0 and approaching c. It turns out that this observer is no longer
isometric, even if it is radially and rotationally symmetric.

The final result concerns the existence of spherically symmetric connections.

Theorem 2.3 There exists a spherically symmetric connection K.

Proof. In fact, I is a non–empty family (see [20]). If o ∈ I, then we can define the
field Ko, choose a function k in order to define the field N , and we are done by means
of an obvious pull–back. �

We have found that, under the simplest and more intuitive hypotheses of spherical
symmetry, spacetime is trivial from the topological viewpoint. Moreover, we have found
that there is a unique spherically symmetric gravitational field, together with a unique
observer with respect to which motions have spherically symmetric trajectories. The
gravitational field is a geometrical version of the classical Newton’s law of gravitation;
the ‘force’of the field is seen as the non vanishing curvature of the connection.

Remark 2.7 By means of the objects that we have found, we can build a Lorentz
metric on E′. In fact, let us consider the following potential of the 2–form Φ:

(12) a = −(Km)/r : L → T
∗ ⊗ A ⊗ T

∗ .

We define the Lorentz metric gl on E′ to be the map

gl = (θ∗g)◦o+ 2a⊗ dt ;

here, θ is the epimorphism complementary to D (see equation (1).
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In adapted coordinates, the Christoffel symbols of the spherically symmetric connec-
tion K are the same of the corresponding ones of the Levi–Civita connection induced
by gl. Moreover, the Einstein tensor Gl induced by gl turns out to be

Gl =
1

r2
gL − 1

4
gS .

Thus, we can interprete the Galilei spherically symmetric spacetime as an Einstein
spacetime with the Lorentz metric gl and the energy tensor T = 1

r2 gL − 1
4
gS. See [22],

[23] for a deeper analysis.

Quantum theory

The assumptions given for the classical theory are not sufficient to provide spherical
symmetry conditions for the quantum theory. In this section, we introduce hypotheses
of spherical symmetry on the quantum bundle and the quantum connection by means
of the following criterion: we assume that the quantum bundle and the quantum con-
nection split as the spacetime in (4) and the gravitational field in (9). In this way, we
give spherical symmetry conditions in the quantum theory by requiring for the quantum
structures the same kind of symmetry found for the classical structures. Such hypothe-
ses are given in practice by adding to assumptions G.7, G.8 respectively the hypotheses
of Lemma 2.1 and Lemma 2.2.

The next step is the analysis of the isomorphism classes of spherically symmetric
quantum bundles and connections; we find out that there is only the trivial class, hence
there is exactly one spherically symmetric quantum theory from the physical viewpoint.

Lemma 2.1 Let us suppose that, in agreement with the splitting (4) of E′, the restric-
tion Q′ of the quantum bundle Q → E to the space E′ be the product

Q′ = Q
L
× QS

of two Hermitian complex line bundles Q
L
→ L and QS → S.

Then, there is exactly one class of Hermitian complex line bundle isomorphisms of
Q, and there is exactly one class of Hermitian complex line bundle isomorphisms of
Q

L
.

Proof. In fact, being E and L contractible spaces, Q and Q
L

are trivial bundles. �

From the physical viewpoint, a global trivialisation of Q can be interpreted as a
quantum gauge. Choosing the trivial bundle Q := E × V (where V is a complex
Hermitian line) would mean to choose a distinguished quantum gauge, but we have
neither physical nor mathematical motivation to assume a priori such a distinguished
gauge.

We remark that the bundle Q
L

can be seen also as a bundle on T × L by means
of a pull–back; hence, in what follows, analogously to G.7, Q

↑
L

will denote the bundle
T

∗ ⊗ TL ×
T×L

Q
L
→ T

∗ ⊗
T×L

TL.
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We define the kinetic energy and the momentum of the particle with respect to the
spherically symmetric observer o to be, respectively, the maps

G :=
1

2
mg◦(∇o,∇o) : J1E → T

∗ ⊗ T
∗ ⊗ A ⊗ M ,

P := θ∗y(mg♭ ◦ ∇o) : J1E → T
∗ ⊗ A ⊗ M ⊗ T ∗E ,

where ∇o : J1E → T
∗⊗VE is the covariant derivative induced by the observer, defined

as ∇o◦j1s = j1s − o◦s for each section s : T → E. Their coordinate expressions turn
out to be

G =
1

2
mgijy

i
0y

j
0 , P = −mgijy

i
0y

j
0d

0 +mgijy
j
0d

i .

Lemma 2.2 Suppose that the quantum connection Q splits as follows

Q = Q
‖ + CN ,

where Q
‖ is a quantum connection associated with the spacetime connection K‖, and

CN is a section

CN : Q
↑
L
→ T ∗ (T × L × T

∗ ⊗ TL) ⊗ Q
↑
L
≃ T ∗J1(T × L) ⊗ Q

L

Then it turns out that CN is a Hermitian form; moreover, for any global quantum
gauge, Q can be expressed as

Q = Q
0 + i

1

ℏℏℏ
(G+ P +ma‖ +maN)

where Q
0 is the trivial connection induced by the gauge, a‖ is a potential of the two–form

Φ‖ = 2o∗Ω‖, and aN is a potential of the type aN : T ×L → T
∗ ⊗A⊗ T ∗(T ×L) of the

form Φ associated with o.

Thus, in any chart adapted to the gauge and to o, the coordinate expression of the
above CN is of the type

CN = i
m

ℏ
(a0d

0 + ard
r) ⊗ I ,

where a0, ar : T × L → IR and ∂0ar − ∂ra0 = Φ0r.

Conversely, given a global quantum gauge, any two global potentials a‖ of Φ‖ and
aN : T × L → T

∗ ⊗ A ⊗ T ∗(T × L) of Φ yield a quantum connection Q through the
above construction.

Proof. It follows from a computation in coordinates. �

Our next task is to prove that for any two such quantum connections there exists
an automorphism of the quantum bundle that maps one connection into the other.
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Lemma 2.3 Assume the same hypotheses of Lemma 2.1, and choose a global quantum
gauge. Let Q1 and Q2 be two quantum connections with the properties of Lemma
2.2. Let a‖

1, a
‖

2 be the corresponding global potentials of Φ‖, and aN
1 , a

N
2 : T × L →

T
∗ ⊗ A ⊗ T ∗(T × L) the corresponding global potentials of Φ.

Then

a‖

2 = a‖

1 −
ℏℏℏ

m
θ‖ , aN

2 = aN
1 − ℏℏℏ

m
θN

where θ‖ : L × S → T
∗ ⊗ A ⊗ T ∗(L × S) and θN : T × L → T

∗ ⊗ A ⊗ T ∗(T × L) are
two closed forms.

Proof. It follows from an easy computation in coordinates. �

Theorem 2.4 Let Q1, Q2 be two quantum connections with the properties of Lemma
2.2 Then there is a global automorphism of Hermitian complex line bundle f of Q over
E′ such that f ∗Q1 = Q2.

Proof. With the same notation of the above lemma, we see that the function eiα‖+iαN

,
where dα‖ = θ‖ and dαN = θN gives rise by complex multiplication to a global auto-
morphism f of Q over E′, i.e. to a global change of gauge with respect to which we
have:

a‖

2 + aN
2 = a‖

1 + aN
1 − ℏℏℏ

m
(θ‖ + θN) .

�

Thus, we have proved the existence of a unique class of physically equivalent quan-
tum structures (Q,Q) of the above type. It is natural to define any representative
of this class as spherically symmetric quantum structure. The simplicity of the above
results lies on the splittings that we have required for the quantum bundle and the
quantum connection, and on the topological triviality of the manifolds E and T × L.

Of course, we can exhibit the distinguished representative given by the quantum
bundle

Q = L × S × C

and the quantum potential

a = −(Km)/r : L → T
∗ ⊗ A ⊗ T

∗ .

Indeed, this spherically symmetric solution of the quantum structure is nothing but
the standard one, but within a formulation involving a curved spacetime.

Appendix

Spherically symmetric Riemannian manifolds

The aim of this appendix is to provide a mathematical definition of spherically sym-
metric Riemannian manifold. This definition turns out to be particularly useful in
analysing geometrical properties of a spherically symmetric spacetime.
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The proof of the main results relies on some basic facts of Riemannian geometry,
that are well-known to mathematicians. Our sources are [13, 6, 12]; we especially used
[12] as a textbook on geodesics, and [13] for what concerns isometry groups.

First of all we present an overview of the standard mathematical background to-
gether with some useful results.

Throughout this section manifolds are smooth and connected, as in the whole paper.
Let (M , g) be a Riemannian manifold. We recall that the group I(M ) of the

isometries of M is a Lie group that acts effectively on M on the left [13, p. 239]. The
isotropy subgroup I√(M ) at p ∈ M turns out to be a compact Lie subgroup of I(M )

[13, p. 49].
It is important to note that, given p ∈ M , there is a ρ ∈ IR+ such that the

orthogonal group O(gp) acts freely (but not necessarily isometrically) on the geodesic
spheres centered at p in M of radius r < ρ (strongly convex neighbourhood , see [12]).
This is due to the fact that there exists a ρ ∈ IR+ such that the exponential map
expp : TpM → M induces a diffeomorphism between the balls centered at 0 in in TpM

of radius r < ρ and the geodesic spheres centered at p in M of radius r < ρ, but this
diffeomorphism needs not to be extendable to the whole M .

We are mainly concerned with global properties of the exponential mapping exp.
A Riemannian manifold (M , g) is said to be complete if each geodesic admits a

geodesic parametrisation on the whole IR. It is clear that if M is complete, then exp is
defined on the whole TM ; in general, this map is not injective, particularly in compact
manifolds where the existence of nontrivial homotopy groups provides a topological
obstruction [12].

It can be seen (see [12]) that the existence of critical points of the map exp is strictly
related to the problem of non–uniqueness of minimising geodesics (i.e., geodesics that
minimise the canonical length functional).

It is possible to provide a maximal open subset Up ⊂ TpM for each given p ∈ M

that is star–shaped with respect to 0p and in which expp is a diffeomorphism with an
open submanifold M [12], [6], and the unique geodesic connecting p with q ∈ expp(Up)
turns out to be a minimising geodesic.

The set C(p) := expp(∂Up) is defined to be the cut locus of p ∈ M . Sard’s theorem
implies that C(p) has zero measure, but little is known about its geometrical structure,
especially in the case of M non–compact. Anyway, it can be easily proved that M

consists of the disjoint union of expp(Up) and C(p) [6, p. 101].
In the non–compact case we can establish the following property [6, p. 91]: for each

p ∈ M there exists a geodesic c : [0,+∞) → M starting from p that minimises the
distances between p and all points of c. Such a geodesic is called a ray .

Finally, we introduce our notion of spherically symmetric (connected) Riemannian
manifold.

Definition 2.3 Let (M , g) be a complete Riemannian manifold, and p ∈ M .
We say M to be spherically symmetric with respect to p if the local action of O(gp)

on M through the map expp is globally extendable to an action by isometries.
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In other words, M is spherically symmetric with respect to p if and only if the
exponential mapping yields a group isomorphism O(gp) → I√(M).

A very interesting property arises when M is non–compact.

Proposition 2.3 Let (M , g) be a complete, spherically symmetric (with respect to p ∈
M), non–compact Riemannian manifold. Then C(p) = ∅.

Proof. Let c : [0,+∞) → M be a ray.
Each isometry takes c into another ray; moreover, our hypotheses imply that there

is a bijective correspondence between directions in TpM and geodesic rays, and this
yields the result. �

Corollary 2.4 Assume the same hypotheses of the above proposition. Then expp is a
diffeomorphism.

Thus, a complete non–compact Riemannian manifold that is spherically symmetric
with respect to one of its points is diffeomorphic to IRn, but not necessarily isometric;
anyway, we have a necessary and sufficient condition by which expp be an isometry.

Corollary 2.5 Assume the same hypotheses of the above proposition. Then expp is an
isometry if and only if M is flat.

Proof. In fact, if expp is an isometry, then M is obviously flat.
Conversely, being M flat and diffeomorphic to TpM , M must be isometric to

(IRn, e), where e is the Euclidean metric [6, p.135].
The exponential mapping commutes with isometries [13, p.161]; this yields the map

exp0 : T0IR
n → IRn that turns out to be the identity map, and hence an isometry. So,

the map expp turns out to be an isometry. �

Note also that in the above case, M turns out to be spherically symmetric with
respect to all of its points.

Positive spaces

In this section we recall some basic facts on positive spaces. This theory has been
developed in [9], [10] in order to make the independence of classical and quantum
mechanics from scales explicit.

A positive space is defined to be an abelian semigroup U, with 0 6∈ U, endowed with
a scalar multiplication by IR+ such that

(r + s)u = ru+ su , (rs)u = r(su) , r(u+ v) = ru+ rv , 1u = u ,

for all r, s ∈ IR+ and u, v ∈ U, and U can be generated over IR+ by a single element.
It can be given the definition of tensor product of positive spaces (over IR+) in a

natural way by means of a universal property. Moreover, it can be defined the tensor
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product (over IR+) of a positive space and a vector space; it can be shown that the
resulting space has a natural real vector space structure.

From the geometrical viewpoint, a positive space U turns out to be a manifold
diffeomorphic to IR+, with tangent space

TU ≃ U × (U ⊗ IR) .

Another interesting feature is that it is possible to give the definition of square root
of a positive space U. Namely, this is defined to be a positive space

√
U together with a

quadratic map q :
√

U → U such that an obvious universal property holds (see [10]). It
can be shown that such square roots exist and are unique up to canonical isomorphisms.

More generally, we can define nth roots of a positive space U, and also integer
powers (and hence rational powers) by means of tensorial product setting U

−1 := U
∗.

In particular, we have:
U

p

q := U
p ⊗ U

∗q .

We will use the following notational conventions for tensor product and dual: If U

and V are two unit spaces, and u ∈ U, v ∈ V, then we will write

uv :=u⊗ v ,
1

u
:=u∗ .

These conventions will give to all formulae a similar aspect to the corresponding ones
used by physicists.
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