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Abstract

The theory of Lie remarkable equations, i.e., differential equations characterized by their Lie point symmetries, is
reviewed and applied to ordinary differential equations. In particular, we consider some relevant Lie algebras of vector
fields on Rk and characterize Lie remarkable equations admitted by the considered Lie algebras.
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1 Introduction

In the context of the geometric theory of symmetries of (systems of) differential equations (DEs) [8, 9, 15, 30, 31], a natural
problem is to see when a DE, either partial (PDE) or ordinary (ODE), is uniquely determined by its Lie algebra of point
symmetries. The core of this paper is to investigate the inverse problem in the context of ODEs: given a Lie algebra s of
vector fields, how to construct ODEs having s as a Lie point symmetry subalgebra and satisfying some specific properties,
which will be clarified below, that ensure the uniqueness of such DE. The idea of describing DEs admitting a given Lie
algebra of symmetries dates back at least to S. Lie, who stated that uxx = 0 is the unique scalar 2nd order ODE, up to point
transformations, admitting an 8-dimensional Lie algebra of symmetries. Of course, a similar idea also applies to PDE: for
instance, in [34] (see also [35, 36]), the author proved that the only scalar 2nd order PDE, with an unknown function and
two independent variables, admitting the Lie algebra of projective vector fields of R3 as Lie point symmetry subalgebra is
the Monge-Ampère equation uxxuyy − u2

xy = 0. The above idea plays a central role also in gauge theories, where one wants
to obtain information on differential operators possessing a prescribed algebra of symmetries. The results of [24] go in this
direction: 2nd order field equations possessing translational and gauge symmetries and the corresponding conservation laws
(via Noether theorem) are always derivable from a variational principle.

The standard procedure (also used in [34]) for obtaining a scalar DE admitting a prescribed Lie algebra of symmetries is
that of computing the differential invariants of its prolonged action, under some regularity hypotheses; the invariant DE is
then described by the vanishing of an arbitrary function of such invariants. If the prolonged action is not regular, invariant
DEs can be obtained by a careful study of the singular set of the aforementioned action. An efficient method for obtaining
invariant scalar ODEs in the latter case is that of using Lie determinants [32], which we shall employ for our purposes. See
[7, 14, 18, 33] for more approaches to the problem. In general, DEs do not possess a sufficient number of independent Lie point
symmetries able to characterize them (among the others we recall KdV equation, Burgers’ equation, Kepler’s equations). In
this case, one can ask if they can be characterized by a more general algebra of symmetries. A possible generalization of
the concept of Lie remarkable equations is that suggested in [18, 34]: this amounts to extending the category of symmetries
used in the definitions of Lie remarkable equations to contact symmetries. For instance, the minimal surface equation of R3
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is completely determined by its contact symmetry algebra [34]. Also, an example of high-order Lie remarkable equation in
this ‘extended’ sense is

(1) 10u3
(3)u(7) − 70u2

(3)u(4)u(6) − 49u2
(3)u

2
(5) + 280u(3)u

2
(4)u(5) − 175u4

(4) = 0,

where u(k) = dku/dxk, which possesses a 10-dimensional Lie algebra of contact symmetries (see [12, 32]). Sometimes, in
order to completely characterize a given DE, one should also consider non-local symmetries. This is the situation discussed
in [17], where the idea of complete symmetry group was proposed and exploited in order to characterize uniquely Kepler’s
equation. This idea was subsequently exploited by several authors in different ways for characterizing many differential
equations [3, 4, 5, 6, 19, 25, 26].

Following the terminology introduced in [21, 22, 23, 28, 29], we call Lie remarkable a DE which is completely characterized
by its Lie algebra of point symmetries. Of course, this concept needs some cares and comments, which we will give below.
Thus, before giving a mathematical definition of it, we have to analyze all the requirements that can make a DE unique, also
by means of simple examples. It is well known that, locally, any rth order differential equation E with n independent variables
and m dependent ones can be interpreted as a submanifold of the r-jet Jr(n,m) of the trivial bundle Rn×Rm → Rn. Let us
denote by sym(E) the Lie algebra of infinitesimal point symmetries of E . Thus, when saying that E is uniquely determined
by sym(E), one should fix, as data of the problem, the number of independent and dependent variables, the order of the DE
and its dimension as submanifold. For instance, (see also Section 4.1), the unique 5th order ODE admitting the algebra of
projective vector fields of R2 is equation of item 5 of Theorem 4, but also uxx = 0 is the unique 2nd order ODE admitting
the algebra of projective vector fields of R2 as Lie algebra of point symmetries. Remaining in the realm of projective algebra,
the system {yxx = 0, uxx = 0} is uniquely determined by the 15-dimensional projective Lie algebra of R3, but, as we already
said, also the Monge-Ampère equation uxxuyy − u2

xy = 0 admits the same 15-dimensional Lie algebra of vector fields as Lie
algebra of point symmetries. Both the system {yxx = 0, uxx = 0} and uxxuyy − u2

xy = 0 are, in their own class, the only
DEs admitting the projective algebra of R3 as Lie algebra of point symmetries. As the last consideration, we observe that
if an equation E admits a Lie algebra of point symmetries, also an open submanifold of E admits the same Lie algebra of
symmetries, so that when speaking about Lie remarkable equations one should think of them up to inclusion. Bringing all
the above observations together, below we formulate a more precise definition of Lie remarkable equations.

Notations and conventions: Throughout the paper, we will use the Einstein summation convention, unless otherwise
specified. We will always use the word “symmetry” for “infinitesimal point symmetry”. When we speak about a Lie algebra
we always mean a Lie algebra of vector fields of finite dimension, unless otherwise specified. Finally, if s and g are Lie
algebras, s ≤ g means that s is a Lie subalgebra of g.

Definition 1. An l-dimensional rth order equation E ⊂ Jr(n,m) is called Lie remarkable if it is the only l-dimensional rth

order equation in Jr(n,m), up to inclusion and up to point transformations, admitting sym(E) as a Lie symmetry subalgebra.

Below we will shed light on the above definition by means of a simple example. Equation

E1 : uxx =
1

2
ux + e−2xu3

x

is not Lie-remarkable. In fact sym(E1) is linearly generated by

(2) ∂u , ∂x + u∂u , u∂x +
u2

2
∂u

but also the equation

E2 : uxx =
1

2
ux

admits sym(E1) as a Lie subalgebra of its Lie symmetry algebra. Indeed, sym(E1) � sym(E2), as sym(E2) is isomorphic to
the projective Lie algebra of R2. Thus, E1 and E2 are not equivalent. To conclude, E1 is not Lie-remarkable, whereas E2 is.

Of course, an abstract Lie algebra can be realized, in terms of vector fields, in different non-equivalent ways. For instance,
S. Lie [20] investigated the possible realizations of the non-commutative Lie algebra of dimension 2 (i.e., the Lie algebra
spanned by two elements X and Y such that [X,Y ] = X) as Lie algebra of vector fields on R2. He showed that, almost
every point of R2 has a neighborhood on which there are coordinates x, u in which

(3) 1. {X,Y } = {eu∂u , −∂u} or 2. {X,Y } = {∂u , ∂x + u∂u}.
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Of course, realizations (3) are not equivalent, as the orbits of the first realization are 1-dimensional whereas the orbits of the
second one are 2-dimensional.

Definition 2. We say that an l-dimensional rth order equation E ⊂ Jr(n,m) is associated with a Lie algebra of vector fields
s if it is the only l-dimensional rth order equation in Jr(n,m), up to inclusion and up to point transformations, admitting s

as a Lie subalgebra of sym(E).

We would like to stress that, in Definition 2, choosing a realization of the Lie algebra in terms of vector fields is crucial,
otherwise the definition of a DE associated with a Lie algebra would not be well posed. Indeed, non-equivalent realizations
of the same (abstract) Lie algebra lead, in general, to different DEs. For instance, let us we consider the non-commutative
Lie algebra of dimension 2 and its realizations 1. and 2. of (3). The most general 2nd order ODE having 1. of (3) as a Lie
symmetry subalgebra is

(4) uxx = f(x)ux + u2
x

whereas, if we consider 2. of (3), we obtain

(5) uxx = g
(ux

u

)
u.

Finally we note that equations (4) are point-equivalent, for any f ∈ C∞(R), to uxx = 0 as they possess an 8-dimensional
Lie algebra of point symmetries (more directly, one can easily check that the Liouville-Cartan invariant vanishes), whereas

equations of type (5) are not point equivalent each other. In fact, equation (5) with g
(
ux

u

)
=
(
ux

u

)4
cannot be linearizable

as the only 2nd order ODEs which can have this property are of type uxx = h(x, u, ux) with huxuxuxux
= 0. Thus, we can

say that equation uxx = 0 is associated with Lie algebra of vector fields 1. of (3), whereas there are no 2nd order ODEs
associated with Lie algebra of vector fields 2. of (3).

A first consequence of Definition 2 is the following obvious proposition.

Proposition 3. If the equation E is associated with s ≤ sym(E), then it is associated with any subalgebra s̃ of sym(E) such
that s ≤ s̃.

We remark that DEs of different order can be associated to the same Lie algebra of vector fields. From the above
discussions it is clear that a Lie remarkable equation needs a Lie algebra of point symmetries of suitable dimension: in
Section 3.3 we show that, in the case of scalar ODEs, this leads also to the existence of first integrals.

In the present paper we shall construct, in an algorithmic way, (system of) ODEs associated with relevant Lie algebras
of vector fields on Rk by using sufficient conditions contained in Section 3 (more precisely, Propositions 7, 9 and 10). As
first step, we obtain scalar Lie remarkable ODEs by means of the local classification of primitive Lie algebras of vector fields
on R2 (a list of such Lie algebras of vector fields can be found in [32]). Note that they include the euclidean, affine, special
conformal and projective Lie algebra of R2. Then we concentrate on the computations of Lie remarkable systems of ODEs.
Below we give the main theorems.

Theorem 4. Lie remarkable scalar ODEs associated with primitive Lie algebras of vector fields on R2 are listed below (we
refer to table (13)) :

1. There are no Lie remarkable scalar ODEs associated with Lie algebras I, II and III;

2. with algebras IV or V it is associated the equation of straight lines uxx = 0 ;

3. with Lie algebra VI it is associated the equation uxx = 0 and the equation of the vanishing affine curvature 3uxxuxxxx−
5u2

xxx = 0 ;

4. with Lie algebra VII it is associated the equation the equation of circles (1 + u2
x)uxxx − 3uxu

2
xx = 0 ;

5. with Lie algebra VIII it is associated the equation uxx = 0 and the equation of conic sections 9uxxxxxu
2
xx + 40u3

xxx −
45uxxuxxxuxxxx = 0 .
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Equation of item 3 is also known as generalized Kummer-Schwartz equation (see [19] for a discussion of this topic).

Equation of item 4 can be realized as the vanishing of total derivative of the euclidean curvature uxx(1+ u2
x)

− 3
2 of the curve

u = u(x). As regard to equation of item 5, it was somehow expectable to obtain it: indeed VIII is the projective Lie algebra
of R2 and a projective transformation sends a conic curve into a conic curve.

For what concerns systems of ODEs, by means of the methods described above, we found Lie remarkable systems of
ODEs in 2 dependent variables associated with euclidean, affine, conformal and projective Lie algebra of R3. We summarize
our results in the theorem below.

Theorem 5. Lie remarkable systems of ODEs in 2 dependent variables associated with isometry, affine, special conformal
and projective Lie algebra of the euclidean space R3 are, respectively, listed below

1. with the isometry Lie algebra it is associated the system of straight lines {uk
xx = 0, k = 1, 2} ;

2. with the affine Lie algebra it is associated the system {uk
xx = 0, k = 1, 2} and the system appearing in section 4.2.2;

3. with the conformal Lie algebra it is associated the system of circles {(1 +
∑

j(u
j
x)

2)uk
xxx = 3uk

xx

∑
j u

j
xu

j
xx , k = 1, 2 };

4. with the projective Lie algebra it is associated the system {uk
xx = 0, k = 1, 2} and the system appearing in section

4.2.4.

We see that the equation/system of lines in the euclidean space appears many times in the Theorems above in view
of Proposition 3. We underline that it is known that a system of ODEs possessing a Lie symmetry algebra of maximal
dimension (i.e. m2 + 4m+ 3) is point-equivalent to the system of lines [13]. In this respect, the result of item 1 of Theorem
5 is somehow unexpected: note that, in the scalar case, a 2nd order ODE which admits the 3-dimensional Lie algebra of
infinitesimal isometries of the euclidean space as Lie symmetry subalgebra is not necessarily the equation uxx = 0 (see the
discussion contained in Section 4.2.1). Anyway in Section 4.2.1 we prove the result of item 1 for an arbitrary number of
dependent variables. We observe that the result of item 3 holds also for a number of dependent variables less or equal than
four. The higher-order case appearing in item 2 is discussed more in detail in Section 4.2.2.

All computations are performed through the use of the computer algebra package ReLie [27], a REDUCE program
developed by one of us (F.O.).

2 Preliminaries

In the whole paper, all manifolds and maps are supposed to be C∞. Here we recall some basic facts regarding jet spaces
(for more details, see [9, 31]). In what follows, λ and µ run from 1 to n whereas i and j run from 1 to m. By Jr(n,m)
we denote the rth order jet space of the trivial projection Rn × Rm → Rn. Note that J0(n,m) = Rn × Rm. A system of
coordinates (xλ, ui) on Rn × Rm induces a system of coordinates (xλ, ui

σ) on Jr(n,m), where σ = (σ1, σ2, . . . , σn) ∈ Nn
0

such that |σ| :=
∑

i σi ≤ r, in the following way. For each local map s : I ⊂ Rn → Rm, we define its jet prolongation
jrs : I → Jr(n,m) in such a way that

ui
σ ◦ jrs =

∂|σ|(ui ◦ s)

(∂x1)σ1 · · · (∂xn)σn
, |σ| ≤ r.

In the case n = 1, i.e. one independent variable, we also denote x1 by x and ui
σ = ui

(σ1)
both by ui

σ1
and ui

xx . . . x︸ ︷︷ ︸
σ1−times

.

On Jr(n,m) there is the (higher) contact distribution which is generated by the vector fields

Dλ
def
=

∂

∂xλ
+ uj

σ,λ

∂

∂uj
σ

and
∂

∂uj
τ

,

where 0 ≤ |σ| ≤ r−1, |τ | = r and σ, λ denotes the multi-index (σ1, . . . , σλ+1, . . . , σn). We note that the contact distribution is
spanned by tangent vectors to all submanifolds of Jr(n,m) of the type jrs(I); conversely, an integral n-dimensional manifold
of the contact distribution which projects surjectively on I under the canonical map (xλ, ui

σ) 7→ (xλ) is locally of the form
jrs(I).
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Any vector field X on J0(n,m) can be lifted to a vector field X(r) on Jr(n,m) by lifting its local flow: such vector field
preserves the contact distribution. In coordinates, if X = Xλ∂/∂xλ +Xi∂/∂ui is a vector field on J0(n,m), then its r-lift
X(r) has the following coordinate expression

(6) X(r) = Xλ ∂

∂xλ
+Xi

σ

∂

∂ui
σ

,

whose components are iteratively defined by Xj
τ,λ = Dλ(X

j
τ ) − uj

τ,µDλ(X
µ) with |τ | < r. In the case n = 1, i.e. one

independent variable, we also denote Xi
σ = Xi

(σ1)
by Xi

σ1
.

An rth order differential equation (DE) E with n independent variables and m unknown functions (or dependent variables)
is a submanifold of Jr(n,m).

A solution is an n-dimensional submanifold of J0(n,m) which projects surjectively on Rn and such that its r-prolongation
is contained in E . An infinitesimal point symmetry of E is a vector field X on J0(n,m) such that its r-prolongation X(r) is
tangent to E : they transform solutions into solutions. We denote by sym(E) the Lie algebra of infinitesimal point symmetries
of the equation E .

Let E be locally described by {F i = 0}, i = 1 . . . k with k < dim Jr(n,m). Then finding point symmetries amounts to
solve the system

X(r)
(
F i
)
= 0 whenever F i = 0.

The problem of determining the Lie algebra sym(E) is said to be the direct Lie problem. Conversely, given a Lie subalgebra
s of the Lie algebra of the vector fields on J0(n,m), we consider the inverse Lie problem, i.e., the problem of characterizing
equations E ⊂ Jr(E, n) such that s ⊂ sym(E).

In the present paper we mainly deal with (system of) ordinary differential equations (ODEs), and we assume that
they always can be put in normal forms. Thus, by definition, an rth order ODE is the image of a section of the bundle
Jr(1,m) → Jr−1(1,m). Let s be a Lie algebra of vector fields on J0(1,m). Let {Xa}1≤a≤k be a basis of s. We denote

by M
s
(r) the k × (1 +mr +m) matrix of the components, w.r.t. the basis {∂x1 , ∂ui

σ1
} 1≤i≤m
0≤σ1≤r

, of the prolongations X
(r)
k to

Jr(1,m) of each Xk. Namely, if, according with (6), X
(r)
k = Xk

1∂/∂x1 +Xk
i
σ∂/∂u

i
σ, then matrix M

s
(r) is

(7) M
s
(r) =




X1
1 X1

1
0 · · · · · · X1

m
0 X1

1
1 · · · · · · X1

m
1 · · · · · · X1

1
r · · · · · · X1

m
r

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Xk
1 Xk

1
0 · · · · · · Xk

m
0 Xk

1
1 · · · · · · Xk

m
1 · · · · · · Xk

1
r · · · · · · Xk

m
r




We omit the dependency of the above matrix on the basis of s as the computations we have performed and which made
use of matrix (7) are independent of the chosen basis. In fact we shall mainly deal with the rank of (7).

3 Sufficient conditions for Lie remarkability and relationship with first in-
tegrals

3.1 Sufficient conditions we shall use for constructing Lie remarkable ODEs

The definition of Lie remarkable equations leads naturally to some sufficient conditions for determining them. To start
with, we observe that with any Lie algebra s of vector fields on a manifold M it is associated an involutive distribution Ds

(generally, of non-constant rank) defined by

(8) p ∈ M 7→ Ds

p := {Xp | X ∈ s} ⊂ TpM.

In view of Frobenius theorem, involutive distributions on a smooth manifold M are integrable, i.e. through each point of M
there is a unique maximal leaf, provided they are of constant rank. For involutive distributions of non-constant rank, there
exist sufficient conditions which assure their integrability (see for instance, Theorem 3.25 of [16]). For distributions coming
from Lie algebra actions, i.e. of type (8), it holds the following theorem.

5



Theorem 6 ([2]). Let s be a finite-dimensional Lie algebra. Then distribution Ds defined by (8) is integrable.

We note that, with any Lie symmetry algebra sym(E) of a differential equation E ⊂ Jr(n,m) of order r, one can associate
the distribution Dsym(E) on the rth order jet space. The following inequality holds:

dim sym(E) ≥ dimD
sym(E)
θ , ∀ θ ∈ Jr(n,m),

where dim sym(E) is the dimension, as real vector space, of the Lie algebra sym(E) of the infinitesimal point symmetries of
E . An integral submanifold of Dsym(E) is, in general, an equation in Jr(n,m). By construction, such equation admits all
elements in sym(E) as infinitesimal point symmetries. This leads to the following proposition, which we shall use in Section
4 for computing Lie remarkable equations starting from distinguished Lie algebras of vector fields on J0(n,m).

Proposition 7. Let E ⊂ Jr(n,m). If dimD
sym(E)
θ > dim E ∀ θ ∈ Jr(n,m) \ {E ∪ F}, where F is either an empty set or a

finite union of submanifolds of dimension less than dim E, then E is Lie remarkable.

Remark 8. The hypotheses of Proposition 7 are motivated by Theorem 6, which we shed light by an example. Let us
consider the Lie algebra of vector fields s on R3 = (x, y, z) linearly generated by

x∂x + y∂y , −y∂x + x∂y , z∂z

In this case, distribution Ds is of non-constant rank: indeed it has rank 3 on R3 minus the algebraic variety described by
z(x2 + y2) = 0. The hyperplane S described by z = 0 is the unique 2-dimensional submanifold such that Ds

p ⊆ TpS, ∀ p ∈ S.
Note that, outside S, the rank of Ds is equal to 3 except on the two lines {x = 0, y = 0, z > 0} and {x = 0, y = 0, z < 0},
where the rank is equal to 1.

Proof of Proposition 7. Let Ẽ ⊂ Jr(n,m) be a DE (of the same dimension as E) such that sym(E) ≤ sym(Ẽ). Let us suppose

that Ẽ 6= E , so that there exists at least a point of Ẽ which does not belong to E . Let us denote such a point by θ. As a
first case, let us assume that θ ∈ Ẽ \ {E ∪ F}. Since sym(E) is a Lie subalgebra of the Lie symmetry algebra of Ẽ , then

D
sym(E)
θ ⊆ TθẼ . This inclusion implies that dim(D

sym(E)
θ ) ≤ dim(Ẽ) = dim(E), which contradicts the hypothesis.

Let us now assume that θ ∈ (Ẽ \ E) ∩ F . This implies that Ẽ ∩ F 6= 0. For dimensional reasons, Ẽ 6= F , so that there

exists a point in Ẽ \ F which, in its turn, does not belong to E . Then it is enough to apply the reasoning of the previous
case.

From now on we shall concentrate only on ODEs since they are the target of our investigation.

We would like to underline that, if an ODE E ⊂ Jr(1,m) satisfies Proposition 7 and it can be put in normal form (i.e.
E is the image of a section of the bundle Jr(1,m) → Jr−1(1,m), in particular, it is a determined system), then also the
k-prolongation E(k) of E , with k ∈ N arbitrary, is Lie remarkable. Indeed, in this case, dim E(k) = dim E and the rank of the
distribution spanned by the symmetries cannot decrease.

Proposition 7 suggests that, in order to construct an l-dimensional Lie remarkable equation, one can start from an (l+1)-
dimensional Lie algebra of vector fields on J0(n,m) = Rn+m. This leads, in the case of computation of scalar Lie remarkable
ODEs of rth order, for dimensional reasons, to consider the Lie determinant associated to an (r+2)-dimensional Lie algebra
of vector fields (see the beginning of Section 4). Actually, in some cases, an l-dimensional ODE can be uniquely determined
by an l-dimensional Lie algebra, as the content of the next section shows.

3.2 Lie remarkable ODEs determined by a lower dimensional Lie algebra of vector fields:
foliations of equivalent ODEs and (pseudo)-stabilization order

We have already seen that Lie algebra of vector fields 1. of (3) is sufficient to completely characterize the ODE uxx = 0, up
to point transformations (see the discussion after Definition 2). In this section we investigate other situations in which it
is possible to construct Lie remarkable ODEs starting from a Lie algebra of vector fields of lower dimension w.r.t. that of
Proposition 7.

Consider realization (2) (in terms of vector fields on R2) of the Lie algebra sl(2,R). Second order ODEs admitting vector
fields (2) as Lie point symmetries are

(9) uxx =
1

2
ux +Ke−2xu3

x , K ∈ R.
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Equation (9) and vector fields (2) appeared in [10] in the context of the local classification of projective structures on a
2-dimensional manifold. A priori, DEs belonging to the above 1-parametric family could be all point-equivalent, so that one
could consider the equation (9) with K = 0 as its representative, that is the only equation (up to point transformations)
admitting the above Lie algebra of vector fields as a subalgebra of Lie point symmetries. A deeper study shows that it is
not the case. Indeed, even if the change x → x + c, for some suitable constant c, allows to say that all equations (9) with
K > 0 (respectively, K < 0) are point equivalent, for K = 0 equation (9) admits the 8-dimensional Lie algebra sl(3,R) as
Lie algebra of point symmetries, so that it is not point-equivalent with any equations (9) with K 6= 0. We stress that the
sufficient criterion given in Proposition 7 is not fulfilled for K 6= 0, the above equation being a 3-dimensional submanifold
of the 4-dimensional jet space J2(1, 1). On the other hand, for K = 0, the criterion is fulfilled if we consider the Lie algebra
sl(3,R) and the equation uxx = 1

2ux is Lie remarkable (note that it is equivalent to uxx = 0 as it admits a 8-dimensional
Lie symmetry algebra). From a theoretical viewpoint, obtaining a foliation of point-equivalent equations is possible. For
instance, the most general scalar 2nd order PDE admitting the Lie algebra s linearly generated by {∂x, ∂u, x∂u} as a Lie
symmetry subalgebra is uxx = K, K ∈ R, as uxx is the only 2nd order differential invariant of s (up to functional dependence).
All these equations are point equivalent to uxx = 0, as they admit the 8-dimensional projective Lie algebra sl(3,R) as Lie
point symmetry algebra. Then we can say that the Lie algebra of vector fields s uniquely determines equation uxx = 0 up
to point transformations, i.e. it is associated with s in the sense of Definition 2. Thus, we have the following proposition:

Proposition 9. Let s be a Lie algebra of vector fields on J0(1, 1). Let us suppose that there exists some r ∈ N such that the

rank of Ds
(r)

is of codimension 1 almost everywhere. Let F be the unique function on Jr(1, 1) (up to functional dependence)

such that Ds
(r)

(F ) = 0. Then if the equations F = k, k ∈ R are point equivalent each other, then equation F = 0 is associated
with s.

Proof. Since F is, by hypothesis, the only differential invariant of rth order of the Lie algebra s, F = k, with k ∈ R, are all
and only the rth order DEs admitting s as a Lie symmetry subalgebra. Now, if all these DEs are equivalent each other, they
will be equivalent, in particular, to equation F = 0.

Below we explain another way of obtaining Lie remarkable ODEs starting from a Lie algebra of vector fields of lower
dimension w.r.t. that of Proposition 7. This is based on the fact that some rth order ODE can be uniquely constructed
by a foliation of (r − 1)th order ODEs. Below we shall be more precise by considering a concrete example. The equation
E := {uxx = 0} ⊂ J2(1, 1) can be uniquely constructed starting from the foliation of J1(1, 1) given by Fk = 0, where

Fk := ux − k, k ∈ R. Indeed, we have that E =
⋃

k F
(1)
k . Even though we can construct the equation uxx = 0 starting from

such a foliation of J1(1, 1), the two Lie point symmetries ∂x and ∂u of ux = k are not enough to determine the equation
uxx = 0 in the Lie remarkable sense (i.e. there are many 2nd order ODEs associated with the Lie algebra of translations)
although they determine uniquely the foliation Fk = 0 of J1(1, 1). To completely determine equation uxx = 0 in the Lie
remarkable sense, the foliation ux = k given by a Lie algebra of vector fields should live in J2(1, 1) rather than in J1(1, 1)
(then, in this case, we need 3 symmetries rather than 2). Indeed, such a foliation and equation uxx = 0 represent, essentially,
the same object in J2(1, 1). This trivial observation leads to an interesting consequence. If we find a 3-dimensional Lie
algebra of vector fields such that its orbits in J2(1, 1) form the foliation ux = k, then such algebra completely determines
the equation uxx = 0. This Lie algebra of vector fields exists: indeed, the 3 infinitesimal homotheties of R2 (two translations
and the stretching) are Lie point symmetries of ux = k for any k. This 3-dimensional Lie algebra is enough to completely
determine uxx = 0 in the Lie remarkable sense. So, we constructed a Lie remarkable equation of dimension 3 starting from
a 3-dimensional Lie algebra. In more precise words, we have the following proposition.

Proposition 10. Let s be a Lie algebra of vector fields on J0(1, 1). Let us suppose that there exists an integer r such that the
system s(r)(F ) = 0 has a unique solution F (up to functional dependence). If F ∈ C∞(Jr−1(1, 1)) but F /∈ C∞(Jr−2(1, 1)),
then equation Dx(F ) = 0 is Lie remarkable and it is associated with s.

Proof. Since s(r)(F ) = 0, we have that s ⊂ sym({F = k}) ∀ k ∈ R, that implies s ⊂ sym({Dx(F ) = 0}). Thus, on one
hand s(r) spans almost everywhere a codimension 1 distribution on Jr(1, 1) and, on the other hand, it is tangent to the
hypersurface {Dx(F ) = 0}. Since the only solution to s(r)(F ) = 0 is an F of order (r− 1) but not (r− 2), Dx(F ) is of order
r (but not (r− 1)), so that the only possibility for s to be a subalgebra of Lie point symmetries of {Dx(F ) = 0} is that such
equation is contained in the set

sing(s(r)) := {points of Jr(1, 1) where the rank of s(r)is not maximal}.
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By hypothesis, the rank of s(r) is maximal almost everywhere and it is equal to dim Jr(1, 1)− 1 = r + 1. Below we see that
the set sing(s(r)) contains only a hypersurface of order r which is decribed by {Dx(F ) = 0}. This comes from the fact that
sing(s(r)) is given by a system {Dx(F )Gi = 0}, where Gi are smooth functions on Jr−1(1, 1). In fact, the set sing(s(r)) is
described by the system formed by all determinants of (r + 1) × (r + 1) submatrices of M

s
(r) (see (7) for the definition)

equating to zero. Since in the last column of M
s
(r) the highest order derivatives appears at first degree, determinants of

submatrices containing elements of the last column are polynomial of first degree in the highest order derivatives. Since
Dx(F ) is exactly of order r (the highest), functions Gi cannot be of highest order. We conclude that equation {Dx(F ) = 0}
is the only hypersurface of order r contained in sing(s(r)).

In view of the above reasonings, any other rth order scalar ODE E admitting s as a Lie symmetry subalgebra is such that
E ⊂ sing(s(r)). Being E a hypersurface of order r, in view of the above conclusion we have E = {Dx(F ) = 0}.

Remark 11. To satisfy the hypotheses of Proposition 10, a necessary condition is that, almost everywhere, rank(M
s
(r−1)) = r

and rank(M
s
(r)) = r + 1. Lie algebras which pseudo-stabilizes in the sense specified in [32] satisfies such condition.

Remark 12. The fact that s(r)(F ) = 0 has a unique solution which, in its turn, is exactly of (r − 1)th order, implies also
that s(r−1)(F ) = 0. One can ask if we can weaker such hypothesis by assuming only that s(r−1)(F ) = 0 has a unique solution
of (r − 1)th order. In this case there are examples showing that Dx(F ) = 0 is not Lie remarkable. We construct such an
example immediately after (14).

Example 13. Let us consider the Lie algebra s linearly generated by the following vector fields on J0(1, 1):

∂x, ∂u, x∂u, x∂x + 2u∂u .

We have that

Ms(3) =




1 0 0 0 0
0 1 0 0 0
0 x 1 0 0
x 2u ux 0 −uxxx


 .

The above matrix has rank equal to 4 outside the hypersurface uxxx = 0. We also note that the only solution to system
s(3)(F ) is F = F (uxx). Thus, in view of Proposition 10, we obtain that uxxx = 0 is the only 3rd order ODE associated with
s.

The phenomenon described above does not appear in the case of PDEs as, in general, one needs several foliations of
1st order PDEs to reconstruct a 2nd order PDE. In fact, the above construction, for PDEs, corresponds to the existence of
intermediate integrals, as, by definition, an intermediate integral of an rth order PDE E is a function f on the jet space
of order r − 1 such that all solutions of the family f = c, c ∈ R are also solutions of E . For instance, if a Monge-Ampère
equation with two independent variables admits two special intermediate integrals, then it can be reconstructed starting
from them (see for instance [1]).

3.3 Lie remarkability and existence of first integrals

In view of all that we said so far, it is expectable that Lie remarkable DEs must have a suitable number of symmetries
in order to be uniquely determined. This implies, in the case of scalar ODEs, also the existence of first integrals, as the
following proposition shows.

Proposition 14. Let us consider the following ODE

(10) u(n) = f(x, u, u(1), . . . , u(n−1)) , where u(k) :=
dku

dxk

Let X1, . . . , Xm, m ≥ n, be (point) symmetries of (10). Then,

(11)
Xi1yXi2y · · ·yXinyZyΩ

Xj1yXj2y · · ·yXjnyZyΩ
,

where
Z := ∂x + u(1)∂u + · · ·+ u(n−1)∂u(n−2)

+ f∂u(n−1)
, Ω = dx ∧ du ∧ du(1) ∧ · · · ∧ du(n−1),

is a first integral of (10).
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Proof. We observe that

LZ

(
1

Xi1yXi2y · · ·yXinyZyΩ
Ω

)
= 0.

Indeed,

LZ

(
1

Xi1yXi2y · · ·yXinyZyΩ
Ω

)
= −

∑

k

Xi1y · · ·yXik−1
y[Z,Xik ]yXik+1

y · · ·yZyΩ

(Xi1yXi2y · · ·yXinyZyΩ)2
Ω

−
Xi1yXi2y · · ·yXinyZyLZΩ

(Xi1yXi2y · · ·yXinyZyΩ)2
Ω+

1

Xi1yXi2y · · ·yXinyZyΩ
LZΩ = 0.

We obtained the last equality in view of the following facts. Since Xik are symmetries of (10), [Z,Xik ] is proportional to Z
for any 1 ≤ ik ≤ m, so that

Xi1y · · ·yXik−1
y[Z,Xik ]yXik+1

y · · ·yZyΩ = 0.

Moreover, LZΩ = div(Z)Ω.

Corollary 15. Lie remarkable equations constructed by means of Proposition 7 or 10 possess first integrals of type (11).

Remark 16. Proposition 14 says that if we have a sufficient number of point symmetries we can construct first integrals.
In the case we have exactly n symmetries, (11) is a constant, so it is a trivial first integral. The above construction starts to
produce non-trivial first integrals when we have at least n+ 1 symmetries.

Below, as an example of computation, we use Proposition 14 to construct first integrals of equations (9). We recall that
Lie point symmetries of (9) are (2) so that the following integrals are obtained:

I1 =

det




1 ux
1
2ux +Ke−2xu3

x

0 1 0
1 u ux




det




1 ux
1
2ux +Ke−2xu3

x

0 1 0
u 1

2u
2 uxu− u2

x




=
2Ke−2xu2

x − 1

u(2Ke−2xu2
x − 1) + 2ux

,

and

I2 =

det




1 ux
1
2ux +Ke−2xu3

x

0 1 0
1 u ux




det




1 ux
1
2ux +Ke−2xu3

x

1 u ux

u 1
2u

2 uxu− u2
x




= 2
2Ke−2xu2

x − 1

u2(2Ke−2xu2
x − 1) + 4ux(u− ux)

.

4 Proof of Theorem 4 and Theorem 5

Let us consider the euclidean space R1+m. From now on, we interpret such a space as the space of 1 independent variable
and m dependent variables, i.e., R1+m = J0(1,m). In this section, by considering Propositions 3, 7, 10 and 9, we construct
Lie remarkable ODEs by starting from a given Lie algebra s of vector fields on R1+m. More precisely, we start by taking
into account primitive Lie algebras of vector fields on R2 and construct (when possible) the corresponding associated Lie
remarkable scalar ODEs. Then we consider the isometric, special conformal, affine and projective algebra of R1+m in order
to obtain Lie remarkable systems of ODEs.

The dimension of the Lie algebras of vector fields we are going to consider is a function of the number of the dependent
variables, so that, as a first step, we ask ourselves the following question: by using Proposition 7 or 10, which combinations
of integer values of r and m can produce a Lie remarkable system of m ODEs of order r associated with the given Lie algebra
of vector fields s? We realize that such systems will be found as m-codimensional submanifolds of the jet space Jr(1,m)
such that

(12) dim s ≥ dim Jr(1,m)−m = rm+ 1.
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After this dimensional estimation, we obtain the Lie remarkable system E associated with the considered Lie algebra of vector
fields s by imposing on E the conditions of Proposition 7 or 10. In particular, in order to satisfy conditions of Proposition 7,
we find the set singk(s

(r)) of points of Jr(1,m) where the rank of the distribution associated with the prolonged Lie algebra
s(r) of the chosen Lie algebra of vector fields s is at most equal to k, where k ∈ N is smaller than the maximal rank of s(r).
The Lie remarkable equation, whether it exists, is one of this singular set as the vector fields in s(r) are tangent to the set
singk(s

(r)), provided that the latter is a submanifold of Jr(1,m) (see also Theorem 6.
The computation of the singular set leads to algebraic computations that we solve with the help of computer algebra [27].

The rank condition of Proposition 7 is enforced as a system of equations obtained from the vanishing of determinants of all
square submatrices (minors), of suitable dimension, of the matrix of prolonged generators M

s
(r) (see (7)). We underline that,

in the scalar case and for the considered Lie algebras, the method described above reduces to that of Lie determinant, i.e.
Lie remarkable equations of order at most r associated with an (r+2)-dimensional Lie algebra of vector fields are described
by the vanishing of the determinant of the (r + 2)× (r + 2) matrix M

s
(r) .

4.1 Primitive Lie algebras and Lie remarkable scalar ODEs: proof of Theorem 4

Let us set m = 1. Starting from the primitive (non-singular) Lie algebras of vector fields of R2, we construct Lie remarkable
scalar ODEs taking Propositions 7, 10 and 9 into account. For the convenience of the reader, below we report the list of the
afore-mentioned Lie algebras, which can be found in [32].

(13)

Generators Structure
I ∂x, ∂u, u∂x − x∂u + α(x∂x + u∂u), α ∈ R R⋉ R2

II ∂x, x∂x + u∂u, (x
2 − u2)∂x + 2xu∂u sl(2)

III u∂x − x∂u, (1 + x2 − u2)∂x + 2xu∂u, 2xu∂x + (1− x2 + u2)∂u so(3)
IV ∂x, ∂u, x∂x + u∂u, u∂x − x∂u R2 ⋉R2

V ∂x, ∂u, x∂x − u∂u, u∂x, x∂u sa(2)
VI ∂x, ∂u, x∂x, u∂u, u∂x, x∂u a(2)
VII ∂x, ∂u, u∂x − x∂u, x∂x + u∂u, (x

2 − u2)∂x + 2xu∂u, 2xu∂x + (u2 − x2)∂u so(3, 1)
VIII ∂x, ∂u, x∂x, u∂u, u∂x, x∂u, x

2∂x + xu∂u, xu∂x + u2∂u sl(3)

In this case, since the Lie algebra I is 3-dimensional, Proposition 7 provides sufficient conditions for the existence of a 1st

order Lie remarkable ODE associated to I, whereas Proposition 10 for the existence of a 2nd order one. A direct computation
shows that such ODEs do not exist. In fact, the matrix of 2-prolongations of I is

M
I(2)

=




1 0 0 0
0 1 0 0

u+ αx −x+ αu −1− u2
x −uxx(3ux + α)


 =




0
M

I(1)
0

−uxx(3ux + α)


 ,

so that the rank of the submatrix of M
I(1)

is 3-dimensional everywhere, which implies that there are no 1st order Lie
remarkable ODEs associated with Lie algebra I. We cannot construct Lie remarkable equation by means of Proposition 10
as the necessary conditions contained in Remark 11 are not satisfied. Anyway, for our purposes, we write the only solution
to system M

I(2)
(F ) = 0, up to functional dependency:

(14) F (ux, uxx) :=
e−α arctan(ux)uxx

(1 + u2
x)

3
2

, α ∈ R,

Proposition 9 is not satisfied. Indeed F (ux, uxx) is a differential invariant of Lie algebra I and the most general 2nd order
scalar ODEs admitting I as subalgebra of symmetries is F (ux, uxx) = k, k ∈ R, but previous equations are not all equivalent
each other as for k = 0 we have an equation belonging to the class of projective connections, (i.e. equations uxx = P (x, u, ux)
where P is a polynomial of third degree in ux), which is closed w.r.t. point transformations, whereas for k 6= 0 the equation
does not belong to this class. Now we answered a question posed in Remark 12. To this aim, note that equations of the
family Dx(F ) = 0, which coincides with (1 + u2

x)uxxx = u2
xx(α + 3ux), are not all equivalent each other since for α = 0 we

obtain a Lie remarkable equation with a 6-dimensional symmetry algebra (see also below, when discussing the case of Lie
algebra VII) whereas for α 6= 0 we do not have any of these properties. Taking into account that the only solution to system
M

I(2)
(F ) = 0 is (14), we answered negatively to the question posed in Remark 12.
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Note that ds = eα arctan(ux)(1 + u2
x)

1
2 dx is an invariant 1-form; a function of F (ux, uxx) and of its derivatives with respect

to ds is, in its turn, a differential invariant. For α = 0 we find the classical result of the euclidean geometry that any
(euclidean) differential invariant is a function of the curvature and of its derivatives. Similar results can be obtained also
for the other Lie algebras: differential invariants of degree 0 and 1 play the same role as the curvature and the arc-length
element for the Klein geometries associated to algebras (13). We do not insist here on this aspect even if it is somehow
related to the topic of this paper.

By using the same reasonings we adopted for the algebra I, we can prove that there are no Lie remarkable equations
associated with Lie algebras II and III. In fact, according to Proposition 7, for dimensional reasons such equations should
be of 1st order, but there are no hypersurfaces of J1(1, 1) of order 1 (i.e. 1st order ODEs) where the rank of M

II(1)
(resp.

M
III(1)

) drops. Both Lie algebras II and III do not satisfy the hypotheses of Proposition 10 as they do not satisfy necessary
conditions of Remark 11. In fact, the rank of both M

II(1)
and M

III(1)
is almost everywhere equal to 3. For dimensional

reason, this is the only case to be considered. This concludes the proof of item 1 of Theorem 4. Moreover, both Lie algebras
II and III do not satisfy Proposition 9. Indeed, the unique 2nd order differential invariant of II (resp. III) up to functional

dependence, is (1 + u2
x)

− 3
2 (uxxu + 1 + u2

x) (resp. (1 + u2
x)

− 3
2 (1 + x2 + u2)uxx + 2(1 + u2

x)
− 1

2 (u − xux)) and our assertion
follows by applying the same reasoning as for the Lie algebra I.

By continuing in our analysis, we see that the only Lie remarkable equation associated with algebras IV or V is uxx = 0.
In fact

(15) M
IV(2) =




1 0 0 0
0 1 0 0
x u 0 −uxx

u −x −1− u2
x −3uxuxx




and the only hypersurface of J2(1, 1) where the rank of (15) is less than 4 is uxx = 0. For dimensional reasons, according
to Proposition 10, Lie algebra IV could produce a Lie remarkable ODE of order at most 3, but necessary conditions
contained in Remark 11 are not satisfied. In fact, in view of (15), the rank of M

IV(r) is, almost everywhere, equal to r + 2
for r ≤ 2. A similar reasoning applies also to Lie algebra V. Furthermore, both Lie algebras IV and V do not satisfy
Proposition 9. Indeed the unique 3rd (resp. 4th) order differential invariant of IV (resp. V) up to functional dependence,

is I = u−2
xx ((1 + u2

x)uxxx − 3uxu
2
xx) (resp. J = u

− 8
3

xx (3uxxuxxxx − 5u2
xxx)). Now, equations I = k with k ∈ R cannot be all

equivalent each other as for k = 0 we have we have a 6-dimensional Lie symmetry algebra whereas for k 6= 0 a 5-dimensional
one. Also equation J = k with k ∈ R cannot be all equivalent as the prolongation of a point transformation is always and
affine transformation in all derivatives except for the first ones in relation to which it is a projective transformation, so that
it is not possible to transform equation J = 0 into equation J = k for any k 6= 0. Since the full symmetry algebra of uxx = 0
is the projective algebra sl(3), any subalgebra of sl(3) containing either the Lie algebra IV or V leads to the Lie remarkable
equation uxx = 0 (see also Proposition 3). For instance, starting from affine algebra VI we obtain again the Lie remarkable
equation uxx = 0.

By considering the Lie algebras VI, VII and VIII we can construct, by means of Proposition 7 and following the
same reasoning adopted so far, respectively equation of items 3, 4 and 5 of Theorem 4. We note that none of these Lie
algebra satisfies necessary conditions of Remark 11. Moreover, also Proposition 9 cannot apply: it is sufficient to look at the
differential invariants of such Lie algebras (for instance one can consult the list provided in [32]) and arguing as in the case
of Lie algebra V.

This concludes the proof of Theorem 4.

4.2 Lie remarkable systems of ODEs: proof of Theorem 5

Here we consider the isometry I(R3), affine A(R3), conformal C(R3) and projective P(R3) Lie algebra of R3. For the
convenience of the reader we recall that

dim I(R3) = 6, dimA(R3) = 12, dim C(R3) = 10, dimP(R3) = 15.

In the case of the Lie algebra of infinitesimal isometries I(R1+m), we prove that, for any dimension, system {uk
xx =

0 , k = 1, . . . ,m} is associated with I(R1+m). This leads to some computations involving the study of a system of PDEs,
which can be solved by using some tricks (see next section). In general, similar systems are very hard to treat, so that the
algorithmic procedure described in the beginning of Section 4 provides as efficient tools for describing Lie remarkable systems
associated with a given Lie algebra of vector fields. We follow the latter methods in Section 4.2.2, 4.2.3 and 4.2.4.
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4.2.1 Systems of ODEs associated with Lie algebra I(R1+m)

Generators of infinitesimal isometries of R1+m are

(16)
∂

∂x
,

∂

∂ui
, −ui ∂

∂x
+ x

∂

∂ui
, ui ∂

∂uj
− uj ∂

∂ui
, i 6= j , i, j = 1 . . .m.

There are no 1st order systems ODEs admitting (16) as Lie symmetry subalgebra. Indeed, the most general system of
1st order ODEs admitting ∂x and ∂ui as Lie symmetries is of the form {uk

x = ck}k=1...m, ck ∈ R. By imposing that the third
set of vector fields (16) are symmetries of the above system, we obtain the equation δik + cick = 0 ∀ i, k, so that if i = k we
obtain the contradiction (ck)2 + 1 = 0.

Going to higher order systems, the most general system of 2nd order ODEs admitting ∂x and ∂ui as Lie symmetries is of
the form

(17) {uk
xx = F k(u1

x, . . . , u
m
x )} , k = 1 . . .m.

By imposing that the remaining vector fields of (16) are symmetries of (17), we obtain the following system of PDEs:

(18)





−F k
ui
x
−
∑m

h=1 u
i
xu

h
xF

k

u
j
x

+ 2F kui
x + F iuk

x = 0,

∀ i, j, k.

−ui
xF

j

u
j
x

+ uj
xF

k
ui
x
+ F iδkj − F jδki = 0,

By integrating the system formed by equations of the first line of (18) with k = i, we obtain that

(19) F k = ck


1 +

m∑

j=1

(uj
x)

2




3
2

.

Let us observe that in the case m = 1 the second set of equations of (18) is always satisfied, so that (19) reduces to (14)
with α = 0, which turns out the most general scalar ODE (euclidean curvature equal to a constant) admitting the euclidean
algebra of R2 as a Lie symmetry subalgebra.

In the case m ≥ 2, by substituting (19) into the second set of equations of (18) with k = i 6= j gives cj = 0 for j 6= k. In
view of arbitrariness of k, we obtain ck = 0 ∀ k, that is system of item 1 of Theorem 5. This proves item 1 of Theorem 5.

4.2.2 Systems of ODEs associated with Lie algebra A(R3)

The generators of this algebra are
∂

∂a
, a

∂

∂b
,

for all a, b ∈ {x, ui}. We can prove, by using the reasonings contained in the beginning of Section 4, that when r = 5 there
exists the following Lie remarkable equation (u and v denote the dependent variables):

uxxxxx =(5(−u4
xxv

3
xxxx + 6u3

xxuxxxvxxxv
2
xxxx + 3u3

xxuxxxxvxxv
2
xxxx

+ 36u3
xxuxxxxv

2
xxxvxxxx − 6u2

xxu
2
xxxvxxv

2
xxxx − 72u2

xxu
2
xxxv

2
xxxvxxxx−

84u2
xxuxxxuxxxxvxxvxxxvxxxx + 72u2

xxuxxxuxxxxv
3
xxx − 3u2

xxu
2
xxxxv

2
xxvxxxx

− 36u2
xxu

2
xxxxvxxv

2
xxx + 144uxxu

3
xxxvxxvxxxvxxxx + 48uxxu

2
xxxuxxxxv

2
xxvxxxx

− 144uxxu
2
xxxuxxxxvxxv

2
xxx + 78uxxuxxxu

2
xxxxv

2
xxvxxx + uxxu

3
xxxxv

3
xx

− 72u4
xxxv

2
xxvxxxx + 72u3

xxxuxxxxv
2
xxvxxx − 42u2

xxxu
2
xxxxv

3
xx))/

(144(u3
xxv

3
xxx − 3u2

xxuxxxvxxv
2
xxx + 3uxxu

2
xxxv

2
xxvxxx − u3

xxxv
3
xx)),

vxxxxx =(5(−u3
xxvxxv

3
xxxx + 42u3

xxv
2
xxxv

2
xxxx − 78u2

xxuxxxvxxvxxxv
2
xxxx

− 72u2
xxuxxxv

3
xxxvxxxx + 3u2

xxuxxxxv
2
xxv

2
xxxx − 48u2

xxuxxxxvxxv
2
xxxvxxxx

+ 72u2
xxuxxxxv

4
xxx + 36uxxu

2
xxxv

2
xxv

2
xxxx + 144uxxu

2
xxxvxxv

2
xxxvxxxx
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+ 84uxxuxxxuxxxxv
2
xxvxxxvxxxx − 144uxxuxxxuxxxxvxxv

3
xxx − 3uxxu

2
xxxxv

3
xxvxxxx

+ 6uxxu
2
xxxxv

2
xxv

2
xxx − 72u3

xxxv
2
xxvxxxvxxxx − 36u2

xxxuxxxxv
3
xxvxxxx

+ 72u2
xxxuxxxxv

2
xxv

2
xxx − 6uxxxu

2
xxxxv

3
xxvxxx + u3

xxxxv
4
xx))/

(144(u3
xxv

3
xxx − 3u2

xxuxxxvxxv
2
xxx + 3uxxu

2
xxxv

2
xxvxxx − u3

xxxv
3
xx)).

A direct computation proves the following property.

Proposition 17. The expressions that define the above two equations are differential invariants of the affine Lie algebra.

As it is well-known [32] the number of independent differential invariants for space curves is 2. In this sense the above
system generalizes the result in item 3 of Theorem 4, where the affine algebra uniquely determines the vanishing of the only
differential invariant of plane curves. It is reasonable to conjecture that an analogous result could hold in higher dimensional
euclidean spaces.

4.2.3 Systems of ODEs associated with Lie algebra C(R3)

Conformal vector fields of the euclidean space Rn form a Lie algebra of dimension 1
2 (n+1)(n+2) except for the case n = 2.

In fact, in such a case, the dimension of the Lie algebra of conformal vector fields is infinite, as the latter are essentially
identified with holomorphic functions of one complex variable. More precisely, if X1 + iX2 is a holomorphic function, then
X1∂x +X2∂y is a conformal vector field of the euclidean metric. If n ≥ 3, the conformal algebra is formed by translations,
rotations, the dilatation and special conformal vector fields. The local flow of such vector fields consists of special conformal
transformations: such a transformation can be understood as an inversion followed by a translation and again followed by
an inversion. Since it is well known that there are no systems of ODEs admitting an infinite dimensional Lie algebra of point
symmetries (provided that such algebra has no zero-dimensional orbits), for the case n = 2, instead of considering the full
conformal Lie algebra, we shall consider the Lie subalgebra formed by the 2 translations, the rotation, the dilation and the 2
special conformal vector fields. Let us introduce the notation y0 = x and yi = ui. Then, in any dimension, special conformal
vector field are given by

Ξj = (2(yj)2 − ‖y‖2)∂yj + 2
∑

i6=j

yjyi∂yi ,

and their local flow is

yi0
′
=

yi0 − δijt‖y0‖
2

1− 2tyj0 + t2‖y0‖2
.

Special conformal transformations preserve circles of Rn. By adopting the method described in the beginning of Section 4,
we proved by a straightforward computation that the only system of ODEs admitting C(R3) as Lie symmetry subalgebra is
system of item 3 of Theorem 5.

We observe that in a recent paper [11] a system of ODEs is associated with the conformal symmetry algebra of an
anti-self-dual conformal structure defined by a pseudo-Riemannian metric which is a solution of the Plebanski equation. If
the dimension of the conformal symmetry algebra is high enough, the associated system of ODEs is Lie remarkable (like in
Example 1 of [11]), and can be determined by our methods, as an alternative to the method proposed in [11].

4.2.4 Systems od ODEs associated with Lie algebra P(R3)

The generators of Lie algebra P(R3) are

∂

∂a
, a

∂

∂b
, a

(
x
∂

∂x
+

m∑

i=1

ui ∂

∂ui

)
,
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for all a, b ∈ {x, ui}. We can prove, by using the reasonings contained in the beginning of Section 4, that when r = 6 there
exists the following Lie remarkable equation (u and v denote the dependent variables):

uxxxxxx =(−144u5
xxv

2
xxxv

2
xxxxx + 360u5

xxvxxxv
2
xxxxvxxxxx − 225u5

xxv
4
xxxx+

288u4
xxuxxxvxxvxxxv

2
xxxxx − 360u4

xxuxxxvxxv
2
xxxxvxxxxx

− 480u4
xxuxxxv

2
xxxvxxxxvxxxxx + 600u4

xxuxxxvxxxv
3
xxxx

− 720u4
xxuxxxxvxxvxxxvxxxxvxxxxx + 900u4

xxuxxxxvxxv
3
xxxx

+ 960u4
xxuxxxxv

3
xxxvxxxxx − 1200u4

xxuxxxxv
2
xxxv

2
xxxx

+ 288u4
xxuxxxxxvxxv

2
xxxvxxxxx − 360u4

xxuxxxxxvxxvxxxv
2
xxxx

+ 240u4
xxuxxxxxv

3
xxxvxxxx − 144u3

xxu
2
xxxv

2
xxv

2
xxxxx

+ 960u3
xxu

2
xxxvxxvxxxvxxxxvxxxxx − 600u3

xxu
2
xxxvxxv

3
xxxx

− 640u3
xxu

2
xxxv

3
xxxvxxxxx + 400u3

xxu
2
xxxv

2
xxxv

2
xxxx

+ 720u3
xxuxxxuxxxxv

2
xxvxxxxvxxxxx − 2400u3

xxuxxxuxxxxvxxv
2
xxxvxxxxx

+ 600u3
xxuxxxuxxxxvxxvxxxv

2
xxxx + 400u3

xxuxxxuxxxxv
3
xxxvxxxx

− 576u3
xxuxxxuxxxxxv

2
xxvxxxvxxxxx + 360u3

xxuxxxuxxxxxv
2
xxv

2
xxxx

− 240u3
xxuxxxuxxxxxvxxv

2
xxxvxxxx + 640u3

xxuxxxuxxxxxv
4
xxx

+ 360u3
xxu

2
xxxxv

2
xxvxxxvxxxxx − 1350u3

xxu
2
xxxxv

2
xxv

2
xxxx

+ 2400u3
xxu

2
xxxxvxxv

2
xxxvxxxx − 800u3

xxu
2
xxxxv

4
xxx

+ 720u3
xxuxxxxuxxxxxv

2
xxvxxxvxxxx − 1200u3

xxuxxxxuxxxxxvxxv
3
xxx

− 144u3
xxu

2
xxxxxv

2
xxv

2
xxx − 480u2

xxu
3
xxxv

2
xxvxxxxvxxxxx

+ 1920u2
xxu

3
xxxvxxv

2
xxxvxxxxx − 800u2

xxu
3
xxxvxxvxxxv

2
xxxx

+ 1920u2
xxu

2
xxxuxxxxv

2
xxvxxxvxxxxx + 600u2

xxu
2
xxxuxxxxv

2
xxv

2
xxxx

− 2000u2
xxu

2
xxxuxxxxvxxv

2
xxxvxxxx + 288u2

xxu
2
xxxuxxxxxv

3
xxvxxxxx

− 240u2
xxu

2
xxxuxxxxxv

2
xxvxxxvxxxx − 1920u2

xxu
2
xxxuxxxxxvxxv

3
xxx

− 360u2
xxuxxxu

2
xxxxv

3
xxvxxxxx − 3000u2

xxuxxxu
2
xxxxv

2
xxvxxxvxxxx

+ 2800u2
xxuxxxu

2
xxxxvxxv

3
xxx − 720u2

xxuxxxuxxxxuxxxxxv
3
xxvxxxx

+ 3120u2
xxuxxxuxxxxuxxxxxv

2
xxv

2
xxx + 288u2

xxuxxxu
2
xxxxxv

3
xxvxxx

+ 900u2
xxu

3
xxxxv

3
xxvxxxx − 1200u2

xxu
3
xxxxv

2
xxv

2
xxx

− 360u2
xxu

2
xxxxuxxxxxv

3
xxvxxx − 1920uxxu

4
xxxv

2
xxvxxxvxxxxx

+ 400uxxu
4
xxxv

2
xxv

2
xxxx − 480uxxu

3
xxxuxxxxv

3
xxvxxxxx

+ 2800uxxu
3
xxxuxxxxv

2
xxvxxxvxxxx + 240uxxu

3
xxxuxxxxxv

3
xxvxxxx

+ 1920uxxu
3
xxxuxxxxxv

2
xxv

2
xxx + 600uxxu

2
xxxu

2
xxxxv

3
xxvxxxx

− 3200uxxu
2
xxxu

2
xxxxv

2
xxv

2
xxx − 2640uxxu

2
xxxuxxxxuxxxxxv

3
xxvxxx

− 144uxxu
2
xxxu

2
xxxxxv

4
xx + 1800uxxuxxxu

3
xxxxv

3
xxvxxx

+ 360uxxuxxxu
2
xxxxuxxxxxv

4
xx − 225uxxu

4
xxxxv

4
xx + 640u5

xxxv
3
xxvxxxxx

− 1200u4
xxxuxxxxv

3
xxvxxxx − 640u4

xxxuxxxxxv
3
xxvxxx + 1200u3

xxxu
2
xxxxv

3
xxvxxx

+ 720u3
xxxuxxxxuxxxxxv

4
xx − 600u2

xxxu
3
xxxxv

4
xx)
/
(160u4

xxv
4
xxx−

640u3
xxuxxxvxxv

3
xxx + 960u2

xxu
2
xxxv

2
xxv

2
xxx − 640uxxu

3
xxxv

3
xxvxxx + 160u4

xxxv
4
xx),

vxxxxxx =(−144u4
xxvxxv

2
xxxv

2
xxxxx + 360u4

xxvxxvxxxv
2
xxxxvxxxxx

− 225u4
xxvxxv

4
xxxx + 720u4

xxv
3
xxxvxxxxvxxxxx
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− 600u4
xxv

2
xxxv

3
xxxx + 288u3

xxuxxxv
2
xxvxxxv

2
xxxxx

− 360u3
xxuxxxv

2
xxv

2
xxxxvxxxxx − 2640u3

xxuxxxvxxv
2
xxxvxxxxvxxxxx

+ 1800u3
xxuxxxvxxvxxxv

3
xxxx − 640u3

xxuxxxv
4
xxxvxxxxx

+ 1200u3
xxuxxxv

3
xxxv

2
xxxx − 720u3

xxuxxxxv
2
xxvxxxvxxxxvxxxxx

+ 900u3
xxuxxxxv

2
xxv

3
xxxx + 240u3

xxuxxxxvxxv
3
xxxvxxxxx

+ 600u3
xxuxxxxvxxv

2
xxxv

2
xxxx − 1200u3

xxuxxxxv
4
xxxvxxxx

+ 288u3
xxuxxxxxv

2
xxv

2
xxxvxxxxx − 360u3

xxuxxxxxv
2
xxvxxxv

2
xxxx

− 480u3
xxuxxxxxvxxv

3
xxxvxxxx + 640u3

xxuxxxxxv
5
xxx

− 144u2
xxu

2
xxxv

3
xxv

2
xxxxx + 3120u2

xxu
2
xxxv

2
xxvxxxvxxxxvxxxxx

− 1200u2
xxu

2
xxxv

2
xxv

3
xxxx + 1920u2

xxu
2
xxxvxxv

3
xxxvxxxxx

− 3200u2
xxu

2
xxxvxxv

2
xxxv

2
xxxx + 720u2

xxuxxxuxxxxv
3
xxvxxxxvxxxxx

− 240u2
xxuxxxuxxxxv

2
xxv

2
xxxvxxxxx − 3000u2

xxuxxxuxxxxv
2
xxvxxxv

2
xxxx

+ 2800u2
xxuxxxuxxxxvxxv

3
xxxvxxxx − 576u2

xxuxxxuxxxxxv
3
xxvxxxvxxxxx

+ 360u2
xxuxxxuxxxxxv

3
xxv

2
xxxx + 1920u2

xxuxxxuxxxxxv
2
xxv

2
xxxvxxxx

− 1920u2
xxuxxxuxxxxxvxxv

4
xxx + 360u2

xxu
2
xxxxv

3
xxvxxxvxxxxx

− 1350u2
xxu

2
xxxxv

3
xxv

2
xxxx + 600u2

xxu
2
xxxxv

2
xxv

2
xxxvxxxx

+ 400u2
xxu

2
xxxxvxxv

4
xxx + 720u2

xxuxxxxuxxxxxv
3
xxvxxxvxxxx

− 480u2
xxuxxxxuxxxxxv

2
xxv

3
xxx − 144u2

xxu
2
xxxxxv

3
xxv

2
xxx

− 1200uxxu
3
xxxv

3
xxvxxxxvxxxxx − 1920uxxu

3
xxxv

2
xxv

2
xxxvxxxxx

+ 2800uxxu
3
xxxv

2
xxvxxxv

2
xxxx − 240uxxu

2
xxxuxxxxv

3
xxvxxxvxxxxx

+ 2400uxxu
2
xxxuxxxxv

3
xxv

2
xxxx − 2000uxxu

2
xxxuxxxxv

2
xxv

2
xxxvxxxx

+ 288uxxu
2
xxxuxxxxxv

4
xxvxxxxx − 2400uxxu

2
xxxuxxxxxv

3
xxvxxxvxxxx

+ 1920uxxu
2
xxxuxxxxxv

2
xxv

3
xxx − 360uxxuxxxu

2
xxxxv

4
xxvxxxxx

+ 600uxxuxxxu
2
xxxxv

3
xxvxxxvxxxx − 800uxxuxxxu

2
xxxxv

2
xxv

3
xxx

− 720uxxuxxxuxxxxuxxxxxv
4
xxvxxxx + 960uxxuxxxuxxxxuxxxxxv

3
xxv

2
xxx

+ 288uxxuxxxu
2
xxxxxv

4
xxvxxx + 900uxxu

3
xxxxv

4
xxvxxxx

− 600uxxu
3
xxxxv

3
xxv

2
xxx − 360uxxu

2
xxxxuxxxxxv

4
xxvxxx

+ 640u4
xxxv

3
xxvxxxvxxxxx − 800u4

xxxv
3
xxv

2
xxxx + 240u3

xxxuxxxxv
4
xxvxxxxx

+ 400u3
xxxuxxxxv

3
xxvxxxvxxxx + 960u3

xxxuxxxxxv
4
xxvxxxx − 640u3

xxxuxxxxxv
3
xxv

2
xxx

− 1200u2
xxxu

2
xxxxv

4
xxvxxxx + 400u2

xxxu
2
xxxxv

3
xxv

2
xxx

− 480u2
xxxuxxxxuxxxxxv

4
xxvxxx − 144u2

xxxu
2
xxxxxv

5
xx

+ 600uxxxu
3
xxxxv

4
xxvxxx + 360uxxxu

2
xxxxuxxxxxv

5
xx − 225u4

xxxxv
5
xx)
/
(160u4

xxv
4
xxx

− 640u3
xxuxxxvxxv

3
xxx + 960u2

xxu
2
xxxv

2
xxv

2
xxx − 640uxxu

3
xxxv

3
xxvxxx + 160u4

xxxv
4
xx).
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