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Abstract

We analyze the different ways to define the energy operator in geometric
theories of quantum mechanics. In some formulations the operator contains the
scalar curvature as a multiplicative term. We show that such term can be canceled
or added with an arbitrary constant factor, both in the mainstream Geometric
Quantization and in the Covariant Quantum Mechanics, developed by Jadczyk
and Modugno with several contributions from many authors.

1 Introduction

One of the problems of quantum mechanical theories is the fact that it is not possible
to consistently quantize all physical observables. This fact finds its justification in
different ways: the Heisenberg principle forbids the simultaneous localization of position
and momenta observables, it is not possible to find an irreducible representation of the
space of all polynomials in position and momenta (Groenewold–Van Hove’s theorem),
etc..

The problem persists in the mathematical models of quantum mechanical theories.
Within such models, one of the most developed and successful is Geometric Quantiza-
tion (GQ for short, see for example [28, 36]). In this theory it is possible to quantize
the family of observables which preserve the directions of another distinguished family
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of observables. The space of such directions is an integrable lagrangian distribution on
the phase space, and it is said to be a polarization. For example, in the Schrödinger
quantization of particle mechanics it is possible to quantize observables which are linear
in the momenta, that is of the form f i(xj)pi + f0(x

j), since their Hamiltonian vector
fields preserve the tangent vectors ∂/∂pi, which span the so-called vertical polariza-
tion. However, the energy is a quadratic function of the momenta and breaks this
prescription.

A similar phenomenon occurs in a more recent geometric framework of quantum
mechanics that implements the principle of relativity, in the sense of invariance with
respect to changes of observer or reference frame. This theory is called Covariant
Quantum Mechanics (CQM). It was initiated by Jadczyk and Modugno [6, 7, 8] and
later developed by several other authors [2, 11, 12, 22, 23, 24, 25, 26, 27, 31, 34, 35],
also with extensions to general relativistic mechanics [14, 15, 17].

In this paper we compare the peculiar ways of quantizing energy in GQ and CQM. In
this process we find out interesting geometric features of the covariant energy operator
in the two theories. Let us discuss this program more in detail.

In GQ the standard way to quantize the energy in a certain polarization is the so-
called Blattner-Kostant-Sternberg method (BKS). This method is applicable to those
observables, like the energy, whose Hamiltonian vector fields do not preserve the po-
larization. One starts with a wave function polarized along the chosen polarization,
then both data are dragged by the flow of the energy vector field in order to produce
new wave functions polarized along infinitesimally close polarizations. Under suitable
conditions the wave functions polarized with respect to the original and the new po-
larizations are related by the so called BKS-pairing. By means of it one is able to
express the change induced by dragging the wave function as a one parameter family
of wave functions polarized along the original polarization. The zero time derivative
of this family of wave functions gives, by definition, the action of the quantized energy
operator on the initial wave function. This yields the method for obtaining a ‘correct’
quantization of energy in GQ.

In CQM we define two quantum operators connected with energy: 1 - the Lie deriva-
tive of wave functions with respect to the Hamiltonian vector field of the energy; 2 -
a Schrödinger operator obtained from a Lagrangian which is uniquely characterized by
covariance requirements. Then, the quantization of energy is the only linear combina-
tion of the above operators that does not depend on time derivatives. Section 2 contains
a summary of CQM with an emphasis on concepts and formulae which are relevant to
the definition of the energy operator.

In GQ the wave functions are defined as half-forms, i.e. sections of a complex
line bundle twisted by the square root of the bundle of volume forms normal to the
polarization. This enables one to integrate the natural pairing between any two half-
forms. Half-forms were introduced in [1]. Initially, [6, 7, 8] CQM also used half-forms
for defining wave functions, then they have been dropped by assuming a Hermitian
metric with values in densities [11, 12, 13]. In order to ease the comparison with GQ,
here we use CQM as originally formulated with half-forms.

If we wish to compare GQ and CQM we should make further assumptions on GQ’s
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general setting. In particular, such a comparison makes sense if we consider systems
of particles, possibly with holonomic constraints, in the Schrödinger representation. In
other words, we consider a Riemannian manifold M and the symplectic manifold T ∗M ,
and quantize with respect to the vertical polarization, which is generated by the vector
fields ∂/∂pi.

The quantization of energy in GQ and CQM leads to energy operators which differ
by a term which is a multiplication operator on the wave function by the scalar curvature
of the given spacelike metric. Let us discuss this feature more in detail.

The scalar curvature term first made its appearance in the paper [4], in the context
of Feynman path integral approach to quantum mechanics. Several authors have tried
to determine the factor in front of the scalar curvature term via path integral, but
they have found different results, according to different ways of performing the integral.
Similar computations within the BKS approach, together with their relation to path
integral, are presented in [28, 36] and exhibit a scalar curvature multiplication operator
of the form

(1) Ψ 7→ 1
6
rΨ,

where r is the scalar curvature of the Riemannian metric of the configuration space. It
shall be remarked that not all authors in GQ show this term in their computations.

According with CQM, scalar curvature can be added to the Schrödinger operator
through its Lagrangian as a constant multiple of the norm of sections of the quantum
bundle. The corresponding Euler–Lagrange expressions contain the term

(2) Ψ 7→ krΨ,

where k ∈ IR. It was proved by covariance arguments that such a Lagrangian is unique
[10] and that the corresponding Schrödinger operator is also unique [12] exactly up to
the constant factor k in front of the scalar curvature, that remains undetermined.

The main result of this paper (Section 3) is that the scalar curvature operator in
GQ is canceled out when one performs the double covariant derivative in the Bochner
Laplacian by keeping into account that there is a natural connection on the square
root of the vertical polarization. Indeed, polarized sections are of the form Ψ: M →
Q ⊗

√
∧nT ∗M (with a possible dependence on time), where Q → M is a Hermitian

complex line bundle and n = dimM . Since M is a Riemannian manifold there is
a natural connection on the bundle ∧nT ∗M → M . It is natural to assume that in
Bochner’s Laplacian gij∇i∇j covariant derivatives are tensor products of the connection
on Q which is required by the quantization process and the connection on the square
root bundle of densities.

On the other hand, a multiplication operator of the type (2) may always be added to
the energy operator without violating covariance. To our knowledge there is no evidence
in experiments of the presence of the scalar curvature term in the energy operator. In
view of our results and of the previous results about the indeterminacy of the constant
k we argue that it might be the case that such a term has simply no physical relevance.
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2 Covariant Quantum Mechanics

We start with a summary of the classical and quantum theory developed by Jadczyk,
Janyška and Modugno. The interested reader may refer, for instance, to [8, 11, 12, 13]
for further details.

In CQM ‘covariance’ includes also independence from the choice of units of mea-
surements. For this reason, we developed a rigorous treatment of spaces uf units of
measurement; roughly speaking they have the same algebraic structure of IR+, but no
distinguished generator over IR+ [16]. In this paper, we assume the following “positive
1–dimensional semi–vector spaces” over IR+ as fundamental unit spaces: the space T

of time intervals , the space L of lengths , the space M of masses . Moreover, we assume
the Planck constant to be an element ~ ∈ T∗ ⊗ L2 ⊗ M. We refer to a particle with
mass m ∈ M and charge q ∈ T∗ ⊗ L3/2 ⊗M1/2.

2.1 Classical theory

The spacetime is an oriented (n + 1)–dimensional manifold E (in the standard case
n = 3), the absolute time is an affine space associated with the vector space IR ⊗ T,
the absolute time map is a fibring t : E → T . We denote fibred charts of spacetime by
(xλ) ≡ (x0, xi); the corresponding vector fields and forms are denoted by ∂0, ∂i and d

0,
di. The tangent space and the vertical space of E are denoted by TE and VE. It is
easy to check that E is orientable if and only if it is spacelike-orientable; that means,
that ∧4T ∗E → E is a trivial line bundle if and only if ∧3V ∗E → E is a trivial line
bundle. As usual, VE := kerTE.

A motion is a section s : T → E. The phase space is the first jet space of motions
J1E (see [18, 21] about jet spaces). We denote fibred charts of phase space by (x0, xi; xi0).
The absolute velocity of a motion s is its first jet prolongation j1s : T → J1E. An
observer is a section o : E → J1E and the observed velocity of a motion s is the map
∇[o]s := j1s− o ◦ s : T → T∗ ⊗ VE.

The spacelike metric is a scaled Riemannian metric of the fibres of spacetime g :
E → L2 ⊗ (V ∗E ⊗

E
V ∗E). Given a particle of mass m, it is convenient to consider

the re–scaled spacelike metric G := m
~
g : E → T ⊗ (V ∗E ⊗

E
V ∗E). The spacelike and

spacetime volumes are, respectively, the tensor fields
(3)

η : E → L
3 ⊗∧3V ∗E, η =

√
|g|ď1 ∧ ď2 ∧ ď3, η̄ : E → T⊗L

3 ⊗∧4T ∗E, η̄ = dt∧ η,

where |g| = det(gij) andˇdenotes vertical restriction.

The gravitational field is a time preserving torsion free linear connection on the
tangent bundle of spacetime K♮ : TE → T ∗E ⊗

TE
TTE, such that ∇[K♮]g = 0 and the

curvature tensor R[K♮] fulfills the condition R♮
λ
i
µ
j = R♮

µ
j
λ
i. The ‘metricity’ condition

on K♮ implies that its vertical restriction coincides with the family of Riemannian
connections induced by g on the fibres of E → T . This implies that the Christoffel
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symbols with three spacelike indexes are of the type Γi
jk = −1

2
gih(∂jghk+∂kghj−∂hgjk)1.

The electromagnetic field is a scaled 2–form f : E → (L1/2 ⊗M1/2)⊗ Λ2T ∗E, such
that df = 0. Given a particle of charge q, it is convenient to consider the re–scaled
electromagnetic field F := q

~
f : E → Λ2T ∗E.

The electromagnetic field F can be “added”, in a covariant way, to the gravitational
connection K♮ yielding a (total) spacetime connection K, with coordinate expression

Ki
h
j = K♮

i
h
j, Kj

h
0 = K0

h
j = K♮

0
h
j +

1

2
F h

j, K0
h
0 = K♮

0
h
0 +

1

2
F h

0.

This turns out to be a time preserving torsion free linear connection on the tangent
bundle of spacetime, which still fulfills the properties that we have assumed for K♮.

The spacetime fibration, the total spacetime connection and the spacelike metric,
yield, in a covariant way, a 2–form Ω : J1E → Λ2T ∗J1E on the phase space, with
coordinate expression

(4) Ω = G0
ij

(
di0 − (Kλ

i
0 +Kλ

i
hx

h
0)d

λ
)
∧ (dj − xj0d

0).

This is a cosymplectic form (see [15] and refences therein for a deeper discussion on
the geometry of these objects), i.e. it fulfills the following properties: 1) dΩ = 0,
2) dt ∧ Ωn : J1E → T ⊗ ΛnT ∗J1E is a scaled volume form on J1E. Conversely,
the cosymplectic form Ω characterises the spacelike metric and the total spacetime
connection. Moreover, the closedness of Ω is equivalent to the conditions that we have
assumed on K.

There is a unique second order connection [21] γ : J1E → T∗ ⊗ TJ1E, such that
iγΩ = 0. We assume the generalised Newton’s equation ∇[γ]j1s = 0 as the equation of
motion for classical dynamics. Of course the above equation also admits a Lagrangian
and a Hamiltonian formulation [26]. The cosymplectic form Ω admits locally potentials
of the type Θ : J1E → T ∗E. It turns out that these potentials are the Poincaré–Cartan
forms of the Lagrangians L that can be obtained as one of the two summands of the
splitting Θ = L + P , where L : J1E → T ∗T and P : J1E → V ∗E is the momentum.
These components are observer independent, but depend on the chosen gauge of the
starting Poincaré–Cartan form. On the other hand, given an observer o, each Poincaré–
Cartan form Θ splits, according to the splitting of T ∗E induced by o, into the horizontal
component −H[o] : J1E → T ∗T , which is called the observed Hamiltonian, and the
vertical component P [o] : J1E → V ∗E, which is the observed momentum. We have
the coordinate expressions

(5) L =

(
1

2
G0

ijx
i
0x

j
0 + Aix

i
0 + A0

)
d0, P = (G0

ijx
j
0 + Ai)(d

i − xi0d
0),

and, in a chart adapted to o,

(6) H[o] = H0d
0 =

(
1

2
G0

ijx
i
0x

j
0 − A0

)
d0, P [o] = Pjd

j = (G0
ijx

j
0 + Ai)d

i,

1Note the difference in sign with respect to the standard convention.
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where A ≡ o∗Θ.
The cosymplectic form Ω yields in a covariant way the Hamiltonian lift of functions

f : J1E → IR to vertical vector fields H[f ] : J1E → V J1E; consequently, we obtain the
Poisson bracket {f, g} between functions of phase space. Given an observer, the law of
motion can be expressed, in a non covariant way, in terms of the Poisson bracket and
the Hamiltonian.

More generally, chosen a time scale τ : J1E → TT , the cosymplectic form Ω yields,
in a covariant way, the Hamiltonian lift of functions f of phase space to vector fields
Hτ [f ] : J1E → TJ1E, whose time component is τ . In particular, let us introduce the
cosymplectic isomorphism Ω♭ : TτJ1E → T ∗

γ J1E between the subspace of vectors in
TJ1E that project to τ and the subspace of one-forms in T ∗J1E that annihilate γ. Let
us denote by Ω♯

τ the inverse of Ω♭
τ . Then we define Hτ [f ] = Ω♯

τ (df − γ.f). It can be
proved that Hτ [f ] is projectable onto a vector field X[f ] : E → TE if and only if the
following conditions hold: i) the function f is quadratic with respect to the affine fibres
of J1E → E with second fibre derivative f ′′ ⊗ G, where f ′′ : E → IR ⊗ T, ii) τ = f ′′.
A function of this type is called a special phase function and has coordinate expression
of the type

(7) f =
1

2
f 0G0

ijx
i
0x

j
0 + f 0

i x
i
0 + f0, with f 0, f 0

i , f0 : E → IR.

Note that f ′′ = f 0u0, where u0 ∈ T is a time scale. From now on we will assume that
f 0 is a constant, even if this assumption could be dropped [8].

The vector space of special phase functions is not closed under the Poisson bracket,
but it turns out to be an IR–Lie algebra through the covariant special bracket

(8) [[ f, g ]] = {f, g}+ γ(f ′′) · g − γ(g′′) · f.

Moreover, the map f 7→ Xf turns out to be a morphism of Lie algebras; we have the
coordinate expression Xf = f 0∂0 − f i∂i, where f

i = Gijfj.

2.2 Quantum theory

Let us consider a complex line bundle over spacetimeQ → E equipped with a Hermitian
metric h : Q ×

E
Q → C. We shall refer to normalised local bases b of Q and to

the associated complex coordinates z; accordingly, the coordinate expression of a local
section is of the type Ψ = ψb, with ψ : E → C.

We consider also the extended line bundle Q↑ → J1E, Q↑ := Q ×
E
J1E. A family

(or ‘system’) of connections of Q parametrised by observers o : E → J1E induces, in a
covariant way, a connection of Q↑, which is called universal [21, 11]. A characteristic
property of the universal connection is that its contraction with any vertical vector field
of the bundle J1E → E vanishes; in coordinates, q0

i = 0.
It is well known that the Picard group Pic(M) of isomorphism classes of complex

line bundles over a differentiable manifold M can be identified with the second integral



On the geometry of the energy operator 7

cohomology group H2(M,Z) by means of the first Chern class mapping

c1 : Pic(M)
∼−→ H2(M,Z),

such that given a Line bundle L→M sends its isomorphism class [L] ∈ Pic(M) to the
first Chern class c1(L) ∈ H2(M,Z). Since J1E → E is an affine bundle, it follows from
elementary obstruction theory that the map induced on cohomology by pullback along
the map J1E → E is an isomorphism (·)↑ : H2(E,Z)

∼−→ H2(J1E,Z). Therefore, by
pulling back complex line bundles on E to J1E we also get an isomorphism of Picard
groups (·)↑ : Pic(E)

∼−→ Pic(J1E).
We say that Q → E is a quantum bundle if there exists a connection q: Q↑ →

T ∗JE ⊗
JE

TQ↑ on the extended quantum bundle, called a quantum connection, which

is Hermitian, universal and whose curvature is R[q] = iΩ⊗ idQ. We stress that 1
~
has

been incorporated in Ω through the re–scaled metric G. In a local base b, a quantum
connection q is of the type

q = q
‖ + iΘ⊗ 1,(9)

where q‖ is the flat connection associated with b and Θ is a potential of Ω, the Poincaré–
Cartan form. Given an observer o we can also write q = q

‖ + i (−H[o] +P [o])⊗ 1. We
have the coordinate expression

(10) q = dλ ⊗ ∂λ + di0 ⊗ ∂0i + iqλd
λ ⊗ (z∂z)

= dλ ⊗ ∂λ + di0 ⊗ ∂0i + i
(
− (1

2
G0

ij x
i
0 x

j
0 − A0)d

0 + (G0
ij x

j
0 + Ai)d

i
)
⊗ (z∂z).

Given an observer o we have the observed quantum connection o∗q : Q → T ∗E ⊗
E
Q

with coordinate expression o∗q = dλ ⊗ ∂λ + iAλzd
λ ⊗ ∂z where Aλd

λ = o∗Θ.
A quantum connection exists if and only if the cohomology class of Ω is integral;

the equivalence classes of quantum bundles equipped with a quantum connection are
classified by the cohomology group H1

(
E, U(1)

)
[26, 34].

In what follows we assume a quantum bundle equipped with a quantum connection.
Any other quantum object is obtained, in a covariant way, from this quantum struc-

ture. The quantum connection is defined on the extended quantum bundle, while we
are looking for further quantum objects living on the original quantum bundle. This
goal is successfully achieved by a method of projectability : namely, we look for objects
of the extended quantum bundle which are projectable to the quantum bundle and then
we take their projections. Indeed, our method of projectability turns out to be our way
of implementing the covariance of the theory; in fact, it allows us to get rid of the family
of all observers, which is encoded in the quantum connection (through J1E).

The quantum connection allows us to take derivatives of sections ψ : E → Q. We
have the expression:

(11) ∇λψd
λ ≡ (∂λψ − iqλψ)d

λ = (∂0ψ + iH0ψ)d
0 + (∂jψ − iPjψ)d

j,
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and its ‘observed’ counterpart

(12)
o

∇λψ ≡ (∂λψ − iAλψ),

where the superscript o means that the covariant derivative is related to the pull-back
connection o∗q. Using the splittings of the previous section we may also define

(13) ∇̄Ψ = (∂0ψ + ẋj0∂jψ − iL0ψ)d
0 ⊗ b,

∨

∇Ψ = (∂jψ − iPjψ)ď
j ⊗ b.

Furthermore, given an observer o we define the observed quantum Laplacian of Ψ ∈
S(Q) to be the section

o

∆Ψ = Ḡ(∇̌o∇̌oΨ) with coordinate expression in adapted coor-
dinates

o

∆Ψ = Ghk
(
(∂h − iAh)(∂k − iAk) +Kh

l
k(∂l − iAl)

)
ψu0 ⊗ b.

J. Janyška [9] has proved that all covariant quantum Lagrangians of the quantum
bundle are proportional to

(14) L[Ψ] =
1

2
dt ∧

(
h(Ψ, i ∇̄Ψ) + h(i ∇̄Ψ,Ψ)− (Ḡ⊗ h)(

∨

∇Ψ,
∨

∇Ψ) + krh(Ψ,Ψ)
)
η,

with coordinate expression

L[Ψ] =
1

2

(
i (ψ̄∂0ψ − ψ∂0ψ̄)−Ghk

0 ∂hψ̄∂kψ

+ iGhk
0 Ah(ψ∂kψ̄ − ψ̄∂kψ) + ψ̄ψ(2A0 −Grs

0 ArAs + kr0)
)√

|g|d0 ∧ d1 ∧ d2 ∧ d3

where k is an arbitrary real factor and r = r0u
0 : E → IR ⊗ T∗ is the scalar curvature

of the spacelike metric G. The corresponding Euler–Lagrange expression is h♯(E[Ψ]) :
E → L3 ⊗ (Q⊗

E
Λ4T ∗E), with coordinate expression

(15) h♯(E[Ψ]) = 2
(
i (∂0 − iA0 +

1
2

∂0
√
|g|√
|g|

)ψ + 1
2
Ghk

0 (∂h − iAh)(∂k − iAk)ψ

+ 1
2

∂h(G
hk
0

√
|g|)√

|g|
(∂k − iAk)ψ + 1

2
kr0ψ

)
b⊗

√
|g|d0 ∧ d1 ∧ d2 ∧ d3.

J. Janyška and M. Modugno have proved a uniqueness-by-covariance result for E [12].
Thus, k remains undetermined in our scheme in contrast with other authors. See
Section 3 for a more detailed discussion.

Next, we introduce a way to associate to each quantizable function f a vector field
on the quantum bundle Q. More precisely, it is proved [8, 11] that there is a natural
Lie algebra isomorphism between quantizable functions and a space of vector fields on
Q obtained as follows. Given f there is a unique Hermitian vector field Y ↑

f on the
extended quantum bundle Q↑ such that it is projectable to J1E, it is q-horizontal and
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its covariant differential ∇[q]Y ↑
f takes its values in the subbundle T∗⊗Q, in particular

Y ↑ = q(H[f ])+ i f . The vector field Y ↑
f turns out to be projectable onto a vector field

Yf on the quantum bundle Q, which is said to be a quantum vector field. We have the
coordinate expression

(16) Yf = f 0∂0 − f j∂j + i (f 0A0 − fhAh + f0)z∂z,

The space of quantum vector fields constitute a Lie algebra; it can be proved that it is
naturally isomorphic to the Lie algebra of quantisable functions.

The quantum vector field Yf acts on the sections Ψ of the quantum bundle via the
associated Lie derivative Zf := iLYf

. This is possible since Yf is projectable. Note
that the Lie derivative of Ψ with respect to Y = Y λ∂λ + Y z∂z is LYΨ = Y λ∂λψ− Y ψ.
However, it is not enough to have operators on sections of the quantum bundle, since
in view of the probabilistic interpretation of wave functions in quantum mechanics we
should be able to compute spacelike integrals of quantum sections. With this aim
in mind we are naturally led to the introduction of half-forms. These are geometric
objects that can be paired each other in order to yield densities. Such densities can
be integrated in order to define a Hilbert space norm on the space of quantum states.
Namely, we introduce the bundles over E

(17) Qη := Q⊗ L
3/2 ⊗

√
∧3V ∗E, Qη̄ := Q⊗ T

1/2 ⊗ L
3/2 ⊗

√
∧4T ∗E

whose sections are said to be half-forms. Here the square root of an oriented vector
space is the vector space whose tensor square is the initial vector space, and the bases
of the above square roots are the square roots of the bases of the corresponding spaces,
i.e. the square roots of the volumes. Note that the square root of the volume element
is parallel with respect to the spacetime connection K♮. We will use the notation

Ψη = Ψ ⊗ √
η = ψ 4

√
|g|b ⊗

√
ď1 ∧ ď2 ∧ ď3, and analogously for Ψη̄. We will also make

use of the symbols ψη = ψ 4

√
|g| and v = ď1 ∧ ď2 ∧ ď3, so that Ψη = ψ 4

√
|g|b⊗√

v. Note
that the vertical Riemannian connection induced by the metric g yields a connection
on the bundle

√
∧3V ∗E → E: indeed, if f

√
η is a section of this bundle, then

(18) ∇̌(f
√
η) = (∂if +

1

2
Γj
ij)ď

i ⊗√
η.

The observed Laplacian can be defined on half-forms using the tensor product of the
connection o∗q with the above Riemannian connection on

√
∧3V ∗E.

Now, let us define the operator

(19) Zf (Ψ
η) := iLYf

(Ψη̄)⊗ 1√
η̄
⊗√

η.

Note that we cannot compute directly the Lie derivative of
√
η with respect to a non-

vertical vector field; so, we are forced to use
√
η̄ in an obvious way. Note that we have

(20) LYf

√
η̄ =

1

2

∂λ(Y
λ
f

√
|g|)√

|g|
4

√
|g|
√
u0 ⊗ d0 ∧ d1 ∧ d2 ∧ d3
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We have the expression

(21) Zf (Ψ
η) = i

(
f 0

o

∇0 − f i
o

∇i − if0 +
1
2

(∂0(f 0
√
|g|)√

|g|
− ∂i(f

i
√

|g|)√
|g|

))
(ψ)

4

√
|g|b⊗

√
v.

In particular, we obtain

Zxα(Ψη) = xαΨη, Z[Pj ](Ψ) = −i∂j(ψη)b⊗
√
v, Z[H0](Ψ) = i∂0(ψ

η)b⊗
√
v.(22)

As far as the Euler–Lagrange expression (15) is concerned, we can rewrite it using
an observer o. Namely, we have the vector field Xo = oyo∗q and the equality

(23) h♯(E[Ψ]) = 2

(
i
LXoΨη̄

√
η̄

+
1

2

o

∆Ψ+
1

2
krΨ

)
⊗ η̄.

The above expression yields an operator on half-forms in a natural way. Indeed the
first summand is just the Lie derivative of a half-form and we have the equality

(24) (
o

∆Ψ)⊗√
η =

o

∆(Ψη)

since
√
η is parallel with respect to the connection induced on the half-forms bundle.

For this reason we define the Schrödinger operator to be the operator S

(25) S(Ψη) = − i

2
h♯(E[Ψ])⊗ 1

η̄
⊗√

η = LXoΨη − i

2

o

∆(Ψη)− 1

2
krΨη.

Next, we consider the pre–Hilbert functional quantum bundle H → T over time.
This is defined as follows: for each τ ∈ T let
(26)
Hτ := {Ψη

τ : Eτ → Qη
τ | Ψη

τ = Ψη|Eτ
, Ψη quantum section with compact support}

where Eτ = t−1(τ). In other words, the infinite dimensional fibres are constituted by
the sections of the quantum bundle at a given time and with compact support. The
space H can be given the structure of an F -smooth manifold, in the sense of [5]. The
functional quantum bundle also inherits the Hermitian structure:

ĥ : H ×
T
H → C : (Ψη

τ ,Ψ
η ′
τ ) 7→

∫

Eτ

h(Ψη
τ ,Ψ

η ′
τ ),(27)

which makes it a pre-Hilbert bundle.
The tangent space is defined to be the set TH := ∪Ψη

τ∈HTΨη
τ
H where

(28) TΨτ
H = {ζ(τ,u) : T(τ,u)E → T(τ,u)Q | Tζ(τ,u),e = VeΨ

η
τ}.

In other words, the coordinate expression of ζ(τ,u) is ζ(τ,u) = ζ + ∂iψẋ
i, where ζ is a

complex-valued function on E. Let us recall that any section Ψη : E → Q (which is
defined on a tube-like open subset) yields the F -smooth section

(29) Ψ̂η : T → H , Ψ̂η(τ)(eτ ) = Ψη(eτ );
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conversely, every F -smooth section of H → T yields a section Ψη as above, establishing
a bijective correspondence.

A connection on the space H can be introduced as a section χ : H ×
T
TT → TH

which is linear over H and projects onto idTT . A connection χ acts on sections as
χ(Ψ̂η) = χ ◦ Ψ̂η, with coordinate expression χ(Ψ̂η) = χ0(ψ

η)u0 + ∂iψ
ηẋi. The covariant

differential of sections is defined by

(30) ∇[χ]Ψ̂η = T Ψ̂η − χ(Ψ̂η)

with coordinate expression ∇[χ]Ψ̂η = ∂0ψ
η − χ0(ψ

η)u0.

It is now obvious that the Schrödinger operator S is the covariant differential ∇[χ]
of a connection χ on the functional quantum bundle; hence, the quantum Lagrangian
yields a lift of the quantum connection q of the extended quantum bundle to a connec-
tion χ of the functional quantum bundle. The coordinate expression of χ is

(31) χ0(Ψ
η) =

(
iA0 +

i

2

o

∆0 +
1

2
kr0

)
Ψη.

Let us consider a quantisable function f . The operator Zf can be defined on sections
of the functional quantum bundle in an obvious way. Then

(32) f̂ = Zf − if 0
y∇[χ]

is the unique combination of Zf and ∇[χ] which yields an operator acting on the fibres
of the functional quantum bundle. We have the following coordinate expression

(33) f̂(Ψη) =

(
−1

2
f 0

o

∆0 − i f j
o

∇j + f0 −
1

2
kf 0r0 − i

1

2

∂j(f
j
√
|g|)√

|g|

)
Ψη.

The map f 7→ f̂ is injective. Moreover, f̂ is Hermitian. We assume f̂ to be the
Hermitian quantum operator associated with the quantisable function f . This is our
correspondence principle.

2.1 Example. Let us consider an observer o and a time scale u0 and let us refer to
a chart adapted to the observer and to the time scale. Then, the quantum operators
associated with the quantisable functions xα, xi0,Pi,H0 are given, for each Ψ ∈ S(Q),
by

x̂α(Ψη) = xαΨη, P̂j(Ψ
η) = −i∂j(ψη)b⊗

√
v,(34)

Ĥ0(Ψ
η) =

(
−1

2
Ghk

(
(∂h − iAh)(∂k − iAk) +Kh

l
k(∂l − iAl)

)
(ψ)

− A0ψ − 1

2
kr0ψ

)
4

√
|g|b⊗

√
v.

(35)
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The commutator of Hermitian fibred operators on the functional quantum bundle
yields a Lie algebra structure. However from the formula

(36) [f̂ , ĝ] = [̂[ f, g ]] +
[
(g′′ ⊗ LYf

− f ′′ ⊗ LYg
), S
]
.

we obtain that the correspondence principle fails to be a Lie algebra morphism exactly
on quantisable functions with nontrivial quadratic term.

2.2 Remark. The Feynmann path integral formulation of Quantum Mechanics
can be naturally expressed in our formalism; in particular, the Feynmann amplitudes
arise naturally via parallel transport with respect to the quantum connection [8]. So the
Feynmann path integral can be regarded as a further way to lift the quantum connection
q to a functional quantum connection.

2.3 Remark. In the particular case when spacetime is flat, our quantum dynamical
equations turns out to be the standard Schrödinger equation and our quantum oper-
ators associated with spacetime coordinates, momenta and energy coincide with the
standard operators. Therefore, all usual examples of standard Quantum Mechanics are
automatically recovered in our covariant scheme.

2.4 Remark. The above procedure can be easily extended to classical and quantum
multi–body systems (e.g., the rigid body, see [24, 25]), to particles with spin (Pauli
equation [3]), and to a more limited extent to the Einstein relativistic mechanics [14].

3 Energy operator from CQM to GQ

In this section we now restrict ourselves to the case when E = T ×M , where M is an
orientable Riemannian manifold. Here, in principle, the theory allows a time-dependent
metric, but we will not consider this general situation. Note that J1(T×M ) = T×TM .
Our task is to assume the same structures of the GQ theory in the case of a particle
(or a ‘generalized’ particle in the case in which dimM 6= 3) and compare the energy
operator from CQM with the one obtained in GQ. We will refer to [28] for a detailed
derivation of the energy operator in this situation (see p. 120, Section 7.2, or p. 180,
Section 10.1 for the case with a nonzero electromagnetic field).

We require the gravitational field to be purely space-like, i.e. K♮
0
h
j = K♮

j
h
0 = 0,

K♮
0
h
0 = 0; this request is intrinsic in view of the splitting E = T×M of spacetime. We

assume F = 0, even if we could at least consider a nonzero magnetic field in principle.
Then, there is a natural symplectic structure on TM which is the pull-back of the

canonical structure on T ∗M under the metric isomorphism g♭. The form Ω reduces
to the above symplectic form, and the second-order connection γ is the usual geodesic
spray γ : TM → T 2M . The classical theory can be completely developed from the
previous assumptions.

Since we are in a time independent situation, the CQM theory can be developed
by assuming a quantum bundle Q → T × M which is the pull-back of a Hermitian
complex line bundle Q̄ → M . In fact, it can be proved that all quantum bundles are of

this form. In the same way, if we consider the line bundle Q̄
↑
= τ ∗MQ̄ → TM , where



On the geometry of the energy operator 13

τM : TM → M denotes the tangent bundle projection, then the extended quantum

bundle Q↑ → T ×TM is obtained by pulling back Q̄
↑ → TM to T ×TM . Moreover,

any quantum connection q on Q↑ → T × TM that fulfills the curvature identity
R[q] = iΩ ⊗ idQ is obtained in a two step process. In the first one we consider the

connection q̄
↑ on Q̄

↑ → TM obtained by pulling back a Hermitian connection q̄ on
Q̄ → M and adding to it a suitable constant multiple of the 1-form (g♭)∗θ, where θ is
the Liouville form on T ∗M , see [19] for the precise details. In the second step, we pull

back q̄ to Q↑ → T × TM in order to get the connection q. It is clear that Q̄
↑ → TM

and q̄
↑ define a quantum structure in the sense of the standard GQ.

The polarization P that we choose is the vertical one, i.e. P = V TM = ker τTM ⊂
TTM which is locally spanned by the vector fields ∂/∂ẍi. We have the canonical
isomorphism V TM ≃ TM ×

M
TM = τ ∗MTM . We stress that half-forms in CQM

and half-forms in GQ in the above setting are the same (up to dependency on time,
which in GQ is not explicit). Indeed, the determinant bundle of the polarization P

is by definition KP = det(P ◦), where P 0 ⊂ T ∗TM is the subbundle that anihilates
P ⊂ TTM . One has the following exact sequence

0 → P → TTM → τ ∗MTM → 0,

and taking duals we get the exact sequence

0 → τ ∗MT ∗M → T ∗TM → P ∗ → 0.

This shows that P ◦ = τ ∗MT ∗M and therefore

KP = det(τ ∗MT ∗M) = τ ∗M det(T ∗M ) = τ ∗MΛnT ∗M ,

where n is the dimension of M . Since M is orientable, it admits a natural metalinear
structure that allows us to construct the bundle N

1/2
P of half-forms normal to P which is

a square root of the canonical bundle; i.e. N
1/2
P =

√
τ ∗MΛnT ∗M = τ ∗M

√
ΛnT ∗M . The

Lie derivative of forms induces on the canonical bundleKP a partial covariant derivative
∇ defined along P . This, in turn, induces on N

1/2
P a natural partial covariant derivative

∇1/2 defined along P . Therefore we can endow the line bundle Q̄
↑ ⊗ N

1/2
P with the

tensor product partial covariant derivative ∇′ = ∇[q̄↑]⊗ 1 + 1⊗∇1/2 defined along P .

The space of P -polarized sections of the line bundle Q̄
↑ ⊗N

1/2
P is

ΓP (Q̄
↑ ⊗N

1/2
P ) = {ξ ∈ Γ(TM , Q̄

↑ ⊗N
1/2
P ) : ∇′

V ξ = 0, ∀ V ∈ Γ(TM ,P )}.

The Hilbert space of GQ quantum states is given by the L2-completion of ΓP (Q̄
↑⊗N1/2

P ).

Since the line bundle Q̄
↑ ⊗N

1/2
P = τ ∗M (Q̄⊗

√
ΛnT ∗M ) → TM is a pullback, its space

of global sections is given by

Γ(TM , Q̄
↑ ⊗N

1/2
P ) = C∞(TM )⊗C∞(M) Γ(M , Q̄⊗

√
ΛnT ∗M ).
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Taking into account now that the partial covariant derivative ∇′ is also a pullback, we
immediately obtain the identification

ΓP (TM , Q̄
↑ ⊗N

1/2
P ) = Γ(M , Q̄⊗

√
ΛnT ∗M ).

The quantum operators on half-forms corresponding with position and momentum
observables are just the same as (34); compare it with eq. 7.82, p. 128 of [28]. The
difference between CQM and GQ lies in the way how the energy is quantized.

Concerning the energy H0, from (33) we have the expression

(37) Ĥ0(Ψ
η) =

(
−1

2

o

∆0 − A0 −
1

2
kf 0r0

)
Ψη,

and we can use (24) in order to write the first summand as −1
2

o

∆Ψ0 ⊗
√
η. In this way

we realize that the only difference between the above formula and the corresponding
formulae 7.114 on p. 134 (F = 0) and 10.59 on p. 180 (F 6= 0) of [28] is the factor in
front of the scalar curvature r2.

In order to decide which factor must be used for introducing the scalar curvature
in the energy operator we recall that in GQ the quantum operator corresponding to
the kinetic energy is obtained by the Blattner-Kostant-Sternberg (BKS) method. This
method is useful for those observables f , like energy, whose Hamiltonian vector field Xf

does not preserve the polarization. The value of the corresponding quantum operator
on a wave function Ψ is obtained by dragging Ψ using the flow of the lift of Xf to the
half-form bundle and then projecting the result back to the space of polarized sections.
Following [28, eq. 10.52], the computation of the energy operator by the BKS method
yields at the pole of a normal coordinate system (where ∂igjk = 0)

(38) Q(ψηb⊗
√
v) =

o

∆(ψηb)⊗
√
v

We stress that here
√
v is just a local basis of the bundle of volume forms, and not the

global section
√
η (see (17) and the sentences thereafter). Then a computation at the

pole of a normal coordinate system shows that

(39)
o

∆(ψηb)⊗
√
v = (

o

∆(Ψ) +
1

6
rΨ)

√
η

(see also [36]). The right-hand side of the above formula is a globally defined tensor,
while it is not possible to interpret the left-hand side as an intrinsic expression by means
of the available connections.

3.1 Lemma. The following equality holds:

o

∆(ψηb)⊗
√
v =

o

∆(Ψη)− 2Ḡ(∇̌o(ψηb)⊗ ∇̌o
√
v)− ψηb⊗ Ḡ(∇̌o∇̌o

√
v)

2The difference in sign is due to the fact that, like in [37], we use the opposite convention about
the value of r with respect to [28]
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Proof. Indeed we have

o

∆(Ψη) = Ḡ(∇̌o∇̌o(ψηb⊗
√
v))(40)

= Ḡ(∇̌o∇̌o(ψηb))⊗
√
v + 2Ḡ(∇̌o(ψηb)⊗ ∇̌o

√
v) + ψηb⊗ Ḡ(∇̌o∇̌o

√
v),(41)

and the statement is proved by observing that

o

∆(ψηb)⊗
√
v = Ḡ(∇̌o∇̌o(ψηb))⊗

√
v.

3.2 Theorem. At the pole of a normal coordinate system we have

o

∆(Ψη) =
o

∆(ψηb)⊗
√
v − 1

6
rΨη.

Proof. Using the above Lemma we have

o

∆(Ψη) =
o

∆(ψηb)⊗
√
v +Gij(∇̌o

i (ψb)
4

√
|g| ⊗ Γh

jh

√
v) +Gijψb∂i

4

√
|g| ⊗ Γh

jh

√
v

+ ψηb⊗G(∇̌o(
1

2
Γh
ihď

i ⊗
√
v))

(42)

=
o

∆(ψηb)⊗
√
v +Gij(∇̌o

i (ψb)
4

√
|g| ⊗ Γh

jh

√
v)

+
1

2
ψηb⊗Gij(∂iΓ

h
jh + Γk

ijΓ
h
kh −

1

2
Γk
ikΓ

h
jh)

√
v))

(43)

At the pole of the normal coordinate system we have Γi
jk = 0, hence

o

∆(Ψη) =
o

∆(ψηb)⊗
√
v +

1

2
ψηb⊗Gij∂iΓ

h
jh

√
v;(44)

it can be proved that r = 3
2
Gikgpq∂i∂kgpq and that 1

2
Gij∂iΓ

h
jh = −1

4
Gijghk∂i∂jghk, so

that the statement is proved.

So, if, according to CQM, we define the energy operator using the Bochner Lapla-
cian which takes into account the Riemannian connection on the square root bundle√
∧3T ∗M → M then the scalar curvature term which arises in GQ is canceled by a

similar term arising from the covariant derivative of the base of sections of the square
root bundle.

On the other hand, while the ‘intermediate’ term
o

∆(ψηb)⊗√
v obtained by the BKS

method has no intrinsic meaning, the final result (i.e. the right-hand side of (39)) is
intrinsic. CQM allows us to recover this term by adding a term with the scalar curvature
multiplied by an arbitrary coefficient, using our quantum Lagrangian approach. So we
can, in a sense, recover the expression of [28] through CQM.
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4 Conclusions

We have discussed the two ways for defining the quantum energy operator proposed
by CQM and GQ. The energy operators obtained by these two methods differ by a
multiplication operator by a constant times the scalar curvature. This constant can be
arbitrarily modified if one uses the Lagrangian approach, or even completely removed
if one uses covariant derivatives of half-forms.

It is a well-known feature of GQ that non-trivial examples are very few since it is very
easy to run into topological obstructions and several other complications. In all known
examples of GQ whose spectral problem for the energy operator has been analyzed, the
scalar curvature term is just zero or a constant. Among the latter ones we can mention
the results obtained for the Landau problem on Riemann surfaces [19, 29, 20, 32, 33]
and for the rigid body [30, 31]. In these cases the spectrum of the Schrödinger operator
is modified by an overall shift.

At the moment, we can only say that the possibility that the scalar curvature plays
no rôle in quantum mechanics is not remote. One possibility is that one might be able to
modify the BKS method in such a way as to incorporate the action of the Riemannian
connection on the square root bundle. In general, most well known polarizations are
endowed with a fibre metric and therefore in principle it should be possible to define a
Riemannian connection acting on half-forms. Another possibility is that the whole BKS
procedure could be re-expressed in an ‘infinitesimal’ way through the parallel transport
of the connection χ on the infinite-dimensional bundle. It is known [6, 7, 8] that such
a parallel transport leads to the Feynman integral formulation, and this could also be
useful in order to perform a covariant analysis of De Witt’s approach [4].

We hope to solve the problem of scalar curvature in quantum mechanics in a future
research.
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ited, in “Geometria, F́ısica-Matemática e outros Ensaios”, Homenagem a António Ribeiro Gomes,
A. S. Alves, F. J. Craveiro de Carvalho and J. A. Pereira da Silva Eds., Coimbra 1998, 253–313.
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