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Abstract

Using the theory of 1+1 hyperbolic systems we put in perspective the mathematical
and geometrical structure of the celebrated circularly polarized waves solutions for
isotropic hyperelastic materials determined by Carroll in Acta Mechanica 3 (1967) 167–
181. We show that a natural generalization of this class of solutions yields an infinite
family of linear solutions for the equations of isotropic elastodynamics. Moreover, we
determine a huge class of hyperbolic partial differential equations having the same
property of the shear wave system. Restricting the attention to the usual first order
asymptotic approximation of the equations determining transverse waves we provide
the complete integration of this system using generalized symmetries.
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1 Introduction and Basic Equations

The propagation of transverse or shear waves in incompressible isotropic nonlinear hyper-
lasticity is governed by a system of non-linear equations in 1 + 1 independent variables
(x, t)

̺utt −
[

Q(u2x + v2x)ux
]

x
= 0,

(1.1)

̺vtt −
[

Q(u2x + v2x)vx
]

x
= 0,

where u = u(x, t) and v = v(x, t) are the unknown functions (the transverse motions), ̺ is
the constant density and Q = Q(u2x + v2x) is the generalized shear modulus[15].

It is usual to derive (1.1) with respect to x, and to introduce as new unknowns the strains
U = ux and V = vx, to rewrite (1.1) as a first-order homogeneous quasilinear system

(1.2) U t +A(U )Ux = 0,

see, for example, [29] or system (7.1.14) page 176 in [13]. Indeed, introducing Q̃ = Q/̺ in
terms of the strains

(1.3) Ut =Mx, Mt = [Q̃U ]x, Vt = Nx, Nt = [Q̃V ]x.

On the other hand, the highly symmetric structure of (1.1) suggest an alternative compact
form for this system. Using the complex functionW with modulus Ω and argument θ, defined
by

(1.4) W (x, t) = Ω(x, t) exp[iθ(x, t)] = U(x, t) + iV (x, t),

so that
U = Re{W} = Ωcos(θ), V = Im{W} = Ωsin(θ),

we rewrite (1.1) as a single complex equation

(1.5) ̺Wtt − [Q(Ω)W ]xx = 0.

This complex format has been used in the study of the nonlinear string by Rubin, Rosenau
and co-workers[28, 37, 38] and by Destrade and Saccomandi in nonlinear elasticity and some
related theories[14, 15, 17], to obtain some similarity reductions for the system (1.1) and
several exact solutions. This format has been fundamental to unify all of the Carroll’s
results[9, 10, 11] and to generalize them. Moreover, this format has been used by Rogers[36]
to show a relationship between (1.1) and the Ermakov–Ray–Reid system.
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For example, let us consider a special class of such similarity solutions: the Carroll’s finite
amplitude circularly-polarized harmonic progressive waves[9]. These solutions are obtained
considering Ω = A and θ = kx− ωt and are defined as

(1.6) U(x, t) = A cos(kx− ωt), V (x, t) = ±A sin(kx− ωt),

where the amplitude A, the wave number k, and the frequency ω are real positive constants,
and the plus (minus) sign for V corresponds to a left (right) circularly-polarized wave. The
waves (1.6) are solutions for the system (1.1) if the dispersion relation

(1.7) ̺ω2 = k2Q(A2).

is satisfied. Under very mild conditions on the generalized shear modulus (1.7) is clearly
satisfied and therefore (1.6) are an example of smooth global solutions of the Cauchy problem
in the whole space composed by (1.1) and the initial conditions

u(x, 0) = A cos(kx), v(x, 0) = ±A sin(kx),

ut(x, 0) = Aω sin(kx), vt(x, 0) = ∓Aω cos(kx).

The (1.6) are interesting not only because they are beautiful exact closed form solutions for
a large class of materials but, to the well educated reader, it is clear that these solutions
are exceptional in their mathematical character: global solutions of permanent form of a
nonlinear hyperbolic system.

The possibility of smooth global solution for equations (1.1) has been first noticed by
John in his celebrated 1974 paper[30]:

On the other hand, there are also known special non-singular wave solutions
(e.g., the transverse waves in Hadamard materials (see [4]), or the Caroll waves
in arbitrary materials (see [6]). This raises the question whether the results of
the present paper that depend on genuine non-linearity of the system ever apply
to plane elastic waves. It will be proved here that there is indeed a large class of
plane waves where we have no genuine non-linearity, namely all those in which
the wave front contains a principal direction of strain.

John is pointing out that there is a special class of materials (Mooney-Rivlin materials in the
incompressible setting) for which (1.1) reduces to a linear system of equations. (For Mooney-
Rivlin materials we have Q ≡ µ where µ is the constant infinitesimal shear modulus).

On the other hand, for general class of materials, the special structure of the matrix A
in (1.2) reduces the problem to one involving the ordinary simple waves of a homogeneous
system comprising only two equations. Each simple wave is associated with one of the four
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eigenvalues1 λ
(1)
± and λ

(2)
± of A. Being λ(1) > λ(2), using a terminology introduced in [12], it

is usual to refer to such waves as fast and slow waves.
Slow waves are exceptional or linearly degenerate in the hyperbolic systems language, i.e.

the gradient of the corresponding eigenvalue is orthogonal to the corresponding eigenvector.
It is well known (see corollary 8.2.6 page 211 in [13]) that when a characteristic family of
an hyperbolic system is linearly degenerate travelling waves solutions are possible. This
corollary contains the mathematical reason of the existence of Carroll waves.

We record several papers concerning linearly degenerate or exceptional systems in elas-
todynamics. Some papers are dedicated to existence theorems, for example [33], others,
mainly by the Boillat’s school [5, 7, 18], are more focused on the interplay between this
peculiar mathematical structure and the constitutive nature of some material laws. The
aim of such papers is to determine special classes of elastic strain-energy densities for which
the mathematical resolution is simpler than usual because the equations are completely ex-
ceptional. Moreover, there is a huge literature about plane transverse acceleration waves
in elastic solids (see for example [39]), where it is noticed that in incompressible materials
there is a direction where waves may propagate without a change in amplitude because of
the exceptional character of one of their eigenvalues.

On the other hand, these exact solutions must play a role in the framework of the well-
posedness of the Cauchy problem for incompressible dynamic elasticity. This subject is
denoted as problem number 12 in John Ball’s review about open problems in nonlinear
elasticity[3]2. In reviewing this problem Ball cites the works by Ebin and coworkers[21, 22, 23]
and the work by Hrusa and Renardy[25]. The paper [22] (dated 1996) opens in a very
significant, communicative and direct way:

Theorem. The initial value problem for the equations of motion of an incom-
pressible hyperelastic homogeneous isotropic material has classical solutions for
all time, if the initial displacement and velocity are small.

It is clear that in [21, 22, 23, 25] the investigations are not restricted to transverse waves,
but clearly Carroll’s solutions are an example of global existence for large amplitude initial
data in unbounded domains.

The more recent paper by Sideris and Thomases[40] points out that since in isotropic
nonlinear elastic systems shear waves are linearly degenerate the so called null condition is
automatically satisfied. This fact is used to confirm the intuitive idea that suitable weighted
local decay estimates for the perturbative equations can be expected via the generalized

1The plus and minus sign are associated to forwards and backwards waves respectively.
2The problem 12 in [3] is: Prove the global existence and uniqueness of solutions to initial-boundary value

problems for properly formulated dynamic theories of nonlinear elasticity.
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energy method and therefore the existence of global-in-time classical solutions to the Cauchy
problem for incompressible elastic materials is proved for small initial displacements. This
fact is confirmed in [32] where the possibility to obtain such kind of results is connected to
the exceptionality of the equations. In [32] we read:

The equations of incompressible elastodynamics display a linear degeneracy in the
isotropic case; i.e., the equation inherently satisfies a null condition. By taking
the advantage of this structure, we prove that the 2-D incompressible isotropic
nonlinear elastic system is almost globally well-posed for small initial data.

Once again the connection between the linearly degenerate structure of the equations and
the possibility to find global solutions for the Cauchy problem (and this also for large data)
seems to have been not noticed.

This situation is strange because the paper [32] focuses on the neo-Hookean material in
the two dimensional case. (We point out that in the two dimensional case the neo-Hookean
material cannot be distinguished from the Mooney-Rivlin material.) The fact that many
solutions of the neo-Hookean model may be found solving linear equations is well known to
the practitioners of nonlinear elasticity, see for example [31].

The aim of the present note is to push forward the connection between the exceptionality
of the system (1.1) and the existence of exact solutions as (1.6). In so doing we determine
explicitly a huge class of smooth solutions. Moreover, we are able to point out that this
kind of exact solutions are peculiar of an entire class of linearly degenerate second order
differential equations.

The plan of the paper is the following. In Section 2 we generalize the (1.6). In so doing,
we provide a huge class of new exact solutions for the equations of non-linear elastodynamics.
In Section 3 with derive the usual first order asymptotic model associated with (1.1). This
allows to introduce a simpler format for our investigations. We realize that the asymptotic
system corresponding to (1.1) is a Temple system[41, 1]. Using symmetry transformations
we are able to provide not only the full class of linear solutions for such system, but to derive
also the general integral. The last Section is devoted to concluding remarks.

Symbolic computations were performed in CDIFF[44], a freely available REDUCE[35]
package for computations in the geometry of differential equations.

2 A Generalization of Carroll Solutions

Let us consider Ω = const. in the system (1.4) . In this case starting from (1.5) we obtain
an overdetermined system in the unknown θ = θ(t, x). The general solution of this overde-
termined system, when Q > 0, is simple and given by the solutions of the first order wave
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equations
θt ±

√

Q/̺θx = 0.

This means that the Carroll’s solutions (1.6) are only one possible choice among infinite
possibilities.

In general it is possible to have solutions in the form

(2.1) U(x, t) = A cos(θ), V (x, t) = ±A sin(θ),

where θ = F (x ±
√

Q/̺t) and F is an arbitrary function. Of course, new solutions cannot
be obtained as sums of solutions θ with different signs since they are solutions of nonlinear
equations. This is the large class of plane waves where we have no genuine non-linearity
identified in [30]. To the best of our knowledge, the explicit determination of such exact
solution have been unnoticed.

If in (1.4) we set θ = const., i.e. we consider a plane polarized wave, from (1.5) we obtain
the single real second order partial differential equation ̺Ωtt − [Q(Ω)Ω]xx = 0 for which, if
Q 6= const., any solution blows up[27].

We point out that to ensure that the generalized shear modulusQ is positive it is sufficient
to impose that the strain-energy density satisfies the usual empirical inequalities [2].

The possibility to find explicitly a similar huge class of exact solution for a nonlinear
system of partial differential equations is not restricted to the system (1.1). Let us consider
the abstract mathematical system

Utt − [P (U, V )U ]xx = 0,(2.2a)

Vtt − [P (U, V )V ]xx = 0,(2.2b)

where P is a suitable constitutive function. We suppose that P (U, V ) > 0 in the domain of
interest. We can set P (U, V ) = A where A > 0 is a constant and therefore, under suitable
assumptions on P , it is possible to write V = Ψ(U ;A). Then the system (2.2) is transformed
in the overdetermined system

Utt − AUxx = 0,(2.3a)

[Ψ(U ;A)]tt − A [Ψ(U ;A)]xx = 0.(2.3b)

It is easy to check, by a direct computation, that U = F (x±
√
At) solves this overdetermined

system. On the other hand, the system (2.2) is compatible if V = kU where k is an arbitrary
constant and in this case we reduce the system to a single genuinely non-linear partial
differential equation of the second order.

Therefore, we have pointed out a very general result peculiar to the system (2.2) of second
order hyperbolic differential equations in 1 + 1 dimensions in two unknowns. To the best
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of our knowledge the explicit characterization of the solutions we have provided has never
been noticed.

Remark 1. If P = P (U/V ) the substitution V = kU reduces the system (2.2) to a set of
two uncoupled linear differential equation. This choice of P in the family (2.2) is special as
we can check when P = U/V . This system is completely exceptional[6].

3 An Asymptotic Model

In nonlinear acoustics it is usual to derive an asymptotic model for the system (1.1). This
Section is devoted to a detailed discussion of such a system. The system has a mechanical
interest, and its mathematical structure has been deeply studied (see for example [26]).

Let us introduce the Taylor expansion of the generalized shear modulus

Q(U2 + V 2) = µ0 + µ1(U
2 + V 2) + . . . ,

and let us assume U = ǫÛ , V = ǫV̂ introducing the new independent variables X = ǫ2x and
τ = t − x/c0, where c0 = µ0/̺. Here ǫ is a small parameter. Considering only terms up
to O(ǫ3) and introducing the notation U := ∂Û/∂τ, V := ∂V̂ /∂τ we obtain the first order
hyperbolic system3

UX − β
[

(U2 + V 2)U
]

τ
= 0,(3.1a)

VX − β
[

(U2 + V 2)V
]

τ
= 0,(3.1b)

where β = c1/(2c
2

0
) (here c1 = µ1/̺).

Introducing polar coordinates4

(3.2) U = ρ(X, τ) cosϑ(X, τ), V = ρ(X, τ) sinϑ(X, τ),

the system (3.1) is rewritten as

ϑX − βρ2ϑτ = 0,(3.3a)

ρX − 3βρ2ρτ = 0 → ρX − β(ρ3)τ = 0.(3.3b)

If ϑ = const. we have plane polarized waves and the system (3.3) reduces to a single
partial differential equation whose exact solution is ρ = Φ(τ − 3βXρ2).

3We point out that the system we derive is exactly the toy hyperbolic system introduced in [13] page 182
formula (7.2.11).

4here ρ is not to be confused with the density ̺.
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On the other hand, a class of remarkable solutions for system (3.3) is obtained when
ρ = A, where A as in the circularly polarized wave solutions (1.6) is an arbitrary constant.
This class of solutions is obtained solving a linear equation, indeed, in this case we have the
solutions

(3.4) U = A cos (Θ(ξ)) , V = A sin (Θ(ξ)) ,

where ϑ = Θ(ξ) and ξ = βA2X + τ . This is an infinite family of smooth solutions of the
nonlinear system (3.1).

The system (3.3) maybe easily rewritten in conservative form as

(ρϑ)X − β(ρ3ϑ)τ = 0,(3.5a)

ρX − β(ρ3)τ = 0.(3.5b)

The general solution of the system (3.5) may be represented introducing the potential variable
φ = φ(X, τ) such that

(3.6) φτ = ρ, φX = βρ3.

Indeed, the general integral (in implicit form) of (3.5b) is well known and for any given
solution ρ(X, τ) it is possible to define a corresponding φ from (3.6). If we consider ϑ = F (φ),
where F is an arbitrary function, we obtain the general solution of (3.3). By a direct check
denoting dF/dφ = F ′ we compute

(ρF )X − β(ρ3F )τ ≡ ρF ′φX − βρ3F ′φτ ≡ ρF ′
(

φX − βρ2φτ

)

≡ 0.

Another representation of the exact solution of this system (when ρ 6= const.) is obtained
by the so-called generalized hodograph method [42]. The method makes use of families of
commuting generalized (or higher) symmetries (see, for example, [4, 34]) of the system (3.3).
Such symmetries are generalized (or higher) vector fields ϕϑ∂/∂ϑ+ ϕρ∂/∂ρ. Here the word
“generalized” means that the coefficients are functions of derivatives of an arbitrarily high
order, i.e. ϕϑ = ϕϑ(X, τ, ϑ, ρ, ϑX , ϑτ , ρX , ρτ , . . . ) and analogously for ϕρ. Generalized vector
fields are generalized symmetries if they are solutions of the linearized system

DX(ϕ
ϑ)− 2βρϑτϕ

ρ − βρ2Dτ (ϕ
ϑ) = 0(3.7a)

DX(ϕ
ρ)− 6βρϑτϕ

ρ − 3βρ2Dτ (ϕ
ρ) = 0(3.7b)

over the system (3.3). Hydrodynamic type symmetries are generalized symmetries that have
the simplest structure with respect to derivatives: for our equation they are of the form ϕϑ =
ϕϑ(ϑ, ρ)ϑτ and analogously for ϕρ. Note that a vector field on the space of dependent and
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independent variables ξτ∂/∂τ + ξX∂/∂X + ηϑ∂/∂ϑ+ ηρ∂/∂ρ is a classical (point) symmetry
if and only if its vertical part (ηϑ−ϑXξ

X −ϑτξ
τ )∂/∂ϑ+(ηρ−ρXξX −ρτξτ )∂/∂ρ is a solution

of the above linearized system; in this sense the hydrodynamic type symmetries are the
simplest generalized symmetries.

It is known[42] that diagonal hydrodynamic-type systems in 2 dependent variables admit
a space of hydrodynamic-type symmetries which are parametrized by two arbitrary functions
and commute, as vector fields, with the vector field defined by the right-hand side of the
differential equation.

In our case, the system (3.3) admits the hydrodynamic symmetries

(3.8) φ = −
(

s3(θ)

ρ
+ s4(ρ)

)

θτ
∂

∂θ
−
(

d(s4(ρ)ρ)

dρ

)

ρτ
∂

∂ρ

The above symmetries commute with the vector field ϕ = βρ2ϑτ∂/∂ϑ + 3βρ2ρτ∂/∂ρ which
is given by the right-hand side of the equation (3.3) (see the Appendix for more details).
Then every solution of the algebraic system

−
(

s3
ρ

+ s4

)

= βρ2X + τ(3.9a)

−
(

ds4
dρ

ρ+ s4

)

= 3βρ2X + τ(3.9b)

(where s3 = s3(θ) and s4 = s4(ρ) are two arbitrary functions) is a solution of the system (3.3)
with the property that uiτ 6= 0, and conversely any solution of (3.3) with the property uiτ 6= 0
can be locally represented as a solution of (3.9). Indeed, the system (3.3) can be solved
through the hodograph transformation (X, τ) 7→ (θ, ρ). If one performs that transformation
the system (3.3) becomes

τρ + βρ2Xρ = 0

τθ + 3βρ2Xθ = 0

which is equivalent to

(βρ2τ +X)ρ = (βρ2)ρτ

(3βρ2τ +X)θ = (3βρ2)θτ = 0

On solutions of (3.3) the above system is fulfilled since it is equivalent to the commutativity
condition [φ, ψ] = 0 (see the Appendix). Algebraic solving system (3.9) we obtain the
implicit solutions:

(3.12) X =
s3

2βρ3
− s′4

2βρ
, τ = −3s3

2ρ
− s4 +

ρs′4
2
.
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Due to their implicit character, the solutions in (3.12) will develop a shock in finite time.
The Cauchy problem for (3.3) have been considered into details in[24], but the possibil-

ity to find in a simple a direct way a large class of exact smooth solutions seems to have
been always skipped. Indeed, the main theorem contained in [24] speaks of piecewise smooth
solutions with locally finitely many shocks. This kind of solutions are exactly the ones repre-
sented by (3.12). On the other hand, we point out that Theorem 2[24] speaks of soliton-like
solutions, i.e. a rotational wave emerging as a travelling wave of unchanged shape. This kind
of solutions seems to be exactly the ones we have explicitly determined in (3.4).

4 Temple systems

Let us put in the right framework the geometrical structure of system (3.1). To this end let
us consider a general 2× 2 autonomous and uniform hyperbolic system

(4.1) ut = [A(u, v)]x, ut = [B(u, v)]x,

where A and B are smooth solutions. This system of differential equations (for a given
choice of A and B) is defined in the base space (t, x)× (u, v) prolonged to the jet space over
this base space containing the first order derivatives. Our goal is to understand if in the
subvariety of the solutions of (4.1), say S, it is possible a subset LS ⊂ S, which may be
determined solving a linear differential equations.

This may be done using several methods, but in solving (3.1) we have used the following
one. We have considered a subset of (t, x)× (u, v) defined by a relation of the kind

(4.2) ϕ(u, v) = k,

where k is a constant. Then we have shown that when we restrict (4.1) to (4.2) in the
base space we obtain an overdetermined but compatible system of equations which is linear.
Indeed since in the base space (4.2) holds then whe should have in the jet space

ϕuux + ϕvvx = 0, ϕuut + ϕvvt = 0,

and therefore from (4.1) (we impose ϕv 6= 0) we obtain the overdetermined system

(4.3) ut =

(

Au − Av

ϕu

ϕv

)

ux,
ϕu

ϕv

ut =

(

Bu − Bv

ϕu

ϕv

)

ux.

By using the standard Lagrange-Charpit method we have that (4.3) is fully compatible if
and only if

(4.4) Buϕ
2
v + (Au −Bu)ϕuϕv − Avϕ

2
u = 0,
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and the single differential equation to which the overdetermined system is reduced is linear,
for example, if and only if

(4.5) Au − Av

ϕu

ϕv

= k,

where we point out again that k is constant.
The general solution of (4.4) and (4.5) is given by

A(u, v) = H(ϕ)u+ Φ(ϕ),(4.6a)

B(u, v) = H(ϕ)v +Ψ(ϕ),(4.6b)

where H,Φ and Ψ are arbitrary functions of ϕ(u, v) and we have considered that we are
solving the (4.4) and (4.5) in the conical subset of the basic space defined by (4.2).

We have therefore determined a class of hyperbolic systems containing the Temple system[41,
1]

ut − [P (u, v)u]x = 0,(4.7a)

vt − [P (u, v)v]x = 0,(4.7b)

as special case.
For this system the corresponding Cauchy problem have been extensively studied[41] but

once again we notice that the possibility to deduce an infinity of solutions for (4.7) solving
a linear equation seems to have been skipped. Here we perform some general consideration
about system (4.7). Let us rewrite (4.7) as

(4.8)

(

ut
vt

)

=

(

Puu+ P Pvu
Puv Pvv + P

)(

ux
vx

)

The right-eigenvalues of A in (4.8) are

(4.9) λ1 = P + Puu+ Pvv, λ2 = P,

and the corresponding right-eigenvectors are

(4.10) d1 = (1, v/u), d2 = (1,−Pu/Pv).

About (4.8) we remark:

• The eigenvector d2 is exceptional: indeed ∇λ2 · d2 = 0.
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• We have P (u, v) = P (u/v) if and only if λ1 = λ2.

• The system (4.8) is completely exceptional if and only if uPu+vPv = u−1H(u/v), with
H arbitrary function.

• The system (4.8) may be derived by a classical Hamiltonian density H[u] =
∫

Hdx
and rewritten as ut = [Hv]x, vt = [Hu]x if and only if vPv = uPu, i.e. P = P (uv).

Here we are interested in the case where only one eigenvalue is exceptional. In this case
we use only the Riemann invariant corresponding to this eigenvalue to transform the system
in a form where it is clear how to detect the class of linear equations. We introduce the
point transformation of the dependent variables α = α(u, v) and β = β(u, v) such that
P (u, v) = R(α) and β = u/v. In so doing (4.7) is rewritten in the form

αt − (R′(αuu+ αvv) +R(α))αx = 0,(4.11a)

βt −R(α)βx = 0.(4.11b)

This is a diagonal two-component hydrodynamic type system and, as such, it can always
be solved with the generalized hodograph method of the previous section. However, for
concrete cases of R and α the system could be still difficult to solve.

When α is constant (i.e. P (u, v) is constant) the system (4.11) collapses to a single linear
differential equation. Therefore it always possible to find an infinity of linear solutions for
the nonlinear system (4.7).

In general the first equation (4.11) is of the form αt − f(α, β)αx = 0. However, it may
happen that for special functional forms of R and α this equation decouples from the second
one. The condition for the decoupling is

(4.12)
∂(αuu+ αvv)

∂β
= 0 ⇒

∂u

∂β
(αuuu+ αuvv + αu) +

∂v

∂β
(αuvu+ αvvv + αv) = 0.

For instance, the above condition holds if αuu+αvv is constant; a function α fulfilling this last
property α = ea(u−v)+c with a, b, c three constants. Another possibility is that α(u, v) = uv.

The decoupled system is the general category to which the asymptotic system associated
with the elastic system (1.1) belongs. In this case

αt − f(α)αx = 0,(4.13a)

βt −R(α)βx = 0.(4.13b)
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The same method as the asymptotic system applies to the above system. Indeed, the
hydrodynamic symmetries are

(4.14) φ = s1αx

∂

∂α
+ s2βx

∂

∂β

where s1 = s1(α) is arbitrary and s2 = s2(α, β) is subject to the following linear ODE:

Rα(s2 − s1) + s2α(f −R) = 0

which can be solved in a standard way. The resulting symmetries commute, hence the
generalized hodograph method provides the generic solution. For example, in the particular
case α(u, v) = uv we have f(α) = Rα2α+R and the above equation becomes s2−s1+2αs2α =
0 whose explicit solution does not depend on R and can be given in quadratures after the
form of s1 is specified.

In the general situation when f = f(α, β) the constraint on s2 in the hydrodynamic
symmetries is a partial differential equation whose solutions must be investigated for each
explicit form of f .

Remark 2. The case when (4.7) is completely exceptional has been extensively studied[6].
In this case using Riemann invariants and then an hodograph transformation the system
may be linearized. A general theory for the linearization of completely exceptional second
order hyperbolic conservative equations is provided in [19]. For example, let us consider the
completely exceptional system obtained by setting P (u, v) = u/v. Now (4.11) is

(4.15) ut =

(

u2

v

)

x

, vt = ux,

equivalent to

(4.16) ψx = u, ψt =
u2

v
, φx = v, φt = u.

Being ψx = φt we have a stream function χ such that ψ = χt, φ = χx and the equation ψt =
u2/v is therefore equivalent to the classical homogeneous Monge-Ampere equation χttχxx −
χ2
xt = 0, which, it is well known, is a linearizable equation.

5 Concluding Remarks

We have considered the celebrated polarized circularly waves found by Carroll in [9]: this
is a class of beautiful and simple general smooth exact solutions for the nonlinear theory
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of isotropic elasticity. We have provided evidence that the mathematical reason for the
existence of such solutions is the exceptional character of the hyperbolic system of determin-
ing equations for such waves. Indeed, we have been able to generalize such solutions in a
straightforward way. To our knowledge, the huge class of exact solutions (clearly obtainable
by similarity methods) that we have obtained was not noticed before, despite the fact that
several papers have been devoted to the group analysis of systems of wave equations in 1+1
dimensions (see for example [43]).

To simplify the algebra we have restricted our attention to the asymptotic first order
system. For the system (2.2) the computation of the generalized symmetries is a possible
but cumbersome procedure. For this reason, to determine similarity reductions the approach
proposed by Carroll[10, 11] used by Destrade and Saccomandi[14, 15, 16, 17] via the complex-
coordinates formalism in (1.5) may be relevant.

For example, going back to the system of second order differential equations (2.2) it is
easy to understand how the Carroll’s method may be extended. Clearly this extension it is
not trivial, elegant and beautiful as for system (1.1), but it is still an effective method to
find by reduction to ordinary differential equation some exact solutions of (2.2).

A non trivial example of how it is possible to extend the ideas of Carroll is given consid-
ering P = P (uv) in (2.2). In this case we start considering

u = φ(t)ψ(x), v =
φ(t)

ψ(x)
.

In so doing we get P = P (φ2) and we obtain the class of solution

u = φ(t) exp(kx), v = φ(t) exp(−kx),
where φtt = k2P (φ2)φ.

On the other hand, our discussion opens some interesting mathematical questions. First
of all if there is the possibility of the existence of smooth solutions (in the whole space)
and this also for large initial data for the equations of non-linear elasticity. Then if the
global existence theorems by Temple[41] may be for certain conditions on the initial data
reformulated in this more strong setting. A first step in this direction seems given in [8].

Acknowledgments. We would like to thank M.V. Pavlov for helpful comments and
suggestions. RV would also like to thank A.C. Norman for his support with REDUCE. This
work has been partially supported by Italian GNFM of INdAM.

Appendix: symmetries and conservation laws

The system (3.3) is a hydrodynamic-type quasilinear system in diagonal form and the coef-
ficients of θτ and ρτ are its Riemann invariants []. However, the system is not completely
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exceptional [] (or linearly degenerate, according with another terminology []): the gradients
of its eigenvalues are not orthogonal to its eigenvectors. An entropy pair (or a conservation
law) for (3.3) is given by any relation

DτT (θ, ρ)−DxX(θ, ρ) = 0,

satisfied by all solutions of (4.11). (Here Dτ and Dx are the usual total derivatives). The
system admits the following hydrodynamic conservation law densities:

(5.1) X = −dc1
dρ
ρ2 − 3c1ρ− c2ρ, T = β

(

−3
dc1
dρ
r4 − 3c1ρ

3 − c2ρ
3

)

,

where c1 is an arbitrary function of ρ and c2 is an arbitrary function of θ. The corresponding
characteristic vector is the pair of functions

δX

δθ
= −dc2

dv
ρ,

δX

δρ
=

(

−d
2c1
dρ2

ρ2 − 5
dc1
dρ
ρ− 3c1 − c2

)

where δ/δθ, δ/δρ are variational derivatives. The characteristic vector vanishes if and only
if the above hydrodynamic conservation laws are trivial, i.e. they are the total divergence
of a quantity defined on the whole coordinate space. This happens if and only if c2 is a con-
stant and c1 fulfills the above Cauchy–Euler ODE. So, the space of nontrivial hydrodynamic
conserved quantities is still parametrized by two functions which are ‘almost’ arbitrary.

The system (3.3) also admits the following symmetries whose characteristic function
depends on first-order derivatives:

(5.2) φ = −s1
∂

∂θ
+ s2ρτ

∂

∂ρ

where s1 = s1(θ, ρ, θτ ) and s2 = s2(r) fulfill the additional PDE

ds1
dρ

ρ+
ds1
dθτ

θτ + s2θτ = 0.

If we require that φ be of hydrodynamic type [20], i.e. s1 = s10(ρ, θ)θτ then we conclude
that s10 = s3(θ)(1/ρ) + s4(ρ) and s2 = −(ds4/dρ · ρ+ s4). The hydrodynamic symmetries φ
commute with the vector field whose characteristic function is given by the right-hand side
of the equation. More precisely, if

ψ = βρ2θτ
∂

∂θ
+ 3βρ2ρτ

∂

∂ρ
, φ = −

(

s3
ρ

+ s4

)

θτ
∂

∂θ
−

(

ds4
dρ

ρ+ s4

)

ρτ
∂

∂ρ
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then we have

{φ, ψ} =

(

φθ ∂ψ
θ

∂θ
+ φρ∂ψ

θ

∂ρ
+Dτ (φ

θ)
∂ψθ

∂θτ
+Dτφ

ρ∂ψ
θ

∂ρτ

−ψθ ∂φ
θ

∂θ
− ψρ∂φ

θ

∂ρ
−Dτ (ψ

θ)
∂φθ

∂θτ
−Dτψ

ρ∂φ
θ

∂ρτ

)

∂

∂θ
+

(

φθ ∂ψ
ρ

∂θ
+ φρ∂ψ

ρ

∂ρ
+Dτ (φ

θ)
∂ψρ

∂θτ
+Dτφ

ρ∂ψ
ρ

∂ρτ

−ψθ ∂φ
ρ

∂θ
− ψρ∂φ

ρ

∂ρ
−Dτ (ψ

θ)
∂φρ

∂θτ
−Dτψ

ρ∂φ
ρ

∂ρτ

)

∂

∂ρ
= 0,

where {φ, ψ} is the Jacobi bracket (see, for example, [4]), or the commutator of the two flows
ψ and φ.

We stress that the same computation can be repeated for the system 4.13.
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