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Abstract

In this note we consider the structure of the symmetry group of some important
mechanical theories (nonlinear elasticity and fluids of grade n). We discuss why
the invariance with respect to some well-known transformations must be used
with care and we explain why some of these universal transformations are useless
to obtain invariant solutions of physical significance.
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1. Introduction

Lesson four of Giancarlo Rota’s invited address delivered at the meeting of
the Mathematical Association of America in 1997, today known by the title Ten
lessons I wish I had learned before I started teaching differential equations1, is
to Teach changes of variables. Rota writes:

Worse, no one realizes that changes of variables are not just a trick;
they are a coherent theory (it is the differential analogue of classical
invariant theory, but let it pass).

We think that Rota has been taken literally by a large community of ap-
plied mathematicians. Today, it is possible to record several books entirely de-
voted to symmetry groups applied to differential equations (Bluman and Kumei
[2], Cantwell [6], Krasil’shchik and Vinogradov [4], Olver [23], Ibragimov [16],
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Stephani [31]), a long list of review papers and a tremendous quantity of sci-
entific papers. This means that we have at our disposal a full catalogue of
symmetries for a large class of differential equations.

It is well known that the computation of the classical transformations ad-
mitted by differential equations is a completely algorithmic procedure and this
procedure may be automatized using symbolic software. The reason is that the
Lie’s method is extremely powerful but, on the other hand, this is indeed also the
origin of a major drawback: automatism produces an abuse of the methodology
with respect to the understanding of the problem under investigation.

Today, many of the published papers about symmetries of differential equa-
tions are quite unsatisfactory. Some papers start from an equation without any
knowledge of its physical motivations, then they provide a list of symmetries
(whose computation sometimes may be considered as just a big exercise) and
contain some solutions. These solutions, often, are non sense from the physical
standpoint (just mathematical curiosity) and in many cases they are displayed
without any discussion on their possible meaning in the context of the mechan-
ical theory investigated.

For people seriously interested in Mechanics the simple knowledge of the
symmetries and transformations admitted by a given model is of no interest
without an investigation of the physical meaning of this invariance. On the other
hand, the standard situation that we observe concerning point symmetries of a
given mechanical or physical theory may be very disappointing: the full group
of transformations admitted by the differential equations describing the given
theory may be guessed by a simple inspection of the basic principles underlying
the theory itself. This is the case of uniformity of the material properties,
frame indifference and material symmetry, as seen in many textbooks eg [1, 7,
33]. Physical intuition and experience is enough to discover the fundamental
transformations but clearly only the general theory may be give us the complete
picture.

In (Edelen, 1982 [10]) we read

The isovector2 fields of the incompressible Navier-Stokes equations
thus generate the already known transformations admitted by those
equations. What is new is the fact that the isovector method is ex-
haustive; there are no other mappings admitted by the incompressible
Navier-Stokes equations.

The above remark by Edelen can be recast in a more essential but communicative
language: nothing new is under the sun but now you know it for sure.

The knowledge of the symmetry group of a mechanical theory is always
of interest if this knowledge is coupled with a clear understanding of these
symmetries to uncover the nature of the transformations and the usefulness of
their mathematical properties.

2The isovector method is a method to compute symmetries of differential equations based
on the use of external differential forms.
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Some of the symmetries underlying a mechanical theory are fundamental
bricks in the construction and characterization of the theory itself, but if such a
transformation is used to build exact solutions using reduction methods they are
a sort of bogus transformation. They are useless because they generate solutions
of no mechanical interest. The aim of the present note is to develop this point.

Our arguments are based on general considerations and two basic theories of
continuum mechanics: the theory of nonlinear elasticity and the Navier-Stokes
equations. General considerations are based on frame-indifference as a basic
principle for continuum mechanics that provides the fundamental symmetries
of the theory. Frame-indifference has several analogies with the symmetries
that are postulated in gauge theories. Then, we specialize our arguments to
the above two theories. The fact that the theories are well known will help the
reader in understanding our points.

2. Basic Equations

For the sake of simplicity here we are interested in purely mechanical theories
of non polar materials. Therefore, let x denote the current position of a particle
X in the reference configuration that is assumed to be stress free. The motion of
the body is a one-to-one mapping χ(X, t) that assigns to each pointX belonging
to the reference configuration the position x at time t, i.e. x = χ(X, t). We
make the hypothesis of the existence of a functional F such that we have the
following expression for the stress T at time t

T = F (χ) . (2.1)

A basic principle of continuum mechanics, of interest in what follows, is that
physical laws be independent of the frame of reference. Usually this principle
is denoted as frame–indifference (see eg [33]). Given a process {χ,T } and a
process {χ∗,T ∗} related by

χ∗(X, t∗) = Q(t)χ(X, t) + c(t), T ∗(X, t∗) = Q(t)T (X, t)Q(t)T ,

and t∗ = t − a. Here Q(t) is a rotation and c(t) is an arbitrary point and a
arbitrary number. We require the indifference (i.e. invariance) of the consti-
tutive equation for F with respect rigid translations, shifting of the time scale
and rigid rotations i.e.

QF(χ)QT = F(Qχ). (2.2)

We stress that frame indifference is a broader invariance than the usual Galilei
group invariance, as the orthogonal transformation Q depends on time and the
translation vector c may not depend linearly on time in general. The invariance
group of the frame-indifference is thus the infinite-dimensional group of functions

(Q, c) : R → SO(3)× R
3. (2.3)

The class of field theories which are characterized by invariance groups of
a similar structure is the class of gauge theories. Mathematically, any theory
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which possess an infinite-dimensional group of symmetries can be regarded as
a gauge theory [4]. This definition encompasses not only continuum mechanics
but also general relativity and the theory of electro-weak-strong interactions
which underlies the Standard Model of particle physics.

The equations of general relativity were derived by Einstein by prescribing a
gauge group of symmetries (or, equivalently, by requiring the general covariance
of the theory) and by requiring the existence of distinguished conservation laws.
In gauge theories this approach does not provide the equations of the theory;
however, the existence of gauge symmetries and conservation laws implies that
the equations of the theory must be Lagrangian (see [19] and references therein).
This means that the invariance group in physical theories plays a foundational
role and is not something to be looked for a posteriori. This pattern can also
be found in many PDEs of mostly mathematical interest which can be shown
to be uniquely determined by their symmetry group [18, 20, 21].

Continuum mechanics was derived by some authors in a Newtonian space-
time by a relativistic approach [9], while others found some strong analogies
between fluid mechanics and electromagnetism [12]. A derivation of continuum
mechanics as a Yang-Mills gauge theory, with a similar structure to electromag-
netism or weak and strong interactions, was done in the classical text [11]. In
that book gauge theories were proved to be useful at dealing with the continuum
mechanics of defects.

The field equations of a gauge theory are by construction invariant with
respect to the gauge transformations in strong sense. Indeed, usually there
is a Lagrangian density L whose Euler–Lagrange expression are the balance
equations E = 0. The Lagrangian is gauge-invariant, or (like in Chern-Simons
theory) it is gauge-invariant up to a total divergence; this implies that the
Euler-Lagrange equations are directly gauge-invariant. So, the gauge symmetry
is attained off-shell, ie in the whole space and not only if we restrict ourselves
on the manifold defined by the solutions of the Euler-Lagrange equations.

When symmetries are looked for with Lie’s algorithm the condition E = 0 is
always assumed, leading to on-shell symmetries. In the theories of continuum
mechanics where frame-indifference is assumed the tensors that yield the field
equations are gauge-invariant with respect to the group (2.3), hence there is an
off-shell group of symmetries that leave the solutions of E = 0invariant.

It is even more important for us to observe that by a general principle of
gauge theories any two solutions of the field equations which are connected by
a gauge transformations are physically indistinguishable. In other words, this
means that they are just the same up to a change of gauge. As we will see,
many authors find apparently new solutions in fluid mechanics or elasticity by
applying one of the transformations in the frame-indifference group; this is just
another way to express the same solution.

There are further symmetry assumptions on the fundamental structures of
the theory. Namely, in what follows we assume the body to be materially uni-
form so that the only quantity of geometric interest is the deformation gradient
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F defined through F = ∂χ/∂X and its history F (t) such that

T (t) = F(F (t)). (2.4)

A material is defined isotropic if there is at least one reference configuration
such that

QFQT = F(QF (t)QT ), (2.5)

for any Q in the orthogonal group.
If the material is incompressible, and therefore only isochoric motions are

admissible (detF (t) = 1), then the constitutive equation for the stress tensor
may be splitted as

T = −pI + Fextra(F (t)). (2.6)

Here the reactive part of the stress is −pI, where p is the unknown Lagrange
multiplier associated with the incompressibility constraint, and Fextra(F (t)) is
the extra stress tensor to which we apply all the previous considerations.

Examples of materials of such kind are:

• Cauchy isotropic elastic materials, such that T = T (B) where B = FF T ;

• isotropic viscoelastic materials of differential type such as T = T (B,D)
where D is the symmetric part of L = Ḟ F−1;

• incompressible fluids of the differential type such that

T = −pI + T extra (A1, . . . ,An) ;

here An+1 = dAn/dt + LTAn + AnL, where the time derivative is the
material derivative and for n = 0 we have A1 = 2D. Navier-Stokes
equations are a special case of this class of constitutive equations.

In theories of fluids it is convenient to use the Eulerian point of view and in
solid mechanics it is usual to consider the Lagrangian point of view.

3. Fluid Mechanics

We cannot determine the first appearance of the theory of transformation
groups in fluid mechanics. However, Birkhoff in his book on hydrodynamics [3]
was already aware of the relevance of symmetries in this branch of mechanics.

Incompressible Euler, Navier-Stokes and second grade fluids equations are
a good concrete example to introduce our point of view in more details. The
Cauchy stress tensor for a second grade fluid contains as special case the Navier-
Stokes theory which contains Euler theory, ie

T =

Second grade
︷ ︸︸ ︷

−pI
︸︷︷︸

Euler

+µA1

︸ ︷︷ ︸

Navier-Stokes

+α1A2 + α2A
2
1 .
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Here µ, α1 and α2 are the various constitutive parameters.
Let us start with the symmetry group of point transformations of the Euler

equations:
∂u

∂t
+ u · ∇u = −∇p, ∇ · u = 0. (3.1)

Here u = u(x, t) is the unknown velocity field. The symmetry group for such
systems of equations is well known and is made by:

• Time translation (G0): (x, t, u, p) → (x, t+ ǫ, u, p).

• Transformation in a moving coordinate system (Gα):

(x, t, u, p) →

(

x+ ǫα, t, u+ ǫαt, p− ǫx ·αtt −
1

2
ǫ2α ·αtt

)

,

where α = α(t).

• Scale transformation (G1): (x, t, u, p) → (λx, λt, u, p), where λ = exp(ǫ).

• Scale transformation (G2): (x, t, u, p) → (x, λt, λ−1u, λ−2p), where λ =
exp(ǫ).

• Rotations (SO(3)): (x, t, u, p) → (Qx, t, Qu, p), here Q ∈ SO(3).

• Pressure changes (Gp): (x, t, u, p) → (x, t, u, p+ ǫθ(t)).

All these transformations are connected to basic facts of continuum mechan-
ics. This is well known but let us review in detail this point.

The G0 is clearly associated to the fact the Euler equations are autonomous.
The G1 and G2 are two scale independent groups that are associated with

the homogeneity of the space at the actual configuration.
The SO(3) group is usually associated with the constitutive requirements of

isotropy and the frame indifference. Isotropy is associated with the reference
configuration and frame indifference is associated with the actual configuration.
Using the Lagrangian point of view we obtain the invariance with respect two
independent group of rotations. Since here we are using the Eulerian point
of view and since u = dx/dt we are considering only invariance under frame
indifference. The invariance induced by isotropy is hidden (in the next Section,
where we will consider elasticity, this point will be discussed in detail). Frame
indifference requires invariance under time dependent rotations but here we
find only constant in time rotations. This is because clearly for Euler equations,
being T = −pI, we have for any Q(t) ∈ SO(3)

T ∗ = QTQT = −pQQT = −pI,

and frame indifference is satisfied, but here we are considering the invariance of
the equations of motion

ρ
d

dt
u∗(x∗, t) = divx∗T ∗(x∗, t),
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and this means washing-up the time dependence. Indeed, being x∗ = Q(t)x,
we have

d

dt
u∗(x∗, t) = Q(t)

d

dt
u(x, t) + 2Q̇(t)u(x, t) + Q̈(t)(x− o),

and therefore the balance equation reduces to

ρ

(

Q(t)
d

dt
u(x, t) + 2Q̇(t)u(x, t) + Q̈(t)(x− o)

)

= Q(t)divxT (x, t),

and clearly the invariance of the balance equation is ensured if and only if there
is no time dependence in Q.

The Gp is just a gauge transformation associated with the fact that the
pressure field enters into the equations via a gradient term.

The Gα is once again associated with frame indifference. We are just adding
a rigid translation and use the Gp invariance to incorporate in a pressure term
the moving coordinate terms. There has been a lot of folklore around this
invariance and we shall discuss the details of this folklore in the framework of
the Navier-Stokes equations (the model equation originating the folklore).

Since there is a strong connection among the constitutive character of the
theory and the various invariance groups it is natural to ask if all these invari-
ances propagate to more complex theories. For example, the exercise 2.15 in
Olver’s book [23] asks3:

Prove that the symmetry group for the Navier-Stokes equations

∂u

∂t
+ u · ∇u = −∇p+ ν∆u, ∇ · u = 0,

. . . is the same as that of the corresponding system of Euler equations-
(ν = 0).

At first sight the above mentioned exercise seems to be correct: the constitu-
tive theory leading to the Navier-Stokes equations is clearly based on principles
that are the same of the Euler equations. This is true up to what happens about
the scale transformations.

To make this point clear let us consider a scalar equation in the unknown
u = u(x, t) i.e.

ut + uux = νuxx + αuxxt, (3.2)

where ν and α are two constitutive parameters.
Let us consider the scale transformation

(t, x, u) → (λ0t, λ1x, λu);

3The computation of the symmetry group for Navier-Stokes equations has been performed
for the plane case in 1960 by Puhnachev [24] and then in the three-dimensional case by Lloyd
[17] in 1981. The results are contained in many textbooks and therefore our discussion has to
be considered only for its methodological value.
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if we set ν = α = 0 in (3.2) we obtain

ut + uux = 0 → ut +
λλ0

λ1
uux = 0,

and the requirement
λλ0 = λ1, (3.3)

ensures the invariance. In this case we have three scaling parameters and only
one equation to be satisfied and therefore we have two scaling groups.

If we consider α = 0 under the action of the same group we have

ut + uux = νuxx → ut +
λλ0

λ1
uux = ν

λ0

λ2
1

uxx,

and now to ensure invariance it must be

λλ0 = λ1, λ0 = λ2
1. (3.4)

Therefore only a scaling group may be admitted.
If we consider the full (3.2) we obtain

ut + uux = νuxx + αuxxt → ut +
λλ0

λ1
uux = ν

λ0

λ2
1

uxx + α
1

λ2
1

uxxt,

and because here we have to add the requirement λ1 = 1 we loose the possibility
of the scale invariance.

This is exactly what happens going from Euler equations to Navier-Stokes
equations: from two groups of scale transformations we reduce to one. When
we move from Navier-Stokes to more complex non-Newtonian models we loose
completely the invariance under scale transformation. Only if we also rescale
the constitutive parameters we may ensure the possibility of a scale invariance.
This is in agreement with the classical theory of dimensional analysis. Indeed
if we fulfill (3.3) and we rescale the constitutive parameters such that

ν
λ0

λ2
1

= ν̂, α
1

λ2
1

= α̂,

we are to maintain all the basic scale transformations. Therefore we need to
consider equivalence transformations to fully recover dimensional analysis.

The remaining symmetry groups of Euler’s equation are not only inherited by
Navier-Stokes but by any n-th grade fluid. This is because these invariances are
deeply grounded in general constitutive requirements. This fact means that we
must be very careful in using these transformations in generating new solutions
for our model equations. A good example is obtained considering Gα.

At first sight the richness of Gα seems something of special and very promis-
ing. Indeed, in the introduction of (Boisvert et al., 1983 [5]) a paper dedicated
to invariant solutions of the Navier-Stokes equations speaking of the previous
papers by Puhnachev (1960) and Lloyd (1981) we read:

the work of these authors4 is verified and it is shown how the group

4They are speaking of Puhnachev and Lloyd.
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permits the association of an infinite number of time-dependent so-
lutions to any steady state solution.

Continuing in (Boisvert et al., 1983) at page 207 we have:

Consequently, there is obtained the useful result that any steady-
state solution to the two-dimensional equations can be transformed
by means of (3.5) and (3.6) into a time-dependent solution involving
three arbitrary functions of the time variable. A similar result holds
in three dimensions.

To check the consistency of these affirmations let us consider the following
class of homogeneous motions:

x = A(t)X, (3.5)

where A(t) is a general matrix such that detA = 1 to ensure isochoricity. The
Eulerian velocity field and acceleration field associated with (3.1) are

u = ȦA−1x, a = ÄA−1x.

If L = ȦA−1 is constant we have that the motion defined in (3.5) is steady and
the corresponding acceleration field is a = L2x.

We point out that (3.5) is a solution in the steady case of the Euler’s equa-
tions if and only if

L2 = (L2)T , (3.6)

because in this case we have that the motion is circulation preserving. Moreover,
since L is for the entire class of motions in (3.5) and does not depend on x,
all the Rivlin-Ericksen tensors Ai do not depend on x and therefore steady
isochoric motions (3.5) such that (3.6) is valid are solutions also for all second
grade fluids.

Now it is very easy to apply the group Gα to û = ȦA−1x̂ when L = ȦA−1

is constant and we obtain

u = Lx+Lα(t)−α′(t). (3.7)

The motion (3.7) is indeed an unsteady motion but, the L for û and u being the
same from a mechanical point of view, we cannot discriminate among the two
solutions. Indeed, the stress tensor corresponding to these two motions is iden-
tical. The motions are related by a rigid motion and therefore the requirement
of frame indifference washes out the effect of the transformation Gα.

In subsequent papers the fact that the time dependent solutions obtained
in such a way are of no interest at all from a mechanical point because they
differ for a rigid motion is noticed en passant in (Grauel and Steeb, 1985 [14])
where it is remarked that the inertial reaction produced by the acceleration of
the frame is balanced at each instant by a spatially constant pressure gradient.
A clear discussion of the mechanical irrelevance of Gα to generate new time
dependent solutions is given in the book by Cantwell (2002) [6]:
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The arbitrary functions translating the coordinates imply that the
Navier-Stokes equations are invariant for all moving observers as
long as the observer moves irrotationally. An observer translating
and accelerating arbitrarily in three dimensions will sense the same
equations of motion as an observer at rest. This invariance implies
a great degree of flexibility in the choice of the observer used to view
a flow. . . .The term added to the pressure in (11.14) represents a
spatially uniform effective body force induced by the acceleration of
the observer. This force is purely hydrostatic in nature in that it is
exactly balanced everywhere by the rate of change of the velocity field
(the derivative of the translation term in the transformation of the
velocity) and has no dynamical significance; it produces no net force
on the flow field.

Cantwell does not connect this property in a direct way to frame indifference
but it is clear that he is speaking of the same idea contained in such a concept.

Let us summarize the discussion of the present Section. First of all we have
pointed out that there is a strong correlation among the constitutive invariance
and the invariance of the balance equation. It is not the same invariance because
balance equations involve inertial terms. The basic invariant transformations are
in common within all the theories in the same constitutive class. This interesting
fact may introduce bogus transformation (with respect the idea to obtain new
solution from old ones) in continuum mechanics. Scale transformation have a
special status in this framework.

4. Cauchy Elasticity

It is known that the traditional theory of Cauchy Elasticity can be regarded
as a particular case of a broader theory of Elasticity [25, 26]. Also this theory
admits examples of solutions with remarkable symmetry properties.

In this paper we will focus on the Cauchy theory of Elasticity, where we
found interesting examples to be compared with what we have previously deter-
mined in fluid mechanics. We observe that this theory is usually casted in the
Lagrangian point of view. In general the theory of Cauchy Elasticity has been
less studied from the point of view of group analysis. However we mention [8, 28]
where group analysis was used in different ways and [30] for an application of
generalized symmetries to Cauchy Elasticity.

We start by considering hyperelastic isotropic materials. We define the
strain-energy density function W as a function W = W (I1, I2, I3), of the prin-
cipal invariants I1 = λ2

1 + λ2
2 + λ2

3, I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
2 and I3 = λ2

1λ
2
2λ

2
3.

Here λ2
i are the principal stretches of B.

Let us restrict to plane strains5, i.e. using Cartesian coordinates in the

5We point out that this is different from plane stresses hypotheses.
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reference and actual configurations

x1 = φ1(X1, X2, t), x2 = φ2(X1, X2, t), x3 = X3.

Now the components of the Piola-Kirchhoff stress tensor in the plane are given
by

TRαβ = (α0 − j2α2)F
−T
αβ + (α1 + hα2)Fαβ , (4.1)

where
α0 = 2I3W3, α1 = 2 (W1 + I1W2) , α2 = −2W2, (4.2)

and
h = λ2

1 + λ2
2, j = λ1λ2. (4.3)

In the above expression Greek indexes run over 1, 2 and Wi = ∂W/∂Ii, moreover

I1 = h+ 1, I2 = j2 + h, I3 = j2.

The balance equations read

γ1∆φ1 +

(
γ0
j

)

1

φ2,2 −

(
γ0
j

)

2

φ2,1 + γ1,1φ1,1 + γ1,2φ1,2 = ρ0φ1,tt (4.4)

and

γ1∆φ2 +

(
γ0
j

)

1

φ1,1 −

(
γ0
j

)

2

φ1,2 + γ1,1φ2,1 + γ1,2φ2,2 = ρ0φ2,tt, (4.5)

where
γ0 = α0 − j2α2, γ1 = α0 + hα2,

∆ is the two dimensional Laplace operator and ρ0 is the density of the material
in the reference configuration.

If the material is incompressible j = 1 and the equation looks the same but
now γ0 may be interpreted as the Lagrange multiplier necessary to impose the
constraint of incompressibility. Therefore γ0 is an unknown and we have the
kinematical equation

φ1,1φ2,2 − φ1,2φ2,1 = 1. (4.6)

In the literature, the symmetries of the equations for the Neo-hookean mate-
rials have been computed in (Lei and Blume, 1996 [15]). Neo-hookean materials
are hyperelastic incompressible materials such that W = 1

2µ(I1 − 3) where µ is
the infinitesimal shear modulus.

In this case the equations (4.4) and (4.5) are simplified to

∆φ1 +
γ0,1
µ

φ2,2 −
γ0,2
µ

φ2,1 =
ρ0
µ
φ1,tt (4.7)

and
∆φ2 +

γ0,1
µ

φ1,1 −
γ0,2
µ

φ1,2 =
ρ0
µ
φ2,tt, (4.8)
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to which we add the (4.6).
The infinitesimal generator of a Lie group is denoted

V = X0
∂

∂t
+ X1

∂

∂X1
+ X2

∂

∂X2
+ Y1

∂

∂φ1
+ Y2

∂

∂φ2
+ Y3

∂

∂γ0
,

and the results of Lei and Blume (1996) are obvious. We have exactly the
same situation that we have recorded for the Navier-Stokes equations. It is
only necessary to take care that we are considering equations in Lagrangian
variables. Therefore, we find the group of scalings, the groups of rotations in
the (x1, x2, t)–space (the reference configuration) and the (φ1, φ2, γ0)–space (the
actual reference), the groups of time-independent translations in the reference
and actual configurations. All these groups are enforced in the structure of the
field equations because we are considering uniform and isotropic materials.

Let us discuss the three groups which depend on arbitrary functions. The
first group is just a gauge time dependent function that we may add to the
pressure. Then we have (we are quoting Lei and Blume (1996)) the groups of
time dependent translations in the (φ1, φ2)–space and redistributions of the pres-
sure field, γ0, which balance the inertial forces induced from the time-dependent
translations. These groups are defined by

x̂ = x, φ̂1 = φ1 + f(t)s, φ̂2 = φ2, γ̂0 = −
ρ0
µ
f ′′(t)

[

f(t)
s2

2
+ φ1s

]

+
γ0
µ
,

and

x̂ = x, φ̂1 = φ1, φ̂2 = φ2 + g(t)s, γ̂0 = −
ρ0
µ
g′′(t)

[

g(t)
s2

2
+ φ2s

]

+
γ0
µ
.

Here s is the infinitesimal parameter of the group, f(t) and g(t) are arbitrary
functions.

It is clear that the authors do not realize that these symmetries are only a
manifestation of the frame indifference mediated with the Galilean invariance
(as in the Navier-Stokes equations). The presence of the arbitrary pressure
field allows to retain any rigid motion whose associated acceleration field is
self-equilibrated.

On the other hand, we have to notice that Lei and Blume (1996) were able
to point out that invariant solutions cannot be always associated with the sym-
metries of the given differential system. This is another argument that can give
some bogus transformation with respect the possibility to use symmetries groups
to obtain exact solutions of the partial differential equations of Mechanics.

Indeed, if we consider rotations in the material space, i.e. G = SO(2) in
X1 ×X2, and we reduce considering, as usual,

φ1 = φ1(η), φ2 = φ2(η), η = X2
1 +X2

2 ,

the equation (4.6) (the isochoricity condition) we obtain an absurd i.e. 0 = 1.
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In polar coordinates

R =
√

X2
1 +X2

2 , Θ = atan(X2/X1),

the determinant j and the trace h are rewritten as

j =
1

R
(φ1,Rφ2,Θ − φ1,Θφ2,R) , h = φ2

1,R + φ2
2,R +

1

R2

(
φ2
1,Θ + φ2

2,Θ

)
.

Using polar coordinates it is clear that both j and h are invariant under rota-
tions, i.e. these quantities do not change under the transformation Θ̂ = Θ + α.

The invariants j and h involve first order derivatives. The first order differ-
ential invariants of G in the framework under investigation are: φ1,Θ = 0 and
φ2,Θ = 0. Therefore h and j are both functions of the differential invariants,
and j = 0 when φ1,Θ = φ2,Θ = 0. All the motions φ1 and φ2 invariant under
the action of G satisfy j = 0.

In nonlinear elasticity one needs to satisfy j > 0. Therefore although
the equations are clearly invariant under the group of material rotations, no
G−invariant solutions are possible.

The computations in Lei and Blume (1996) are quite general but the au-
thors are not able to realize this fact. The results in (Lei and Blume, 1996) can
be straightforwardly extended to all incompressible materials and with a minor
modification to all compressible elastic materials. The true problem (which in
any case seems to be an academic problem) in the framework of such computa-
tions is: does there exist special constitutive equations for which the symmetry
group is enlarged with respect the universal group?

We point out that (Suhubi and Bakkaloglu, 1997 [32]) is devoted to the
computation of symmetry groups associated with field equations which govern
finite motions of a wholly arbitrary, anisotropic and heterogeneous hyperelastic
solida. After long computations they are able to provide some of the above
results for compressible materials.

It is also possible to extend these results to more complex theories of solid
mechanics as for example Kelvin–Voigt nonlinear materials. The structure of
the symmetry group is always the same modulo the scale invariance that usually
will be lost.

The fact that a great family of mechanical models share the same group
of symmetries is fundamental to compare these theories. This is the true in-
teresting point of this history: it is a remarkable property that allows us to
understand in a deeper way the role of the various terms of these theories.

5. Concluding Remarks

Rota’s point of view was right: the theory of symmetries of differential equa-
tions is a beautiful and elegant chapter of mathematics which allows synthesis
and completeness. Moreover, this theory is powerful because it is simple and
algorithmic. The crucial point is to connect mathematics and physics.
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In some literature about symmetry groups applied to differential equations,
the invariance under a transformation group seems to be just a mathematical
happenstance. A beautiful property of the differential equations that seems
to born of sea-foam like Venus. Clearly this is not the case; invariance in the
framework of a mechanical theory comes always from deep physical reasons.

The role of transformation groups in continuum mechanics is not to be un-
derestimated. First of all symmetry groups have a major role in the constitutive
characterization of material behaviour. Then there is a clear connection among
symmetries and solutions of the partial differential equations governing the me-
chanical theories.

In continuum mechanics nearly all the exact solutions we know have been
obtained by using the semi–inverse method (see [22]). With this term we denote
a set of ad hoc methods that are able to work in the framework of a certain
variety of problems. In his 1977 review paper on elastostatics [13] Ericksen
remembers that:

Generally, a semi–inverse method is one that reduces the basic equa-
tions to equations involving fewer independent or dependent vari-
ables, or both, for a limited set of solutions. Commonly, this involves
exploiting some invariance of the equations. It seems probable that,
by better developing the underlying group theory, one could make the
search for such methods more routine. Here, we take a small step
toward this goal by exploring what can be done with a simple but
popular kind of group.

Still today we trust that transformation groups must be the unifying paradigm
for the semi–inverse method but we have not been able to unravel the problem.
Indeed, the classical theory of symmetries for differential equations it is clearly
insufficient to explain the semi-inverse method (examples are given in Sacco-
mandi (2004) [29]). In spite of this situation, many invariant solutions under
classical symmetries provide interesting classes of solutions that have a major
role in our understanding of mechanical theories. An example are the Carroll
wave solutions: a beautiful set of general exact solutions (see Destrade and Sac-
comandi 2005 [8], Rogers et al. 2014 [28]) whose mechanical and mathematical
reasons are indeed clarified using symmetries (Saccomandi and Vitolo 2014 [30])

Despite this situation most of the current literature about symmetries of
partial differential equations contains only marginal results and some paper
contains several bogus results. We hope that the results and examples con-
tained in our note will help to stop the misapplication of the beautiful theory
of symmetries.
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