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Abstract
Combining an old idea of Olver and Rosenau with the classifica-

tion of second and third order homogeneous Hamiltonian operators we
classify compatible trios of two-component homogeneous Hamiltonian
operators. The trios yield pairs of compatible bi-Hamiltonian opera-
tors whose structure is a direct generalization of the bi-Hamiltonian
pair of the KdV equation. The bi-Hamiltonian pairs give rise to multi-
parametric families of bi-Hamiltonian systems. We recover known ex-
amples and we find apparently new integrable systems whose central
invariants are non-zero; this shows that new examples are not Miura-
trivial.

Keywords: Infinite-dimensional Hamiltonian systems; completely
integrable systems; Bi-Hamiltonian structures.
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1 Introduction

Many integrable systems admit a bi-Hamiltonian structure. This means that
these systems can be written as Hamiltonian differential equations by means
of two compatible Hamiltonian operators P and Q.

It was observed in [32] that in many examples the bi-Hamiltonian struc-
tures are, in fact, defined by a compatible trio of Hamiltonian operators.
In this paper we consider the special case when P is a first-order Hamilto-
nian operator and Q is the sum of a first-order Hamiltonian operator and
a higher-order Hamiltonian operator, and the three operators are mutually
compatible. All these operators are homogeneous in the sense of Dubrovin
and Novikov [10, 11].

The first example from [32] is the trio

P = P1 = ∂x, Q = Q1 +R3, Q1 = 2u∂x + ux, R3 = ∂3x. (1)

Coupling Q1 and R3 one obtains the Poisson pencil of the KdV hierarchy

Πλ = 2u∂x + ux − λ∂x + ε2∂3x (2)

discovered by Magri in [28], while coupling P1 and R3 one obtains the Poisson
pencil of the Camassa–Holm hierarchy

Π̃λ = 2u∂x + ux − λ(∂x + ε2∂3x). (3)

Another example (from [16, 25]) is a trio in two components:

P1 =

(
0 ∂x
∂x 0

)
, Q1 =

(
2u∂x + ux v∂x

∂xv −2∂x

)
, R2 =

(
0 −∂2x
∂2x 0

)
(4)

Note that here the operator R2 is a Dubrovin-Novikov homogeneous opera-
tor of order two. The scheme works in the same way: one coupling yields
the Poisson pencil of the the so-called AKNS (or two-boson) hierarchy, and
the other yields the Poisson pencil of the two component Camassa-Holm
hierarchy [16, 25].

Using the language of [32], we say that the pencils Πλ = Q1 + R3 − λP1

and Π̃λ = P1+R3−λQ1 are related by tri-Hamiltonian duality. The existence
of a reciprocal transformation relating dual hierarchies, generalizing the well-
known transformation relating the negative flows of the KdV hierarchy with
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the positive flows of the Camassa-Holm hierarchy, was recently suggested
[22].

Motivated by the above examples, in the present paper we consider the
problem of classification of compatible trios of Hamiltonian operators P1,
Q1, Rn where P1 and Q1 are homogeneous first-order Hamiltonian operators
(also known as Hamiltonian operator of hydrodynamic type)

P1 = gij∂x + Γijk u
k
x, Q1 = hij∂x + Γijk u

k
x, (5)

and Rn is a homogeneous Hamiltonian operator

Rn =
n∑
l=0

Aijn,l(u, ux, . . . , u(l))∂
(n−l)
x (6)

of degree n > 1. This means that Aijn,l are homogeneous polynomials of degree
l in the variables ux, . . . , u(l), where the homogeneous degree is given assigning
degree 1 to the derivative w.r.t. x. We recall [10, 11] that the homogeneity
requirement implies that the operators P1, Q1 and Rn do not change their
‘form’ under the action of point transformations of the dependent variables

ũi = ũi(uj). (7)

The associated Poisson pencils are

P1 +Rn − λQ1, P1 − λ(Q1 +Rn). (8)

We call a pencil of one of the above types a bi-Hamiltonian structure of KdV
type. The above pencils can be thought as a deformation of a Poisson pencil
of hydrodynamic type. Due to the general theory of deformations the only
interesting cases are n = 2 and n = 3. In the remaining case the deformations
can be always eliminated by Miura type transformations [25]. For this reason
we will consider only second and third order Hamiltonian operators R2 and
R3.

We recall that second-order operators R2 have been completely described
in [9, 33], and third-order operators R3 have been classified in the m-compo-
nent case with m = 1 (in this case the operator can be reduced to ∂3x by a
point transformation (7) [34, 35, 9]) and m = 2, 3, 4 [17, 18].

Our strategy uses the normal forms of R2 and R3; for each of them we
will find all possible compatible first-order Poisson pencils of hydrodynamic
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type P1−λQ1 and, consequently, all possible Poisson pencils of the form (8)
with n = 2 (or n = 3) where the three operators P1, Q1, R2 (or R3) are
mutually compatible.

In the scalar case m = 1 there is nothing new: we obtain the KdV and
Camassa-Holm hierarchies.

In this paper we focus on the 2-component case, leaving the 3-component
case to future investigations. When m = 2 there is only one homogeneous
second-order Hamiltonian operator:

R2 =

(
0 1
−1 0

)
∂2x, (9)

and there are three homogeneous third-order Hamiltonian operators

R
(1)
3 =

(
0 1
1 0

)
∂3x, (10)

R
(2)
3 = ∂x

(
0 ∂x

1
u1

1
u1
∂x

u2

(u1)2
∂x + ∂x

u2

(u1)2

)
∂x, (11)

R
(3)
3 = ∂x

(
∂x ∂x

u2

u1

u2

u1
∂x

(u2)2+1
2(u1)2

∂x + ∂x
(u2)2+1
2(u1)2

)
∂x. (12)

The operators are distinct up to transformations (7).
Our main results are the following Theorems (the coefficients ci are con-

stants).

Theorem 1. P1 is a Hamiltonian operator compatible with R2 if and only if

g11 = c1u
1 + c2, (13a)

g12 =
1

2
c3u

1 +
1

2
c1u

2 + c5 (13b)

g22 = c3u
2 + c4. (13c)

Moreover the above metric is flat for every value of the parameters.

Theorem 2. P1 is a Hamiltonian operator compatible with R
(1)
3 if and only

if

g11 =c1u
1 + c2u

2 + c3, (14a)

g12 =c4u
1 + c1u

2 + c5 (14b)

g22 =c6u
1 + c4u

2 + c7 (14c)
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together with the algebraic conditions

c1c4 − c2c6 = 0, c3c4 − c7c2 = 0, c3c6 − c1c7 = 0. (15)

Theorem 3. P1 is a Hamiltonian operator compatible with R
(2)
3 if and only

if

g11 = c1u
1 + c2u

2, (16a)

g12 = c4u
1 +

c3
u1

+
c2(u

2)2

2u1
, (16b)

g22 = 2c4u
2 +

c6
u1
− c1(u

2)2

u1
+ c5, (16c)

together with the algebraic conditions

c2c6 + 2c1c3 = 0, c2c5 = 0, c1c5 = 0. (17)

Theorem 4. P1 is a Hamiltonian operator compatible with R
(3)
3 if and only

if

g11 = c1u
1 + c2u

2 + c3, (18a)

g12 = c4u
1 − c2

2u1
+
c3u

2

u1
+
c2(u

2)2

2u1
, (18b)

g22 = 2c4u
2 +

c1
u1

+
c5u

2

u1
− c1(u

2)2

u1
+ c6, (18c)

together with the algebraic conditions

c2c5 + 2c1c3 = 0, c2c6 − 2c3c4 = 0, c1c6 + c4c5 = 0. (19)

The above mentioned algebraic conditions are quadratic in the parameters
and define an algebraic variety. The problem of finding Poisson pencils of
the form (8) inside the above algebraic variety is mathematically equivalent
to finding all the straight lines cointained in this variety. The detailed list of
solutions is given (case by case) in Section 3. In the generic case we obtain:

• a 5 parameter family of mutually commuting pairs P1, Q1 that commute
with R

(1)
3 (see Theorem 6 for further details).

• a 4 parameter family of mutually commuting pairs P1, Q1 that commute
with R

(2)
3 (see Theorem 7 for further details).
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• a 4 parameter family of mutually commuting pairs P1, Q1 that commute
with R

(3)
3 (see Theorem 8 for further details).

The above results can also be read in the framework [15] of Dubrovin and
Zhang’s perturbative approach. Indeed, all the pencils that we are consid-
ering can be regarded as deformations of a Poisson pencil of hydrodynamic
type. The classification of deformations with respect to the group of Miura
transformations

ũi = f i(u1, . . . , un) +
∑
k≥1

εkF i
k(u, ux, . . . , u(k)), (20)

(where F i
k(u, ux, . . . , u(k)) are homogeneous differential polynomials of degree

k) has been obtained in recent years in the semisimple case (see [25] for the
scalar case and [5] for the general case). It turned out that deformations
are uniquely determined by their dispersionless limit and by n functions of a
single variable called central invariants. More precisely, if

Πij
λ = ωijλ +

∑
k≥1

εk
k+1∑
l=0

Aij2;k,l(u, ux, . . . , u(l))∂
(k−l+1)
x

−λ
∑
k≥1

εk
k+1∑
l=0

Aij1;k,l(u, ux, . . . , u(l))∂
(k−l+1)
x ,

(21)

(Aij1;k,l and Aij2;k,l are homogeneous differential polynomials of degree l) is a
deformation of a semisimple Poisson pencil of hydrodynamic type

ωijλ = (gij2 − λg
ij
1 )∂x + (Γij(2)k − λΓij(1)k)u

k
x,

then the central invariants are then defined as [25]:

si =
1

(f i)2

(
Aii2;2,0 − riAii1;2,0 +

∑
k 6=i

(Aki2;1,0 − riAki1;1,0)2

fk(rk − ri)

)
, i = 1, . . . , n,

where f i are the diagonal components of the contravariant metric g1 in canon-
ical coordinates. Here, canonical coordinates are the eigenvalues of the pencil
gij2 − λg

ij
1 .

The main result of [25] is the following: Two deformations of the same
Poisson pencil of hydrodynamic type are related by a Miura transformation if
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and only if their central invariants coincide. In particular deformations Πλ

with vanishing central invariant can be reduced to their dispersionless limit
ωλ by a Miura transformation. This means that there exists a transformation
of the form (20) such that

Πij
λ = L∗ik ω

kl
λ L

j
l ,

where

Lik =
∑
s

(−∂x)s
∂ũi

∂u(k,s)
, L∗ik =

∑
s

∂ũi

∂u(k,s)
∂sx.

The vanishing of the central invariants implies the existence of a Miura
transformation reducing the pencil to its dispersionless limit. For this reason
deformations with vanishing central invariants are said to be trivial.

In Section 4 we will first recover old and recent 2-component examples
of bi-Hamiltonian systems of PDEs. In particular we show that the Kaup-
Broer system [24] and a more recent multicomponent family of commuting
operators [8] are particular cases of hierarchies generated by trios with R2 and
that the coupled Harry-Dym hierarchy [2] and the Dispersive Water Waves

system [3] are particular cases of hierarchies generated by trios with R
(1)
3 .

Then, we provide examples of apparently new bi-Hamiltonian systems
of PDEs generated by trios with R

(2)
3 and R

(3)
3 . The systems are expressed

via rational functions; this makes them particularly interesting. We also
computed their central invariants and proved that none or them is Miura-
trivial.

Computations were performed independently with Maple and with the
software package CDE [38, 23] of the Reduce computer algebra system. We
are ready to supply the computer programs that we used for proving the
main results upon requesting them to the authors by email.

2 Homogeneous Hamiltonian and bi-Hamil-

tonian structures

2.1 First-order operators and flat pencils

First-order Hamiltonian operators of hydrodynamic type

P = gij∂x − gilΓjlku
k
x = gij∂x + Γijk u

k
x
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have been introduced by Dubrovin and Novikov in [10, 11]. In the non-
degenerate case (det(gij) 6= 0) the operator P is Hamiltonian if and only if
gij (the inverse of gij) is a flat pseudo-Riemannian metric and Γjhk are the
Christoffel symbols of the associated Levi-Civita connection.

Poisson pencils of hydrodynamic type have been introduced in the frame-
work of Frobenius manifolds by Boris Dubrovin in [13]; they are defined
by a pair of contravariant (pseudo)-metrics g and h satisfying the following
conditions:

1. The pencil of metrics gλ = g − λh is flat for any λ.

2. The (contravariant) Christoffel symbols Γij(λ)k of the pencil gλ coincide
with the pencils of Christoffel symbols:

Γij(λ)k = Γij(2)k − λΓij(1)k, (22)

where Γij(1)k and Γij(2)k are the Christoffel symbols of the metrics h and
g respectively.

A pencil of contravariant metrics gλ fulfilling the above conditions is called
a flat pencil. A flat pencil is said to be semisimple if the eigenvalues of
the affinor gh−1 are functionally independent. In this case the eigenvalues
define a special set of coordinates, called canonical coordinates, where both
the metrics of the pencil become diagonal.

2.2 Higher-order operators

General structure theorems for higher-order homogeneous Hamiltonian op-
erators (6) are much weaker. We only consider the case where the coefficient
`ij = Aijn,0(u) of the leading term is non-degenerate: det(`ij) 6= 0. The term
Aijn,n(u, ux, . . . , u(n)) of the above operators contains a summand of the form

dijk u
k
(n). It can be proved that −`ihdhjk transform as the Christoffel symbols

of a linear connection; the fact that the operator is Hamiltonian imply that
such a connection is symmetric and flat [34, 9]. In flat coordinates we have
the following canonical forms of R2 and R3, respectively:

R2 = ∂x`
ij∂x, (23)

where `ij = Tijku
k + T 0

ij and Tijk are completely skew-symmetric and

R3 = ∂x
(
`ij∂x + cijk u

k
x

)
∂x. (24)
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Moreover, introducing cijk = `iq`jpc
pq
k , the following conditions must be ful-

filled [17]:

cnkm =
1

3
(`nm,k − `nk,m), (25a)

`mn,k + `nk,m + `km,n = 0, (25b)

cmnk,l = −`pqcpmlcqnk. (25c)

Both canonical forms (23) and (24) are defined up to affine transforma-
tions. The normal forms of the operators R2 and R3 depend on the number
of components m. In the case m = 2 we have R2 = T ij0 ∂

2
x, where T ij0 is a

constant skew-symmetric matrix. The operator can be reduced to (9) by an
affine transformation. There are three canonical forms for the leading term
of R3 when m = 2 modulo affine transformations [17], namely (10), (11),

(12). One can verify that the metric `(2) of R
(2)
3 is flat, while the metric `(3)

of R
(3)
3 is non-flat.

We stress that two homogeneous third-order Hamiltonian operators are
equivalent by a point transformation (7) if and only if they have the same nor-
mal form (10), (11), or (12). We also remark that the invariance group of R3

can be enlarged to reciprocal transformations of projective type [17]. When
m = 2 it can be proved that the same projective transformation reduces the
last two cases to constant coefficients. If m = 3, 4 there is a classification
of normal forms of R3 up to reciprocal transformations of projective type
[17, 18]. However, reciprocal transformations are outside the aims of this
paper.

3 Compatible trios P1, Q1, Ri in two compo-

nents

In this Section we classify all trios of two compatible homogeneous first-order
Hamiltonian operators P1, Q1 and one homogeneous Hamiltonian operator
Ri of order i, with i = 2 or i = 3. Without loss of generality we assume that
the operators Ri are in one of the normal forms (9), (10), (11), (12).

First of all, let us prove the main Theorems 1, 2, 3, 4 (see the Introduc-
tion).

Proof of Theorems 1, 2, 3, 4. First of all we solved the conditions
[P1, R2] = 0 and [P1, R

(i)
3 ] = 0 using all coefficients gij and Γijk as unknown
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functions of the field variables (ui). Differential operators are identified with
variational multivectors, and their Schouten bracket is computed by the for-
mulae that can be found in [15, 20, 21]. The results of the Shouten brack-
ets are variational three-vectors which we require to vanish (up to total di-
vergences). The vanishing of the coefficients of the three-vectors yields an
overdetermined system of linear PDEs. It turns out that the solutions lin-
early depend on a set of parameters ci, and are given in (13), (14), (16), (18).
We checked the solutions using the programs pdesolve (Maple) and crack

[39, 40];
Then we impose that the functions Γijk are the Christoffel symbols of the

Levi-Civita connection of gij:

gisΓjks = gjsΓiks (26)

Γijk + Γjik = ∂kg
ij (27)

In the case [P1, R2] = 0 the above conditions are empty, while in the case

[P1, R
(i)
3 ] = 0 we obtain quadratic constraints for the coefficients ci. In par-

ticular, we obtain (15) in the case i = 1, (17) in the case i = 2 and (19) in
the case i = 3.

In principle we should have further restrictions coming from the flatness
of g but in the two-component case this condition does not provide additional
constraints (this fact is no longer true already in the three-component case).
This completes the proof of main Theorems.

Now, we find trios of compatible operators between the families of first-
order operators that we selected in the main Theorems.

It is easy to realize that the following statement holds.

Theorem 5. Any pair (g, h) of metrics which are in the family (13) yield two
first-order compatible Hamiltonian operators P1, Q1, and hence a compatible
trio (P1, Q1, R2).

Three Theorems stated below describe all trios of compatible Hamiltonian
operators (P1, Q1, R

(i)
3 ), where i = 1, 2, 3, respectively.

Theorem 6. The solution of the Levi-Civita conditions (15) for the metric

gij (14) of the operator P1 that is compatible with R
(1)
3 are

1. if c2 6= 0 then c6 = (c4c1)/c2, c7 = (c3c4)/c2;
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2. if c2 = 0 and c3 6= 0 then c6 = (c7c1)/c3, c4 = 0;

3. if c3 = 0, c2 = 0 then c1 = 0;

4. if c3 = 0, c2 = 0 and c1 6= 0 then c4 = 0, c7 = 0.

The compatible pencils gλ,kl = gijk −λh
ij
l of one metric gijk from the above case

k and one metric hijl from the above case l (l and k run from 1 to 4) are

• gλ,11 if c4 = d4c2
d2

, or d3 = d2c3
c2

, c1 = d1c2
d2

;

• gλ,12 if d7 = d3c4
c2

;

• gλ,13 if d6 = d4c1
c2

, d7 = d4c3
c2

.

• gλ,14 if d6 = c4d1
c2

;

• gλ,22 if d7 = d3c7
c3

, or if d1 = d3c1
c3

;

• gλ,23 if d4 = 0, d6 = d7c1
c3

;

• gλ,24 if d6 = c7d1
c3

;

• gλ,33;

• gλ,34 if c4 = c7 = 0;

• gλ,44.

Proof. In order to get a compatible trio (P1, Q1, R3) we have to select among
the pairs of flat metrics (g, h) of the above form those defining a flat pencil.
To this aim, we first solve the system of Levi-Civita conditions (15). The
solutions are given as a numbered list of subcases, from the most generic to
the least generic.

Each metric is defined by a point in the space of parameters. We call ci
the values of the parameters that provide the metric g of the operator P1

and di the values of the parameters that provide the metric h of the operator
Q1. They can be interpreted as the coordinates of two points in the algebraic
variety defined by the quadratic conditions described above. If the pair (g, h)
defines a flat pencil, then the straight line joining these two points is entirely
contained in this variety.
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We compute the Schouten bracket condition [P1, Q1] = 0 with (algebraic)
unknowns ci and di; here, we make use of Computer Algebra Systems as
described in the Main Theorems. We obtain quadratic constraints in both
sets of variables. The solutions of these constraints are given as a list of
pencils denoted by gλ,kl = gijk − λh

ij
l . In this notation the metric gijk comes

from subcase k and yields the first-order operator P1, and the metric h comes
from subcase l and yields the first-order operator Q1, and the constants ci
and di must fulfill additional conditions to ensure the compatibility of P1 and
Q1.

Theorem 7. The solutions of the Levi-Civita conditions (17) for the metric

gij (16) of the operator P1 that is compatible with R
(2)
3 are

1. if c1 6= 0 then c5 = 0 and c3 = − c2c6
2c1

;

2. if c1 = 0 and c2 6= 0 then c5 = c6 = 0;

3. otherwise c1 = c2 = 0.

The compatible pencils gλ,kl = gijk −λh
ij
l of one metric gijk from the above case

k and one metric hijl from the above case l (l and k run from 1 to 3) are

• gλ,11 if d6 = d1c6
c1

, or d2 = d1c2
c1

.

• gλ,12 if d3 = −d2c6
2c1

.

• gλ,13 if d3 = −d6c2
2c1

, d5 = 0.

• gλ,22;

• gλ,23 if d5 = d6 = 0.

• gλ,33.

Proof. Same as in Theorem 6.

Theorem 8. The solution of the Levi-Civita conditions (19) for the metric

gij (18) of the operator P1 that is compatible with R
(3)
3 are

1. if c2 6= 0 then c5 = −2c1c3
c2

and c6 = 2c3c4
c2

;

2. if c2 = 0 and c3 6= 0 then c1 = c4 = 0;
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3. if c2 = c3 = 0 and c6 6= 0 then c1 = − c4c5
c6

;

4. if c2 = c3 = c6 = 0 and c5 6= 0 then c4 = 0;

5. otherwise c2 = c3 = c5 = c6 = 0.

The compatible pencils gλ,kl = gijk −λh
ij
l of one metric gijk from the above case

k and one metric hijl from the above case l (l and k run from 1 to 5) are

• gλ,11 if d3 = d2c3
c2

, or d1 = d2c1
c2

, d4 = d2c4
c2

.

• gλ,12 if d5 = −2d3c1
c2

, d6 = 2d3c4
c2

.

• gλ,13 if d6 = 2d4c3
2c2

, with d4 6= 0, c3 6= 0.

• gλ,14 if d5 = −2d4c3
2c2

, with d4 6= 0, c3 6= 0.

• gλ,15 if c3 = 0.

• gλ,22.

• gλ,33 if d5 = d6 = 0, or d5 = d6c5
c6

, or d4 = d6c4
c6

.

• gλ,34 if d1 = −d5c4
c6

.

• gλ,35 if d1 = −d4c5
c6

.

• gλ,44.

• gλ,45 if d4 = 0.

• gλ,55.

We stress that gλ,23, gλ,24 and gλ,25 do not define flat pencils.

Proof. Same as in Theorem 6.

4 Examples

We consider some known and new examples of bi-Hamiltonian structures
associated with trios of compatibile operators. Each trio (P1, Q1, Ri) (i = 2,
3) defines two pencils Πλ = P1 +Ri − λQ1 and Π̃λ = Q1 +Ri − λP1. In the
case of new examples we compute the first non trivial flows of the associated
bi-Hamiltonian hierarchies.
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4.1 Case R2: Cohomology spaces of curves

In [8] the following six-parameter family of pairwise compatible Hamiltonian
operators defined by the cohomology spaces of curves is considered:(

a(u1x + 2u1∂x) + α∂x + c∂3x au2∂x + β∂x + γ∂2x
a∂xu

2 + β∂x − γ∂2x ε∂x

)
(28)

It contains systems by Ito, Kupershmidt, Antonowicz and Fordy, Fokas and
Liu, Gümral and Nutku.

For γ = 1 and c = 0 we have a family of commuting operators of our
type. It is easy to check that it corresponds to the choice c1 = 2a, c2 = α,
c4 = ε (and all other ci = 0) in the metric g of Theorem 1.

4.2 Case R2: Kaup-Broer equation

The bi-Hamiltonian property of the Kaup-Broer system was established in
[24]. The system is {

u1t = ((u1)2/2 + u2 + βu1x)x,
u2t = (u1u2 + αu1xx − βu2x)x,

(29)

where α, β are two constants. Indeed, the system is tri-Hamiltonian, two of
the operators are of the form

B1 =

(
0 ∂x
∂x 0

)
B2 =

(
2∂x ∂xu

1 − ∂2x
u1∂x + ∂2x u2∂x + ∂xu

2

)
(30)

and are defined by trio of compatible Hamiltonian operators of our class.
Indeed, it is easy to check that the choice c2 = 2, c3 = 2 and all other ci set
to zero in the metric g of Theorem 1 yields the above example (up to the
sign of R2).

According with [3], there exists a Miura transformation that brings the
above system into Dispersive Water Waves system.

4.3 Case R
(1)
3 : Dispersive Water Waves

Here we consider the example on page 482 of [3]. The system

u1t =
1

4
u2xxx +

1

2
u2u1x + u1u2x, (31)

u2t =u1x +
3

2
u2u2x (32)

14



is the DWW equation up to a Miura transformation. It is a tri-Hamiltonian
equation with respect to the operators

B0 =

(
−1

2
u2∂x − 1

2
∂xu

2 ∂x
∂x 0

)
(33)

B1 =

(
1
4
∂3x + 1

2
u1∂x + 1

2
∂xu

1 0
0 ∂x

)
(34)

B2 =

(
0 1

4
∂3x + 1

2
u1∂x + 1

2
∂xu

1

1
4
∂3x + 1

2
u1∂x + 1

2
∂xu

1 1
2
u2∂x + 1

2
∂xu

2

)
(35)

The pair (B0, B2) is defined by a trio of compatible Hamiltonian operators
of our class. Indeed, if we choose c2 = −1/2, c5 = 1 and all other values of
ci equal to 0 in g, and d4 = 1/2 with all other values of dj equal to 0 in h we
recover the above example from (14).

4.4 Case R
(1)
3 : coupled Harry-Dym hierarchy

We consider the example on page L273 of [2]. The system

u11 =

(
1

4(u2)1/2

)
xxx

− α
(

1

(u2)1/2

)
x

(36)

u2t =u1
(

1

(u2)1/2

)
x

+
u1x

2(u2)1/2
(37)

is tri-Hamiltonian with respect to the following operators

B0 =

(
−1

2
u1∂x − 1

2
∂xu

1 −1
2
u2∂x − 1

2
∂xu

2

−1
2
u2∂x − 1

2
∂xu

2 0

)
, (38)

B1 =

(
1
4
∂3x − α∂x 0

0 −1
2
u2∂x − 1

2
∂xu

2

)
(39)

B2 =

(
0 1

4
∂3x − α∂x

1
4
∂3x − α∂x +1

2
u1∂x + 1

2
∂xu

1

)
(40)

The pair (B0, B2) is defined by a trio of compatible Hamiltonian operators
of our class. Indeed, if we choose c1 = −1/2 with all other ci equal to 0 in g
and d5 = −α, d6 = 1/2 with all other dj equal to 0 in h we recover the above
example from (14).
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4.5 Case R
(2)
3 : pencil gλ,11

Choosing

c4 = 0, c1 = −1, c6 = −1, c2 = 0, d2 = 0, d1 = 0

we obtain the trio

P1 =

(
−u1 0

0 (u2)2−1
u1

)
∂x +

1

2

(
−u1x u2x
−u2x

2u1u2u2x−(u2)2u1x+u1x
(u1)2

)

Q1 =

(
0 −u1
−u1 −2u2

)
∂x +

(
0 −u1x
0 −u2x

)
R

(3)
3 = ∂x

(
0 ∂x

1
u1

1
u1
∂x

u2

(u1)2
∂x + ∂x

u2

(u1)2

)
∂x.

Starting from the Casimirs of Q1

C1 =

∫
S1

u1 dx, C2 =

∫
S1

u2

u1
dx,

the first flows of the bi-Hamiltonian hierarchy are

uti = (P1 + ε2R3)δCi, i = 1, 2,

that is

u1t1 = −1

2
u1x, u2t1 = −1

2
u2x

and

u1t2 =
3

2

u2x
u1
− 3

2

u2u1x
(u1)2

− u1xxx
(u1)3

+ 9
u1xu

1
xx

(u1)4
− 12

(u1x)
3

(u1)5

u2t2 =
3

2

(1− (u2)2)u1x
(u1)3

+
3

2

u2u2x
(u1)2

− 30u2(u1x)
3

(u1)6
+ 10

u2x(u
1
x)

2

(u1)5
+ 12

u2x(u
1)2x

(u1)5
+

−3u2xu
1
xx

(u1)4
− 2

u2u1xxx
(u1)4

− u2xxu
1
x

(u1)4
.

The canonical coordinates are

λ1 =
u2 + 1

u1
, λ2 =

u2 − 1

u1

and the central invariants are

s1 =
1

2
, s2 = −1

2
.

This shows that the above system is not Miura-trivial.
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4.6 Case R
(2)
3 : pencil gλ,13

Choosing

c3 = 0, d3 = 1, c2 = 2, c4 = 1, d4 = 0, d5 = 0

we obtain the trio

P1 =

(
2u2 (u1)2+(u2)2

u1
(u1)2+(u2)2

u1
2u2

)
∂x +

(
u2x u1x

u2(2u1u2x−u1xu2)
(u1)2

u2x

)

Q1 =

(
0 −1/u1

−1/u1 0

)
∂x +

(
0 0
u1x

(u1)2
0

)

R
(2)
3 = ∂x

(
0 ∂x

1
u1

1
u1
∂x

u2

(u1)2
∂x + ∂x

u2

(u1)2

)
∂x.

Starting from the Casimirs of Q1

C1 =

∫
S1

1

2
(u1)2 dx, C2 =

∫
S1

u2 dx,

the first flows of the bi-Hamiltonian hierarchy are

u1t1 = u1x
u2t1 = u2x

and

u1t2 = 2u2u1x + u1u2x

u2t2 = u1u1x + 2u2u2x −
u1xu

1
xx

(u1)2
+
u1xxx
u1

,

respectively.
The canonical coordinates are

λ1 = (u1 + u2)2, λ2 = (u1 − u2)2,

and the central invariants are

s1 = − 1

8
√
λ1
, s2 =

1

8
√
λ2
.

Again, this example is not Miura-trivial.
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4.7 Case R
(3)
3 : pencil gλ,12

Choosing
c1 = 1, c2 = −1, d3 = 1, c3 = 0, c4 = 0

we obtain the trio

P1 =

(
u1 − u2 −(u2)2+1

2u1
−(u2)2+1

2u1
−(u2)2+1

u1

)
∂x+

1

2

(
u1x − u2x −u2x

(u1)2u2x−2u1u2u2x+u1x(u2)2−u1x
(u1)2

−2u1u2u2x+u1x(u2)2−u1x
(u1)2

)

Q1 =

(
−1 −u2

u1

−u2

u1
−2u

2

u1

)
∂x +

(
0 0

−u1u2x+u1xu2
(u1)2

−u1u2x+u1xu2
(u1)2

)

R
(3)
3 =∂x

(
1 ∂x

u2

u1

u2

u1
∂x

(u2)2+1
2(u1)2

∂x + ∂x
(u2)2+1
2(u1)2

)
∂x.

Starting from the Casimirs of Q1

C1 =

∫
S1

(u1 − u2) dx, C2 =

∫
S1

√
(u2)2 − 2u1u2 dx,

one easily gets the first non trivial flows of the associated bi-Hamiltonian
hierarchy.

The canonical coordinates are

λ1 = −1

2

(u2)2 − 1

u2
, λ2 =

1

2

4 (u1)2 − 4u1u2 + (u2)2 − 1

2u1 − u2
,

and the central invariants are

s1 =
1

2

λ1
√

(λ1)2 + 1− (λ1)2 − 1

(λ1)2 + 1
, s2 = −1

2

λ2
√

(λ2)2 + 1 + (λ2)2 + 1

(λ2)2 + 1
.

This example is also not Miura-trivial.

Remark 9. We observe that the above examples are linear with respect
to third-order derivatives, but the matrix of coefficients of the third-order
derivatives, which is also known as separant is non-constant. Two-component
systems of third-order evolution equations with constant separant are classi-
fied (see [30]), but at the moment we cannot exclude that our examples are
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related to known integrable systems by a reciprocal transformation. To in-
clude reciprocal transformations in the classification problem would require to
consider a more general class of (non local) Poisson pencils of hydrodynamic
type since (in general) locality is not preserved by this kind of transforma-
tions.

5 Conclusions

The above straightforward generalization of the bi-Hamiltonian structure of
the KdV equation yields bi-Hamiltonian systems in great amount even in the
2-component case. Preliminary computations show that a similar situation
occurs in the 3 and 4-component case. Unfortunately, in these case there is
no affine classification available; the only classification that has been found
so far is under the group of reciprocal transformations of projective type
[17, 18].

By extending the group of admissible transformations to reciprocal trans-
formations of projective type we are led to consider also Ferapontov–Mokhov
non-local Poisson brackets of hydrodynamic type. Interesting projective-
geometric issues are likely to appear. We leave this interesting topic to future
investigations.
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