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Abstract

The theory of variational bicomplexes is a natural geometrical setting for the
calculus of variations on a fibred manifold. It is a well–established theory although
not spread out very much among theoretical and mathematical physicists. Here,
we present a new approach to infinite order variational bicomplexes based upon
the finite order approach due to Krupka. In this approach the information related
to the order of jets is lost, but we have a considerable simplification both in the
exposition and in the computations. We think that our infinite order approach
could be easily applied in concrete situations, due to the conceptual simplicity of
the scheme.
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Introduction

The theory of variational bicomplexes can be regarded as a natural geometrical setting
for the calculus of variations on a fibred manifold [1, 2, 9, 10, 11, 14, 16, 17, 18, 19, 20].
The geometric objects which appear in the calculus of variations find a place on the
vertices of the bicomplex, and are put in relation by the morphisms of the bicomplex.
Such morphisms are closely related to the differential of forms on the jet spaces of the
starting fibred manifold. Moreover, the global inverse problem is solved in this context.

Some formulations [2, 11, 14, 16, 17, 18, 19, 20] of variational bicomplexes are
carried on by means of infinite order jet techniques. Roughly speaking, the vertices of
variational bicomplexes are spaces of forms defined on jet spaces of any order. These
spaces have a natural splitting which turns out to be very useful from a technical
viewpoint. The formulation in [1] is partially carried on by means of finite order jet
spaces.

The finite order variational bicomplex has been introduced by Krupka [9] by a very
simple construction from a conceptual viewpoint. Namely, it is produced when one
quotients the de Rham sequence on a finite order jet space by means of an intrinsically
defined subsequence arising from the fibring. In this way, one obtains a bicomplex where
the horizontal morphisms are either the differentials of forms or quotient morphisms,
and the vertical morphisms are either inclusions or natural projections on quotient
spaces. For an intrinsic analysis of this theory, see [21].

The above formulation can help in keeping trace of the order of the geometric objects
involved at each vertex of the bicomplex. This fundamental feature depends on the fact
that Krupka’s formulation uses finite order jet. Of course, this feature is lost in infinite
order approaches. But, in order to show the connection between the quotient sequence
and the calculus of variations one has to face several technical difficulties. The most
difficult point is that the spaces of forms on a finite order jets do not split as their
analogues in the infinite order case. This is one of the main obstacles that one meets
when giving a representation of the quotient sequence by means of forms (see [21]).

In this paper, we present a new approach to infinite order variational bicomplexes
which is inspired by Krupka’s finite order approach. We think that this infinite order
approach has both the advantages of the conceptual simplicity of Krupka’s scheme and
the advantages in computations due to the use of spaces of forms at infinite order.

Indeed, as it is proved in [22], our infinite order approach turn out to be the direct
limit of Krupka’s finite order approach. Anyway, in this paper we show that we can
directly formulate our infinite order approach without passing through the finite order
one and the direct limit.

In the first section we introduce jet spaces, the contact structure [12, 15] and the
sheaves of forms on jets, and evaluate their direct limit.

In the second section we define the infinite order variational bicomplex, which is
inspired by the finite order approach due to Krupka.

In the third and the fourth sections we give in two steps an isomorphism of the
infinite order variational sequence with a sequence of presheaves which are the direct
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limit on some sheaves of forms on jet bundles. Here, the first variation formula [7] plays
an essential role.

In the last section, we interpret the sequence that we found in the above two sections
in terms of geometric objects and operators of the calculus of variations.

We end the introduction with some mathematical conventions. In this paper, mani-
folds are connected and C∞, and maps between manifolds are C∞. Morphisms of fibred
manifolds (and hence bundles) are morphisms over the identity of the base manifold,
unless otherwise specified.

We make use of definitions and results on presheaves and sheaves from [23]. In par-
ticular, we are concerned only with (pre)sheaves of IR–vector spaces, hence ‘(pre)sheaf
morphism’ stands for morphism of (pre)sheaves of IR–vector spaces.

If P be a presheaf, then we denote by P the sheaf generated (in the sense of [23])
by P . We denote by PU the set of sections of a (pre)sheaf P over a topological space
X defined on the open subset U ⊂ X. We recall that a sequence of (pre)sheaves over
X is said to be exact if it is locally exact (see [23] for a more precise definition). If A,
B are two sub(pre)sheaves of a sheaf P , then the wedge product A∧B is defined to be

the sub(pre)sheaf of sections of
2
∧P generated by wedge products of sections of A and

B.
Let {Pn}n∈N be a family of (pre)sheaves and {ιmn : Pn → Pm}n,m∈N,n≤m be a family

of injective (pre)sheaf morphisms such that, for all n,m, p ∈ N, n ≤ m ≤ p, we have
ιpm ◦ ιmn = ιpn and ιnn = idPn

. We say {Pn, ι
m
n } to be an injective system of (pre)sheaves.

We define the direct limit of the injective system to be the presheaf

P := lim
→

Pn :=
⊔

n∈N

Pn

/
∼ ,

where ∼ is the equivalence relation defined as follows. For each s ∈ Pn and s′ ∈ Pn′ , if
n ≤ n′, then s ∼ s′ if and only if ιn

′

n (s) = s′. Note that, in general, the direct limit of
an injective system of sheaves needs not to be a sheaf. Let {Pn, ι

m
n } and {Qn, ǫ

m
n } be

two injective systems of (pre)sheaves, and suppose that we have a family of (pre)sheaf
morphisms {fn : Pn → Qn} such that the following diagram commutes

Pm
fm ✲ Qm

Pn

ιmn

✻

fn ✲ Qn

ǫmn

✻

Then, the presheaf morphism

f := lim
→

fn : P → Q : [s] 7→ [fm(s)] ,

where s ∈ Pm for some m, is well defined.
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1 Jet spaces

In this section we recall some basic facts on jet spaces. Namely, we start with a natural
splitting of the cotangent bundle of jet spaces. Then, we study some natural sheaves
of forms on jet spaces, and introduce the horizontal and vertical differential of forms.
Finally, we evaluate the direct limit of the sheaves and morphisms.

As our framework, we assume a fibred manifold

π : Y → X

with dimX = n and dimY = n+m. We deal with the vertical bundle V Y := kerTπ →
Y . Moreover, for 0 ≤ r, we are concerned with the r–th jet space JrY ; in particular,
we set J0Y ≡ Y . We recall the natural fibrings πr

s : JrY → JsY and πr : JrY → X

for 0 ≤ s ≤ r. A detailed account of the theory of jets can be found in [12, 11, 15].
Charts on Y adapted to the fibring are denoted by (xλ, yi). Greek indices λ, µ, . . .

run from 1 to n and label base coordinates; Latin indices i, j, . . . run from 1 to m and
label fibre coordinates. We denote by (∂λ, ∂i) and (dλ, di), respectively, the local bases of
vector fields and 1–forms on Y induced by an adapted chart. We denote multi–indices
of dimension n by underlined letters such as p = (p1, . . . , pn), with 0 ≤ p1, . . . , pn; we
identify a standard index λ with the multi–index λ defined by λλ = 1 and λµ = 0 if
µ 6= λ. We also set |p| := p1+ · · ·+ pn and p! := p1! . . . pn!. The charts induced on JrY
are denoted by (x0, yip), with 0 ≤ |p| ≤ r; in particular, if |p| = 0, then we set yi0 ≡ yi.

The local vector fields and forms of JrY induced by the fibre coordinates are denoted
by (∂

p

i ) and (dip), 0 ≤ |p| ≤ r, 1 ≤ i ≤ m, respectively.

A section s : X → Y can be naturally prolonged to a section jrs : X → JrY , with
coordinate expression yip ◦ jrs = ∂p y

i ◦ s. If Z → X is another fibred manifold and

f : Y → Z is a morphism over idX , then f can be naturally prolonged to a morphism
Jrf : JrY → JrZ over idJr−1Y

by means of the characterisation (Jrf)◦jrs = jr(f ◦s) for
any section s : X → Y . A vertical vector field u : Y → V Y can be naturally prolonged
to a vertical vector field ur : JrY → V JrY by prolonging its flow in the above way and
by considering the natural isomorphism JrV Y ≃ V JrY . The coordinate expressions
are given later.

Splitting of the cotangent bundle

We recall the natural inclusion JrY ×
X

T ∗
X ⊂ T ∗JrY and projection T ∗JrY → V ∗JrY .

We have no natural complementary maps; so, T ∗JrY has no natural splitting into the
direct sum of ‘vertical’ and ‘horizontal’ tangent subspaces over JrY . On the other hand,
we obtain such a natural splitting over Jr+1Y by means of the “contact maps” on jet
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spaces (see [12]). Namely, for r ≥ 0, we consider the natural injective fibred morphism
over Jr+1Y → JrY

dr+1 : Jr+1Y ×
X

TX → TJrY ,

and the complementary surjective fibred morphism

ϑr+1 : Jr+1Y ×
JrY

TJrY → V JrY ,

whose coordinate expression are

dr+1 = dλ⊗dr+1λ = dλ⊗(∂λ + yjp+λ∂
p

j ) , 0 ≤ |p| ≤ r,

ϑr+1 = ϑj
p⊗∂

p

j = (djp − yjp+λd
λ)⊗∂

p

j , 0 ≤ |p| ≤ r .

The transpose of the maps dr+1, ϑr+1 are the fibred morphism over Jr+1Y → JrY

d
∗
r+1 : Jr+1Y ×

X

T ∗JrY → T ∗
X ,

ϑ∗
r : JrY ×

Jr−1Y

V ∗Jr−1Y → T ∗Jr−1Y .

We have the remarkable vector bundles

imd
∗
r+1 ≃ Jr+1Y ×

JrY
T ∗

X ,

imϑ∗
r ⊂ JrY ×

Jr−1Y

T ∗Jr−1Y ⊂ T ∗JrY .

Thus we obtain the natural splitting of T ∗JrY over Jr+1Y [12]

Jr+1Y ×
JrY

T ∗Jr−1Y = imd
∗
r+1 ⊕ imϑ∗

r+1 ,(1)

given by

α = (dr+1 yα) + (ϑr+1 yα) .

Sheaves of forms

We are concerned with some distinguished sheaves of forms on jet spaces (see also [15]).
Note that we consider sheaves on JrY with respect to the topology generated by open
sets of the kind (πr

0)
−1 (U), where U ⊂ Y is open in Y . This is suggested by the

topological triviality of the fibre of Jr+1Y → JrY [9].
Let us introduce the sheaves which will play a basic role throughout the paper. Let

0 ≤ k, h.

i. For 0 ≤ r, we consider the standard sheaf
k

Λr of k–forms α : JrY →
k
∧T ∗JrY on

JrY .



6 New formulation of variational sequences

ii. For 0 ≤ s ≤ r, we consider the subsheaf
k

Λ(r,s) ⊂
k

Λr of local fibred morphisms

over JrY → JsY of the type α : JrY →
k
∧T ∗JsY . Pullback by πr

s provides the natural

inclusion
k

Λs ⊂
k

Λ(r,s). Of course, if s = r, then
k

Λ(r,r) =
k

Λr.

iii. For 0 ≤ r+1, we consider the subsheaf
(k,h)

Λ r+1 ⊂
k

Λr+1 of local fibred morphisms
over Jr+1Y of the type

α : Jr+1Y →
k
∧imϑ∗

r+1 ∧
X

h
∧T ∗

X .

iv. For 0 ≤ s < r + 1, we consider the subsheaf
(k,h)

Λ (r+1,s) ⊂
k

Λ(r+1,s) of local fibred
morphisms over Jr+1Y → Js+1Y of the type

α : Jr+1Y →
k
∧imϑ∗

s+1 ∧
X

h
∧T ∗

X .

Of course, if s = r then
(k,h)

Λ (r+1,r) =
(k,h)

Λ r+1.

The fibred splitting (1) yields a fundamental sheaf splitting.

Lemma 1.1. We have the splitting

1

Λ(r+1,r) =
(0,1)

Λ r+1 ⊕
(1,0)

Λ r+1 ,

where the projection on the first factor and on the second factor are given, respectively,
by

1

h = d
∗
r+1 :

1

Λ(r+1,r) →
(0,1)

Λ r+1 : α 7→ dr+1 yα ,

1
v = ϑ∗

r+1 :
1

Λ(r+1,r) →
(1,0)

Λ r+1 : α 7→ ϑr+1 yα .

If α ∈
1

Λ(r+1,r) has the coordinate expression α = αλd
λ + α

p

i d
i
p (0 ≤ p ≤ r), then

1

h(α) = (αλ + yipα
p

i ) d
λ ,

1
v(α) = α

p

iϑ
i
p .

Proposition 1.1. The above splitting of
1

Λ(r+1,r) induces the splitting

k

Λ(r+1,r) =
k⊕

l=0

(k−l,l)

Λ r+1 ,

where the projections are given by

(k−l,l)

� (ϑ∗
r+1,d

∗
r+1) :

k

Λ(r+1,r) →
(k−l,l)

Λ r+1

(for
(k−l,l)

� see Appendix).
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Let us study explicitly the projection maps. We denote with
k

h the projection of
the above splitting on the summand with the highest degree of the horizontal factor
(which, of course, cannot be greater than n). In other words, we have

k

h :
k

Λ(r+1,r) →





(0,n)

Λ r+1 if k ≤ n
(k−n,n)

Λ r+1 if k > n ;

We denote also the projection complementary to
k

h by
k
v := Id−

k

h.

Now, we evaluate the coordinate expression of
k

h. Let α ∈
k

Λ(r+1,r).
If 0 < k ≤ n, then we have the coordinate expression

α = α
p
1
...p

h

i1...ih λh+1...λk
di1p

1

∧ . . . ∧ dihp
h

∧ dλh+1 ∧ . . . ∧ dλk

where the coordinate functions are sections of
0

Λr+1, and the indices’range is 0 ≤ |p
j
| ≤ r,

0 ≤ h ≤ k. We remark that the indices λj are suppressed if h = k, and the indices
p
j

ij

are suppressed if h = 0. We have

k

h(α) = yi1p
1
+λ1

. . . yihp
h
+λh

α
p
1
...p

h

i1...ih λh+1...λk
dλ1 ∧ . . . ∧ dλk .

If k > n, then we have the coordinate expression

α = α
p
1
...p

k−n+l

i1...ik−n+l λl+1...λn
di1p

1

∧ . . . ∧ dik−n+l
p
k−n+l

∧ dλl+1 ∧ . . . ∧ dλn ,

where the coordinate functions are sections of
0

Λr+1, and the indices’range is 0 ≤ |p
j
| ≤ r,

0 ≤ l ≤ n. We remark that, the indices λj are suppressed if l = n. We have

k

h(α) =
∑

yj1q
1
+λ1

. . . yjlq
l
+λl

α
p
1
.̂..p

k−n+l
q
1
...q

l

i1 .̂.. ik−n+l j1...jl λl+1...λn

ϑi1
p
1

∧ .̂ . . ∧ ϑik−n+l
p
k−n+l

∧ dλ1 ∧ . . . ∧ dλn ,

where the sum is over the subsets

{j1q
1

. . . jlq
l

} ⊂ {i1p
1

. . . ik−n+l
p
k−n+l

} ,

and .̂ . . stands for suppressed indexes (and corresponding contact forms) belonging to
one of the above subsets.

Example 1.1. Here we evaluate the coordinate expressions of the projection h in the

case k = 2. Suppose that α ∈
k

Λ(2,1) has the coordinate expression

α =αµλ d
µ ∧ dλ + αiλ d

i ∧ dλ + αµ
i λ d

i
µ ∧ dλ+

αji d
j ∧ di + αµ

j i d
j
µ ∧ di + αµ

j
λ
i d

j
µ ∧ diλ .
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If n = 1, then λ = µ = 1, dµ ∧ dλ = 0 and

h(α) =(αiλ + 2yjλαji − yjµ+λα
µ
j i)ϑ

i ∧ dλ+

(αµ
j λ + yiλα

µ
j i + 2yiλ+να

µ
j
ν
i )ϑ

j
µ ∧ dλ .

If n ≥ 2, then

h(α) =(αµλ + yiµαiλ + yiµ+να
ν
i λ+

yjµy
i
λαji + yjµ+νy

i
λα

ν
j i + yjµ+νy

i
λ+ρα

ν
j
ρ
i ) d

µ ∧ dλ .

Horizontal and vertical differential

The exterior differential d together with the contact maps yield two derivations (‘of

degree one along πr+1
r ’) of

k

Λr (see [15]). Namely, we define the horizontal and vertical
differentials to be the sheaf morphisms

dh := idr+1
◦d− d◦idr+1

:
k

Λr →
k

Λr+1 , dv := iϑr+1
◦d− d◦iϑr+1

:
k

Λr →
k

Λr+1 ,

It can be proved (see [15]) that dh and dv fulfill the properties

d2h = d2v = 0 , dh◦dv + dv◦dh = 0 ,

dh + dv = (πr+1
r )∗◦d ,

(jr+1s)
∗◦dv = 0 , d◦(jrs)

∗ = (jr+1s)
∗◦dh .

The action of dh and dv on functions f : JrY → IR and one–forms on JrY uniquely
characterises dh and dv. We have the coordinate expressions

dhf = (dr+1)λ.fd
λ = (∂λf + yip+λ∂

p

i f)d
λ ,

dhd
λ = 0 , dhd

i
p = −dip+λ ∧ dλ , dhϑ

i
p = −ϑi

p+λ ∧ dλ ,

dvf = ∂
p

i fϑ
i
p ,

dvd
λ = 0 , dvd

i
p = dip+λ ∧ dλ , dvϑ

i
p = 0 .

Direct limit

The sheaf injections πr
s (r ≥ s) provide several inclusions between the sheaves of forms

previously introduced. This yields several injective systems, whose direct limit is studied
here.

We define the presheaves on Y

k

Λ := lim
→

k

Λr ,
(k,h)

Λ := lim
→

(k,h)

Λ (r+1,r) .

By simple counterexamples, it can be proved that the above presheaves are not sheaves
in general, because the gluing axiom fails to be true.
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Remark 1.1. For any equivalence class [α] ∈
k

Λ there exists a distinguished represen-

tative β ∈
k

Λr whose order r is minimal. The same holds for
(0,k)

Λ and
(k,0)

Λ . Accordingly,

we shall often indicate by β ∈
k

Λ (without brackets) such a minimal section.

Lemma 1.2. We have lim
→

k

Λ(r+1,r) = lim
→

k

Λr ≡
k

Λ.

Proof. In fact, we have the inclusions
k

Λr ⊂
k

Λ(r+1,r) ⊂
k

Λr+1 QED

Theorem 1.1. We have the natural splitting

k

Λ =
k⊕

l=0

(k−l,l)

Λ .

Proof. It comes from the above lemma and the splitting of proposition 1.1. QED

Remark 1.2. The above splitting represents one of the major differencies between the
finite order and the infinite order case. As we shall see, in the infinite order formu-

lations one has to deal with quotients of
k

Λ by sheaves of contact forms. The above
splitting allows us to identify such quotients with ‘more concrete’ spaces (see section
3). The situation is much more complicated in the finite order case for the lack of such

a splitting. In fact, the inclusion
k

Λr ⊂
k

Λ(r+1,r) is a proper inclusion, and we are in
the bad situation described in remark 5.4. Nevertheless, by means of the splitting of
proposition 1.1, we are able to recover in the finite order case almost all features of
infinite order formulations, but in a much more difficult way (see [21]).

Proposition 1.2. The sheaf morphisms d, dh, dv,
k

h, admit direct limits. Namely, such
direct limits turn out to be the presheaf morphisms

d :
k

Λ →
k+1

Λ : [α] 7→ [dα] ,

dh :
k

Λ →
k+1

Λ : [α] 7→ [dhα] , dv :
k

Λ →
k+1

Λ : [α] 7→ [dvα] ,

k

h :
k

Λ(r+1,r) →





(0,n)

Λ r+1 : [α] 7→ [
k

h] if k ≤ n
(k−n,n)

Λ r+1 : [α] 7→ [
k

h] if k > n ;

Note that the map
k

h of the above proposition turns out to be the projection of the
splitting of theorem 1.1 on the factor with the highest horizontal degree; in other words,
the direct limit of the projection is the projection of the splitting of the direct limit.

We observe that we did not indicate the degree of d, dh and dv. This is both for a
matter of ‘tradition’ and not to make too heavy the notation.

Finally, next proposition analyses the relationship of dh and dv with the splitting of
the above theorem.
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Proposition 1.3. We have

dh(
(0,k)

Λ ) ⊂
(0,k+1)

Λ , dv(
(0,k)

Λ ) ⊂
(1,k)

Λ ,

dh(
(k,0)

Λ ) ⊂
(k,1)

Λ , dv(
(k,0)

Λ ) ⊂
(k+1,0)

Λ .

Proof. From the action of dh, dv on functions and local coordinate bases of forms.
QED

2 Infinite order variational sequence

In this section, we introduce a new infinite order approach to variational sequences. This
infinite order approach is based on the finite order approach by Krupka [9]. Indeed,
as it is proved in [22], this infinite order approach turn out to be the direct limit of
Krupka’s finite order approach.

The de Rham exact sheaf sequence on JrY passes to direct limits. More precisely,
it yields the following exact presheaf sequence

0 ✲ IR ✲
0

Λ
d ✲

1

Λ
d✲ . . .

d✲
k

Λ
d✲ . . .

which is said to be the infinite order de Rham sequence. Of course, this sequence does
not become trivial after a certain value of k.

Now, we introduce an exact natural subsequence of the de Rham sequence, which
is of particular importance in the variational calculus, although being defined indepen-
dently (see [9]).

We consider the restriction
k

h|k
Λr

of the projection
k

h to the subsheaf
k

Λr ⊂
k

Λ(r+1,r).

We introduce a new subsheaf of
k

Λr. Namely, following Krupka [9, 10] we set
k

Θr to be

the sheaf generated (in the sense of [23]) by the presheaf ker
k

h|k
Λr

+d ker
k−1

h |k
Λr

. In other

words, we set

k

Θr := ker
k

h|k
Λr

+ d ker
k−1

h |k
Λr

.

Remark 2.1. Of course ker
k

h|k
Λr

is a sheaf. But, in general, the gluing axiom fails to

be true for d ker
k−1

h |k
Λr

. Anyway, in the particular case when dimX = 1 and k > 1, the

sum ker
k

h|k
Λr

+d ker
k−1

h |k
Λr

turns out to be a direct sum, and d ker
k−1

h |k
Λr

turns out to be

a sheaf.
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Remark 2.2. If 0 ≤ k ≤ n, then d ker
k−1

h |k
Λr

⊂ ker
k

h|k
Λr

, so that
k

Θr = ker
k

h|k
Λr

. More-

over, we have

ker
k

h|k
Λr

= {α ∈
k

Λr | (jrs)
∗α = 0 for every section s : X → Y } .

This shows that for k ≤ n the sheaf
k

Θr consists of forms which do not give contribution
to action–like functionals [9, 15, 21].

Thus, we have the injective system of sheaves {
k

Θs, π
r
s
∗}. We define the presheaves

on Y

k

Θ := lim
→

k

Θr .

It is clear that
k

Θ is a subpresheaf of
k

Λ. Thus, we say the following natural subse-
quence

0 ✲
1

Θ
d ✲

2

Θ
d✲ . . .

d✲
k

Θ
d✲ . . .

to be the infinite order contact subsequence of the infinite order de Rham sequence.

Theorem 2.1. The infinite order contact subsequence is exact.

Proof. First, we observe that remark 1.1 still holds in the case of
k

Θ. So, to any

[α] ∈
k

Θ such that α ∈
k

Θr we apply the contact homotopy operator [9], which is the

restriction of the standard homotopy operator of Poincaré’s lemma to
k

Θr ⊂
k

Λr to find

a local potential [β] ∈
k−1

Θ of [α]. QED

Now, we introduce a bicomplex by quotienting the infinite order de Rham sequence
by the infinite order contact subsequence. We obtain a new sequence, the infinite order
variational sequence, which turns out to be exact.

Theorem 2.2. The following diagram

0 0 0 0 0

0 ✲ 0
❄

✲ 0
❄

✲
1

Θ

❄
d ✲

2

Θ

❄
d ✲ . . .

d ✲
k

Θ

❄
d ✲ . . .

0 ✲ IR
❄

✲
0

Λ

❄
d ✲

1

Λ

❄
d ✲

2

Λ

❄
d ✲ . . .

d ✲
k

Λ

❄
d ✲ . . .

0 ✲ IR
❄

✲
0

Λr

❄
E0 ✲

1

Λ/
1

Θ

❄
E1✲

2

Λ/
2

Θ

❄
E2✲ . . .

Ek−1 ✲
k

Λ/
k

Θ

❄
Ek✲ . . .

0
❄

0
❄

0
❄

0
❄

0
❄
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where Ek are the quotient morphisms and the vertical arrows are natural inclusions or
quotient projections, is commutative. Moreover, rows and columns are exact presheaf
sequences.

Proof. We have to prove only the exactness of the bottom row of the diagram.
But this follows from the exactness of the other rows and of the columns. QED

Definition 2.1. We say the bottom row of the above diagram to be the infinite order
variational sequence associated with the fibred manifold Y → X (see [9]).

The above construction is yielded naturally just by the differential structure and
the fibring of the underlying manifold. On the other hand our attention to the bottom
line is inspired by the variational calculus.

It is possible to prove [22] that the infinite order variational sequence is the direct
limit of the injective system of Krupka’s finite order variational sequences.

We have an interesting result about the exactness of the infinite order variational
sequence. Let us consider the cochain complex of global sections

0 ✲ IRY
✲

0

ΛY

d✲ (
1

Λ/
1

Θ)Y
E1✲ . . .

Ek−1✲ (
k

Λ/
k

Θ)Y
Ek✲ . . .

and denote by Hk
IVS the k–th cohomology group of the above cochain complex.

Corollary 2.1. For all k ≥ 0 there is a natural isomorphism

Hk
IVS

≃ Hk
de Rham

Y

Proof. This comes from the analogous result about the finite order variational
sequence [9, 22]. QED

3 Representation of the variational sequence

In this section we provide a sequence which is isomorphic to the variational sequence
and is more easily interpreted in terms of the calculus of variations.

First of all, we analyse the case 0 < k ≤ n.

Proposition 3.1. Let 0 < k ≤ n. Then, we have the natural isomorphism

Ik :
k

Λ/
k

Θ →
(0,k)

Λ : [α] →
k

h(α) .

Proof. By remark 2.2 the above map is well defined. Clearly, if
k

h(α) =
k

h(β), then

α − β ∈ ker
k

h ≡
k

Θ, so the map is injective. Moreover, the map is surjective because
k

h

is surjective on
(0,k)

Λ . QED

Next, for k > n we study the quotient spaces
k

Λ/
k

Θ.
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We denote by dh(
(k−n,n−1)

Λ r) (see Introduction) the sheaf generated by the presheaf

dh(
(k−n,n−1)

Λ r). This means that the sheaf dh(
(k−n,n−1)

Λ r) consists of sections α which are

of the local type α = dhβ with β ∈
(k−n,n−1)

Λ r.
Moreover, we set

dh(
(k−n,n−1)

Λ ) := lim
→

dh(
(k−n,n−1)

Λ r) ,

where we introduced the symbol dh for evident practical reasons.

Lemma 3.1. Let k > n. Then, we have the isomorphism

k

h(
k

Θ) → dh(
(k−n,n−1)

Λ ) : γ 7→
k

h(γ) .

Proof. It comes from the following inclusions

k

h(d ker
k−1

h |k
Λr

) ⊂ dh(
(k−n,n−1)

Λ r+1) ⊂
k

h(d ker
k−1

h |k
Λr+1

) . QED

Proposition 3.2. Let k > n. Then, we have the natural isomorphisms

Ĩk :
k

Λ/
k

Θ →
(k−n,n)

Λ
/
dh(

(k−n,n−1)

Λ ) : [α] → [
k

h(α)] .

Theorem 3.1. The infinite order variational sequence is isomorphic to the following
sequence

0 ✲ IR ✲
0

Λ
Ẽ0✲

(0,1)

Λ
Ẽ1✲ . . .

Ẽn−1✲
(0,n)

Λ
Ẽn✲

Ẽn ✲
(1,n)

Λ
/
dh(

(1,n−1)

Λ )
Ẽn+1✲ . . .

Ẽn+i−1✲
(i,n)

Λ
/
dh(

(1,n−1)

Λ )
Ẽn+i✲ . . .

where Ẽk = dh if 0 ≤ k ≤ n− 1, and Ẽk([α]) = [dv(α)] if k > n.

Proof. If 0 ≤ k ≤ n− 1 then we have

Ẽk(
k

h(α)) = Ik(Ek([α])) = Ik([dα]) = Ik([(dh + dv)(
k

h(α) +
k
v(α))]) = dh

k

h(α) ,

where the last passage is due to proposition 1.3.
If k ≥ n then we have

Ẽk([
k

h(α)]) = Ik(Ek([α])) = Ik([dα]) = [
k

h(dα)] ,

and

k

h(dα) =
k

h((dh + dv)(
k

h(α) +
k
v(α))) = dv(

k

h(α)) + dh(
k
v(α)) ,

hence the result. QED
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4 Representation of the ‘shortened’ variational se-

quence

As far as we know, there is no interpretation of the k–th degree terms of the variational
sequence in terms of the calculus of variations, for k ≥ n+3. For this reason, we restrict
our interest to a ‘shortened’ version of the representation of the variational sequence of
the previous section. Namely, we consider the subsequence

0 ✲ IR ✲
0

Λ
dh✲

(0,1)

Λ
dh✲

(0,2)

Λ
dh✲ . . .

. . .
dh ✲

(0,n)

Λ
Ẽn✲

(1,n)

Λ
/
dh(

(1,n−1)

Λ )
Ẽn+1✲ Ẽn+1(

(1,n)

Λ
/
dh(

(1,n−1)

Λ )) ✲ 0 ,

of the infinite order variational sequence.
The task of the next subsections is to give a natural isomorphism between the two

quotient spaces of the above ‘shortened’ variational sequence and some presheaves of
forms on jet spaces. In this way, we are able to give explicit coordinate expressions for
the morphisms Ẽn and Ẽn+1.

Euler morphism

Here we find an isomorphism of
(1,n)

Λ
/
dh(

(1,n−1)

Λ ) with a direct limit of an injective system
of sheaves of forms on jet bundles. To this aim, we use a result by Kolář [7].

To proceed further, we introduce new notation and recall a few results from the
theory of jets [12].

On any coordinate open subset U ⊂ Y (with coordinates adapted to the fibring)
we set

ǫ := d1 ∧ . . . ∧ dn , ǫλ := i∂λǫ .

We recall the natural inclusion ir,s : Jr+sY → JrJsY which is characterised by
ir,s ◦ jr+st = jr(jst) for any section t : X → Y .

Now, consider the fibrings JrY → X and pr 1 : X × IR → X. For s ≥ 0 there is
the well–known isomorphism Js(X × IR) ≃ T ∗

sX × IR, where T ∗
sX is the s–th order

cotangent bundle of X. Let f : JrY → IR be a map. Then we define the formal
derivative of f to be the function

D(s)f := Jsf ◦is,r : Js+rY → T ∗
sX × IR .

Let (zp) be local coordinates on T ∗
sX, 0 ≤ |p| ≤ s. Then we set

Dpf := zp◦D(s)f .

The definition of prolongation yields Dpf ◦jr+|p|s = ∂p(f ◦jrs); of course, this equality
uniquely characterises Dp. We can easily verify that Dp◦Dq = Dp+q. In the particular
case when |p| = 1 (so that we can identify p = λ) then we have the coordinate expression

Dλf = (dr+1)λ.f = ∂λf + yiq+λ∂
q

i f 0 ≤ |q| ≤ s ,
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which coincides with the standard first order formal derivative expression. The coordi-
nate expression of Dpf can be easily derived from the inductive formula Dp+λ = DλDp.

A Leibnitz’ rule holds for Dp (see [15]); if g ∈
0

Λr, then we have

Dp(fg) =
∑

q+t=p

p!

q!t!
Dqf Dtg .

If a vertical vector field u : Y → V Y has the expression u = ui∂i, then its natural
prolongation ur : JrY → V JrY has the expression ur = Dpu

i∂
p

i .

Theorem 4.1. (First variation formula [7]) Let α ∈
1

Λr ∧
(0,n)

Λ r ⊂
(1,n)

Λ r. Then there is
a unique pair of elements

Eα ∈
(1,0)

Λ (2r,0) ∧
(0,n)

Λ 2r , Fα ∈
(1,0)

Λ (2r,r) ∧
(0,n)

Λ 2r ,

such that
i. (π2r

r )∗α = Eα − Fα;

ii. Fα is locally of the form Fα = dhpα, with pα ∈
(1,0)

Λ (2r−1,r−1) ∧
(0,n)

Λ 2r.

Remark 4.1. Thus, Eα and Fα are uniquely defined. However, it is possible to de-
termine a global pα fulfilling the above conditions, but pα is not uniquely determined
unless dimX = 1 or r = 1. For r = 2, we are able to characterise a unique pα by means
of an additional requirement (see [7] for a complete discussion).

In coordinates, if α = α
p

i ϑ
i
p ∧ ǫ, then we have the well–known expression

Eα = (−1)|p|Dpα
p

i ϑ
i ∧ ǫ .(2)

Proposition 4.1. We have the injective sheaf morphism

In+1 :
(1,n)

Λ /dh(
(1,n−1)

Λ ) →
n+1

Λ : [α] 7→ Eα .

Proof. The morphism In+1 is well–defined. In fact, it is easily seen that it does
not depend on the representative of the equivalence class [α]. Moreover, due to the
uniqueness of the decomposition in the first variation formula, Eα annihilates sections

[α] ∈ dh(
(1,n−1)

Λ ).
The morphism is also injective. In fact, suppose that Eα = Eβ. Then by the first

variation formula we have α− β = Fβ − Fα, hence [α− β] = 0. QED

The final step is to characterise the image of In+1. Let us define the following
presheaf

(1,0)

Λ (·,0) := lim
→

(1,0)

Λ (r,0) .

The claimed result is given by the following theorem.
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Theorem 4.2. We have the sheaf isomorphism

In+1 :
(1,n)

Λ /dh(
(1,n−1)

Λ ) → E ,

where E is the presheaf

E :=
(1,0)

Λ (·,0) ∧
(0,n)

Λ .

Proof. The image of In+1 is characterised by the first variation formula. Namely,
we have

E = (
(1,n)

Λ + dh(
(1,n−1)

Λ )) ∩ (
(1,0)

Λ (·,0) ∧
(0,n)

Λ ) .

But we have the inclusion (
(1,0)

Λ (·,0) ∧
(0,n)

Λ ) ⊂ (
(1,n)

Λ + dh(
(1,n−1)

Λ )), hence the result. QED

Helmholtz morphism

Here we find an isomorphism of Ẽn+1(
(1,n)

Λ
/
dh(

(1,n−1)

Λ )) with a direct limit of an injective
system of sheaves of forms on jet bundles. To this aim, we make use of the second
variation formula [21].

Lemma 4.1. We have the natural injection

Ẽn+1(
(1,n)

Λ
/
dh(

(1,n−1)

Λ )) →
(2,n)

Λ
/
dh(

(2,n−1)

Λ ) : [dvα] 7→ [dvEh(α)] .

Proof. It is a direct consequence of the first variation formula and dvdh = −dhdv.
QED

Lemma 4.2. Let β ∈
(1,0)

Λ s ∧
(1,0)

Λ (s,0) ∧
(0,n)

Λ s. Then, there is a unique element

H̃β ∈
(1,0)

Λ (2s,s) ⊗
(1,0)

Λ (2s,0) ∧
(0,n)

Λ 2s

such that, for all u : Y → V Y , we have

Eβ̂ = u2s y H̃β ,

where β̂ := ius
β.

Proof. Let U ⊂ Y be an open coordinate subset, and suppose that we have the
expression on U

β = β
p

i jϑ
i
p ∧ ϑj ∧ ǫ , 0 ≤ |p| ≤ s .
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Then we have the coordinate expression

Eβ̂ = Dpu
i


β

p

i j −

s−|p|∑

|q|=0

(−1)|p+q|
(p+ q)!

p!q!
Dqβ

p+q

j i


ϑj ∧ ǫ .

Let us set

H̃β :=


β

p

i j −

s−|p|∑

|q|=0

(−1)|p+q|
(p+ q)!

p!q!
Dqβ

p+q

j i


ϑi

p⊗ϑj ∧ ǫ .

Then, by the arbitrariness of u, H̃β is the unique morphism fulfilling the conditions of
the statement on U . By this uniqueness, we deduce that H̃β is intrinsic. QED

Theorem 4.3. (Second variation formula [21]).

Let β ∈
(1,0)

Λ s ∧
(1,0)

Λ (s,0) ∧
(0,n)

Λ s. Then, there is a unique pair of elements

Hβ ∈
(1,0)

Λ (2s,s) ∧
(1,0)

Λ (2s,0) ∧
(0,n)

Λ 2s , Gβ ∈
(2,0)

Λ (2s,s) ∧
(0,n)

Λ 2s ,

such that
i. π2s

s

∗
β = Hβ −Gβ

ii. Hβ = 1/2A(H̃β), where A is the antisymmetrisation map.

Moreover, Gβ is locally of the type Gβ = dhqβ, where qβ ∈
(2,n−1)

Λ 2s−1.

Proof. It is clear that Gβ is uniquely determined by β and the choice Hβ =
1/2A(H̃β).

Let us denote by LDλ
the Lie derivative with respect to the field (dr+1)λ. We denote

by LDp
the iterated Lie derivative. It can be easily seen [15] by induction on |p| that,

on a coordinate open subset U ⊂ Y , we have

β = β
p

i jϑ
i
p ∧ ϑj ∧ ǫ = β

p

i jLp(ϑ
i) ∧ ϑj ∧ ǫ = (−1)|p|ϑi ∧ Lp(β

p

i jϑ
j) ∧ ǫ+ 2dhqβ ,

which yields the thesis by the Leibnitz’ rule. QED

Remark 4.2. Thus, Hβ and Gβ are uniquely defined. However, in general, we do not
know whether it is possible to determine a global qβ fulfilling the above conditions. If
dimX = 1, then there exists a unique qβ fulfilling the above conditions. Moreover, if
s = 2, we are able to characterise a unique qβ by means of an additional requirement
[8].

Proposition 4.2. We have the injective morphism

In+2 : Ẽn+1(
(1,n)

Λ
/
dh(

(1,n−1)

Λ )) →
(1,0)

Λ ∧
(1,0)

Λ (·,0) ∧
(0,n)

Λ : [dvα] 7→ HdvEα
.
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Proof. In+2 is well defined due to the uniqueness of the decomposition of the sec-
ond variation formula. The injectivity of In+2 follows from the above theorem, because
if dvEα and dvEβ fulfill HdvEα

= HdvEβ
, then we have (locally)

dvEα − dvEβ = GdvEβ
−GdvEα

. QED

Let us set H := im In+2. We have no characterisation of H. But the above propo-
sition allows us to select a distinguished presheaf containing H. More precisely, we can
state the following theorem.

Theorem 4.4. The sheaf Ẽn+1(
(1,n)

Λ
/
dh(

(1,n−1)

Λ )) is isomorphic to the image

H ⊂
(1,0)

Λ ∧
(1,0)

Λ (·,0) ∧
(0,n)

Λ

of the injective morphism In+2.

5 Variational sequence and the calculus of varia-

tions

We can summarise the results of the above sections in the following theorem. Let us

set L :=
(0,n)

Λ .

Theorem 5.1. The shortened infinite order variational sequence is isomorphic to the
exact sequence

0 ✲ IR ✲
0

Λ
dh✲

(0,1)

Λ
dh✲ . . .

dh✲
(0,n−1)

Λ
dh✲ L

E ✲ E
H✲ H ✲ 0 ,

where the maps E and H are defined as the maps which make the following diagram
commuting

L
En ✲

n+1

Λ /
n+1

Θ
En+1✲ En+1(

n+1

Λ /
n+1

Θ ) ✲ 0

E

In+1◦Ĩn+1

❄
H ✲

E

✲

H

In+2◦Ĩn+2

❄
✲ 0

Remark 5.1. The natural representation of the quotient sequence as a sequence of
sheaves of ‘concrete’ forms yields a clear interpretation in terms of the calculus of
variations.
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We have the following coordinate expressions.
If L ∈ L, with L = f ǫ, then

E(L) = (−1)|p|Dp∂
p

i f ϑi ∧ ǫ .

If E ∈ E , with E = Ei ϑ
i ∧ ǫ, then

H(E) =
1

2


∂

p

iEj −

2r+1−|p|∑

|q|=0

(−1)|p+q|
(p+ q)!

p!q!
Dq∂

p+q

j Ei


ϑi

p ∧ ϑj ∧ ǫ .

We say L ∈ L to be a Lagrangian type morphism. We observe that, due to the
exactness of the variational sequence, a variationally trivial Lagrangian is locally of the

form dhα, where α ∈
(0,n−1)

Λ .
We say the map E : L → E to be the Euler operator . We say E(L) ∈ E to be the

Euler morphism associated with L. We say E ∈ E to be an Euler type morphism.
We say the map H : E → H to be the Helmholtz operator . We say H(E) ∈ H to

be the Helmholtz morphism associated with E. We observe that, due to the exactness
of the variational sequence, if H(E) = 0 then there exists (locally) a Lagrangian L
such that E(L) = 0. Moreover, if Hn+1

de Rham(Y ) = 0, then it is possible to find a global
Lagrangian fulfilling the above condition.

We recall from the above section that

In+1◦Ĩn+1([α]) = Eα̂ ,

In+2◦Ĩn+2(En+1([α])) = Hdv(Eα̂) ,

where α̂ :=
n+1

h (α).
We say pα̂ (see theorem 4.1) to be a (local) momentum associated with the Euler

morphism induced by α.
Let L ∈ L be a Lagrangian type morphism. Then we say θ := L + pdL to be a

Poincaré–Cartan form associated with the Lagrangian L. It is evident that the well–
known problem of the uniqueness of the Poincaré–Cartan form is equivalent to the
problem of the uniqueness of the momentum for dL.

We say qdvEα̂
(see theorem 4.3) to be a (local) momentum associated with the

Helmholtz morphism induced by α.

Remark 5.2. Our names given to the above objects (qdvEα̂
excepted) are justified by

the fact that this objects turn out to be just the homonymous objects of the standard
calculus of variations on fibred manifolds. As for qdvEα̂

, it is a new object introduced
in [21] (see also [8]) whose interpretation in terms of the calculus of variaitons is still
unknown.

Remark 5.3. In the direct approach to Lagrangian formalism one starts with a La-
grangian L ∈ L and fills in the further vertices of the bicomplex (in the direction
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bottom-up, left-right) by means of the maps of the variational sequence and by the
surjectivity of the projections. Of course, the objects in the center and top row need
not to be unique.

In the inverse approach to Lagrangian formalism one starts with a Euler type mor-
phism E ∈ E and finds, under the Helmholtz closure condition, a local Lagrangian,

which is defined up to the horizontal differential of a form α ∈
(0,n−1)

Λ . Clearly, this form
yields the filling in procedure as in the direct case; but, now, some objects are defined
up to a gauge.

In [13] we studied the Lagrangian formalism for the mechanics of one particle asso-
ciated with a geometric model of Galilei spacetime. Namely, a metric, a connection and

a spacetime 2–form yield directly a global dynamical 2–form ω ∈
2

Λ and a global E ∈ E .
Thus, we are able to fill in the bicomplex starting equivalently with ω or E. Therefore,
the objects recovered on left (Lagrangian, Poincaré–Cartan form and momentum) are
defined only locally and up to a gauge. We proved that this approach is of fundamental
importance for the quantisation of mechanics. We hope that it could be of the same
importance for the quantisation of fields.

Appendix: direct sums and exterior products

Let V be a vector space such that dimV = n. We define the box product (see also [6])
of r linear morphisms a1, . . . , ar : V → V is defined to be the linear map

r

�ai :
r
∧ V →

r
∧V :

v1 ∧ . . . ∧ vr 7→
∑

σ∈Sr

|σ|a1(vσ(1)) ∧ . . . ∧ ar(vσ(r)) .

where Sr is the set of all permutation of order r. The box product fulfills

r

�ai =
r

�aσ(i) ∀ σ ∈ Sr ;

in particular, if a1 = · · · = ar = a, then
r

�a = r!
r
∧ a. So,

r

� yields a map
k

⊙(End(V )) →

End(
k
∧V ).

We have a remarkable feature of the box product. Suppose that V = W1⊕W2, with
p1 : V → W1 and p2 : V → W2 the related projections. Then, we have the splitting

m
∧V =

⊕

k+h=m

k
∧W1 ∧

h
∧W2 ,(3)

where
k
∧W1 ∧

h
∧W2 is the subspace of

m
∧V generated by the wedge products of elements

of
k
∧W1 and

h
∧W2. The projections related to the above splitting turn out to be the

maps

(k,h)

� (p1, p2) :
m
∧V →

k
∧W1 ∧

h
∧W2 ,
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where
(k,h)

� (p1, p2) :=
1

k!h!

k+h

� ai, with ai = p1 if 1 ≤ i ≤ k and ai = p2 if k+1 ≤ i ≤ k+h.

Remark 5.4. Let V ′ ⊂ V be a vector subspace, and set W ′
1 := p1(V

′), W ′
2 := p2(V

′).
Then we have

V ′ ⊂ W ′
1 ⊕W ′

2 ,

but the inclusion, in general, is not an equality.
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