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Abstract

We investigate n-component systems of conservation laws that pos-
sess third-order Hamiltonian structures of differential-geometric type.
The classification of such systems is reduced to the projective clas-
sification of linear congruences of lines in P"*! satisfying additional
geometric constraints. Algebraically, the problem can be reformulated
as follows: for a vector space W of dimension n + 2, classify n-tuples
of skew-symmetric 2-forms A% € A%2(W) such that

bp AP N AT =0,
for some non-degenerate symmetric ¢.
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1 Introduction

1.1 Systems of conservation laws and line congruences in
projective space

Systems of conservation laws are n-component first-order PDEs of the form
up = (V*(u))a, (1)

i=1,...,n, where Vi(u) is a (nonlinear) vector of fluxes. We will assume
that the characteristic speeds of system , that is, the eigenvalues of the
Jacobian matrix of the fluxes V?, are real and distinct (condition of strict
hyperbolicity). Systems of conservation laws appear in a wide range of
applications in continuum mechanics and mathematical physics, see e.g.
1211 25, [35], 32, B4, [33]. Following the geometric approach of [I], 2], with
system we associate a congruence (that is, n-parameter family of lines),

g = uiy"tl 4 Vi, 2)
in auxiliary projective space P"*! with homogeneous coordinates (y' : - :
y"2). Tt was demonstrated in [I, 2] that various standard concepts of the
theory of conservation laws such as rarefaction curves, shock curves, linear
degeneracy, reciprocal transformations, etc, acquire a simple interpretation
in the language of the projective theory of congruences. In particular, recip-
rocally related systems (/1)) correspond to projectively equivalent congruences
. Algebro-geometric aspects of this correspondence were investigated in
[6, [7, 18, 26].

In this paper we utilise the above geometric correspondence for the clas-
sification of systems possessing third-order Hamiltonian structures. We
will show that congruences associated with Hamiltonian systems are nec-
essarily linear, that is, they are specified by n linear relations among the
Pliicker coordinates (in geometric language, codimension n linear sections
of the Grassmannian G(1,n + 1)). We recall that the lines of a linear con-
gruence in P**! can be characterised geometrically as n-secants of the focal

variety (jump locus), which is a codimension two subvariety in P**! (possi-
bly, reducible):

e For n = 2 the focal variety of a linear congruence consists of 2 skew
lines in P3.

e For n = 3 the focal variety of a generic linear congruence is a projection
of the Veronese surface V2 C P5 into P* [5].



e For n = 4 the focal variety is a Palatini threefold in P® [2§], etc.

In parametrisation , the Pliicker coordinates are just u’, V¢, u'VJ —u/ V.
Imposing n linear relations among the Pliicker coordinates we obtain a linear
system for the fluxes V¢ which implies that V* are rational in u. Systems
associated with linear congruences are linearly degenerate, and satisfy the
Temple property [2].

1.2 Third-order Hamiltonian operators

Third-order Hamiltonian operators of differential-geometric type were intro-
duced by Dubrovin and Novikov in [10], and subsequently investigated in
[31L 9, 30}, 27, [4, [15] 16]. They are defined by the general formula

P = gl’ja,f + b?uﬁ@i + (¢ 4y, k .+ ckjmumum )0,

+ d” ];7:1::1: + dkm xmu + dkmn ;nu;,
Where u', i = 1, ..., n, are the dependent variables, and the coefficients
g¥ dzmn are functions of u' only; 0, stands for the total derivative with

respect to x. The requirement that the corresponding Poisson bracket,

{F,G} = / —dac

is skew-symmetric and satisfies the Jacobi identities, imposes strong con-
straints on the coefficients of P. We restrict our considerations to the non-
degenerate case, det ¢’ # 0; in what follows we use ¢ for raising and
lowering indices. It was demonstrated in [31], 0] that there exists a coor-
dinate system (flat coordinates) in which Hamiltonian operator P takes a
simple factorised form [27],

Pii = 9, (wa +cly 'f) a,. (3)

In what follows we will always work in the flat coordinates, and keep for
them the notation u’; note that u’ are nothing but the densities of Casimirs
of the corresponding Hamiltonian operator. Introducing ¢;jr = giqgjpch’ one
can show [30] that the skew-symmetry conditions and the Jacobi identities
for operator are equivalent to

Imnk = —Cmnk — Cnmk, (4a
Cmnk = —Cmkn, (
Cmnk + Cnkm + Ckmn = 07 (40

Cmnk,l = _gpqcpmlcan- (4d



Equations (da)—([4d) imply [15]
Cskm = %(gsm,k — Jsk,m)- (5)
The elimination of ¢ from equations (4]) gives a system for the metric g,
Gmkn + Gkn,m + Gmnk = 0, (6a)
Ikl = —égp  Gplt,m) Ialk,n)] - (6b)

Equations mean that g is a Monge metric, and as such is an object of
projective differential geometry. Building on the correspondence of Monge
metrics to quadratic complexes of lines in P", in [I5, [16] we proposed a
classification of Hamiltonian operators for n < 4.

In what follows we will also need the result of Balandin and Potemin [4]
according to which the general solution of system @ is given by the formula

gij = e, (7)
where ¢g, is a non-degenerate constant symmetric matrix, and
here ¢zm and w,;’ are constants such that ¢Zm = — ka' These constants

have to satisfy an additional set of quadratic relations,
D3y (Vs + 10 + ity =0, (9)

b (W] 0] + U + ) =0, (10)
whose algebraic meaning was clarified in [16]. An important invariant of
Hamiltonian operator is its singular variety, det g;; = 0, which, due to
, is a double hypersurface of degree n — 1:

det g = det ¢(det )%

here the degree of det v equals n — 1 [16].

1.3 Hamiltonian systems of conservation laws

In this paper we are interested in Hamiltonian systems of conservation laws,
namely systems possessing third-order Hamiltonian structures :

_ poH

T su’

u = (V(u)e



for some (nonlocal) Hamiltonian functionals H. Examples of such systems
include Monge-Ampere equations, as well as various versions of WDVV
equations, see [II] for their geometric treatment based on the theory of
Frobenius manifolds. Our main results in this direction can be summarised
as follows.

Theorem 1. The necessary and sufficient conditions for a conservative sys-
tem to possess third-order Hamiltonian operator (@) are the following:

gimvjm = gijim, (lla)
cmialVi" + cmit Vi 4 emii Vit = 0, (11b)
VzI; = g e Vi + gkscsmz‘vjm7 (1Lc)

here lower indices of V™ denote partial derivatives: V™ = dV™/dut, etc.

In Theorem [7] of Section we present explicit formulae for the corre-
sponding Casimirs, Momentum and Hamiltonian. The proof of Theorem
can be found in Section .11

Conditions are analogous to Tsarev’s conditions in the theory of
first-order homogeneous Hamiltonian operators [36]. System possesses
a number of important properties, in particular, in Section we establish
the following result:

Theorem 2. System 18 in involution. Its general solution depends on

< w arbitrary constants.

It is quite remarkable that system , which is a linear involutive sys-
tem with non-constant coefficients, can be integrated in closed form (Section

[2.3). This leads to the following result (Section [2.3)):

Theorem 3. For Hamiltonian system the following conditions hold:
e The associated congruence (@ is linear.
o System 1s linearly degenerate and belongs to the Temple class.

o The fluzes V' are rational functions of the form
yi_ @
det )’

where det 1) is a polynomial of degree n—1 defining the singular variety,
and Q" are polynomials of degree n.



Note that for n > 4 systems of conservation laws possessing third-order
Hamiltonian structures are neither diagonalisable nor integrable in general.

Based on the classification of linear congruences in P? and P* dating back
to the classical work of Castelnuovo [5], this leads to a complete description
of Hamiltonian systems for n = 2, 3, see Section

1.4 Examples

Here we list examples of conservative systems with third-order Hamil-
tonian structures that will feature in the classification results below. In
order to simplify the expressions for the Hamiltonian densities we introduce
potential coordinates b® via u’ = b. In these coordinates system will
no longer be quasilinear, and third-order Hamiltonian operator takes a

first-order form, see , .

Example 1. A linear n-component system of conservation laws,

ui = (az-uj)x,

i.:

% = const, possesses third-order Hamiltonian formulation

a

i ij o3 OH
Uy = 77]8257

N = const, with the nonlocal Hamiltonian
H = 1 ppi k
=3 Njpa b’ 0" dx.

In this case, conditions reduce to 7j,a), = Nkpaj, which means that the
operator a is symmetric with respect to the metric 7.

The associated congruence is the set of lines that intersect n lin-
ear subspaces of codimension two in P"*! (the union of these subspaces
constitutes the focal variety). These subspaces can be described explicitly:
let \* be the eigenvalues of a with the corresponding left eigenvectors &k,
that is, a §j’? = M\*¢F. Then the k-th focal subspace is defined by two linear

equations, 30 = \¥, fjl?yj = 0.

Example 2. The simplest WDVV equation [I1], fis = f2,; — fewafott, can
be reduced to a 3-component conservative form,

ug = ui, uf = ui, u;? = ((u2)2 - U1U3)x7 (12)



by setting u' = frpz, u? = feet, U3 = forr. System possesses a Hamil-
tonian formulation u; = PJH /éu [13], with the homogeneous third-order
Hamiltonian operator

0 0 9,
P=o,| 0 0, —0,u! Oy
9, —u'd, Ou?+u?d, +u'dut

and the nonlocal Hamiltonian
1
o= _/ <2u1(b2)2 + b2b3)> dz.

Note that system possesses a compatible first-order Hamiltonian for-
mulation, as well as a Lax pair, which elucidate its integrability [13].

The associated congruence was thoroughly investigated in [2]. It
consists of trisecant lines of the focal variety which, in this case, is a generic
projection of the Veronese surface V2 C P° into P*. Various generalisations
of this example can be found in [19, 20} 29] 23].

Example 3. The following 4-component conservative system was obtained
in [3] in the classification of non-diagonalisable linearly degenerate systems
of Temple’s class whose characteristic speeds are harmonic (have cross-ratio
equal to —1):

1 _ .3
Up = Uy,
2 _ .4
Up = Uy,
u3 . (u1u2u4+u3((u3)2+(u4)2_(u2)2_1)) (13)
- 1,3 2,4
t ulud+uu z
4 ulu2u3+u4((u3)2+(u4)27(u1)271)
Uy = wludtulut o

System possesses a Hamiltonian representation u; = PdH /du where
the third-order Hamiltonian operator P is generated by the Monge metric

W22+ @) +1 —ulu? + ulul —ut® 4 et —oulu®
o —ut® 4 Pt (u)? + (uh)? + 1 —outud wlu® — u2ud
Gij —ul® + ot _oulyt (W) + (wh)?  ulu? — udut
—oulu® wlu® — el wla? —wdut (u2)? + (uP)?
Due to detg = (u'u® + u?u*)?, its singular variety consists of a double

quadric and a double plane an infinity. The corresponding nonlocal Hamil-
tonian H is given by

1
H=—; /(blb3 + 070" + z(b'u® — u'b® + but — uPh))da,

8



note the explicit dependence on z. Integrability of system can be
demonstrated as follows. Introducing the 2 x 3 matrix

uwt w21
Z_<u3 ut 0 )7

one can represent in matrix form (compare with Sect. 4 in [I7]),

Zy = (aZ2YZ +02),, (14)
where a = m, p = PP Introducing the 5 x 5 skew-

wly3 +u2u4

0o Z
(% 7)

one can rewrite as a matrix Hopf-type equation,

symmetric matrix

Sy = (bS — aS?),,
with the Lax pair
Ve = ASY,  1hy = A(bS — aS3)1p.

Congruence associated with system is related to the Cartan
isoparametric hypersurface in S°, see [3] for further details. Note that its
focal variety is reducible.

Example 4. Let us consider a class of conservative 4-component systems
of the form

Under the substitution u' = frree, 2 = frwet, U = fear, U = four they

reduce to a scalar fourth-order PDE for f(z,t). One can show that mod-
ulo equivalence transformations there exist only two types of such systems
possessing third-order Hamiltonian structures:

Case 1. f = (u?)? — u'u?. The corresponding system possesses a Hamilto-
nian formulation u; = POH /éu with the third-order Hamiltonian operator

0 0 0 8,

0 0 9, 0
P=0:10 o 0 _oul | %

9, 0 —u'd, 9,u*+u%d,



and the nonlocal Hamiltonian

1
H=— /(ul(b2)2 + 26201 + (b%)?)d.
Case 2. f = (u?)? — w?u* + u'. The corresponding system possesses a
Hamiltonian formulation u; = PdH /du with the third-order Hamiltonian
operator

9, 0 0 0

0 0 0 0,
P=0:14 0, -0, u? Do

0 0, —u?d, 0,9+ g0,

where g = u? 4+ 3 (u?)?, and the nonlocal Hamiltonian
H= /(b2b3u3 —bt? — b3t da.
We point out that systems from cases 1, 2 are likely to be non-integrable.

1.5 Projective invariance

The class of conservative systems is invariant under reciprocal transfor-
mations of the form

di = (aiu.i +a)dx + (aiVi + b)dt, (15)
dt = (biu' + c)dz + (b; V' + d)dt,

which can be viewed as nonlocal changes of the independent variables x, t;
here a;, b;, a,b, ¢, d are arbitrary constants. It was shown in [I], 2] that, along
with affine transformations of the dependent variables u?, reciprocal trans-
formations generate the group SL(n + 2) which acts by projective trans-
formations on the associated congruence . It is remarkable that these
transformations preserve the Hamiltonian property.

Theorem 4. The class of conservative systems possessing third-order
Hamiltonian formulation (@ is invariant under reciprocal transformations

@
We prove this result in Section Note that, in contrast to third-order

operators , first-order Hamiltonian structures of Dubrovin-Novikov type
are not reciprocally invariant, and generally become nonlocal [14].

10



Remark. In [I5, [16] we have classified third-order Hamiltonian opera-
tors/systems modulo the restricted group of reciprocal transformations that
change the independent variable x only,

di = (a;u’ + a)dz + (a; V' + b)dt,  dt = dt.

In the 3-component case this resulted in the 5 canonical forms. Modulo
extended transformations , all of them are equivalent to that of Example
2 from Section [T.4]

Ultimately, the classification of Hamiltonian systems of conservation laws
up to reciprocal transformations ([15)) reduces to projective classification
of the associated congruences .

1.6 Classification results

Here we summarise the classification results of Hamiltonian systems of con-
servation laws with n = 2 and 3 components. The classification is performed
modulo reciprocal/projective transformations as discussed in Section
We always assume that system is strictly hyperbolic, and that the met-
ric g defining Hamiltonian operator is non-degenerate.

The existing classification of linear congruences in P3 and P* readily
leads to the classification of 2- and 3-component Hamiltonian systems of
conservation laws. Thus, every linear congruence in P? consists of bisecants
of two skew lines in P2. This leads to

Theorem 5. For n = 2, every Hamiltonian system of conservation laws
is linearisable (that is, equivalent to 2-component case of Example 1 from

Section .

Linear congruences in P* were classified by Castelnuovo in [5]: they
can be obtained as trisecant lines of suitable projections of the Veronese
surface from P° into P*. Thus, all generic linear congruences are projectively
equivalent (non-generic projections correspond to systems with degenerate
Hamiltonian operators).

Theorem 6. For n = 3, every Hamiltonian system of conservation laws
is either linearisable (that is, equivalent to 3-component case of Example 1
from Section , or equivalent to the system of WDV'V equations (Example

2 from Section .

Theorems [5] [f] are proved in Section It follows that all 3-component
systems of conservation laws with third-order Hamiltonian structures are
automatically integrable.

11



The case n = 4 is far more complicated, primarily, due to the fact that
there exists no classification of linear congruences in P>. Only partial results
are currently available. In particular, 4-component Hamiltonian systems
associated with third-order Hamiltonian operators are not integrable in
general.

1.7 Algebraic reformulation of the problem

Linear congruences in P"*! are defined by n linear relations in the Pliicker
coordinates. Setting P"*! = P(W) where W is a vector space of dimension
n + 2, these linear relations correspond to the choice of an n-dimensional
subspace A C A2(W). Let Al,..., A" denote a basis of A. The condition
that the corresponding system is Hamiltonian, is equivalent to the exis-
tence of a non-degenerate symmetric matrix ¢g,, the same as in ([7]), such
that
pp AP N AT =0,

see Section The existence of such relation does not depend on the
choice of basis, and imposes strong constraints on A. Despite its apparent
simplicity, the classification of normal forms of such subspaces is an open
problem (starting with n = 4).

1.8 Symbolic computations

Symbolic computations were performed by CDE (by one of us, RFV), a
Reduce [37] package for integrability of PDEs. CDE can compute: Fréchet
derivatives, formal adjoints, symmetries and conservation laws, Hamiltonian
operators, and their brackets. Examples are available in the geometry of dif-
ferential equations website http://gdeq.org/Symbolic_Book, and a User’s
manual is included in the official Reduce manual; a book with numerous
detailed computations is to appear soon [24].

2 Proofs

2.1 Conditions for a system to be Hamiltonian: proof of
Theorem [1]

In this section we derive the necessary and sufficient conditions for system
to possesses Hamiltonian structure .

Theorem The necessary and sufficient conditions for a conservative
system to possess third-order Hamiltonian operator (@ are the following:

12
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gimv;'m = gjmvimv
cmial Vi" + cmit Vi 4 emii Vit = 0,

k ks m ks m
‘/ij:g Csmj‘/i +9 Csmi‘/}v

here low indices of V™ denote partial derivatives, V;"" = V™ /out, etc.

Proof. The proof is based on the Kersten—Krasil’shchik—Verbovetsky ap-
proach to Hamiltonian operators [22] which can be summarised as follows.
Consider an evolutionary system of the form

F' = ui — fi(t,:n,u, Uy, Ugg, - - -) = 0, (17)

with the formal linearization (Fréchet derivative) ¢r. Let P be a Hamilto-
nian operator, that is, a skew-adjoint operator with zero Schouten bracket,
[P, P] = 0. If system possesses P as a Hamiltonian structure, then P
maps variational derivatives of conserved densities of into generalized
(higher) symmetries, that is,

lpoP = P*ol}. (18)

Let us introduce the adjoint system (cotangent covering) of system ,

F=0
. ’ 19
where p is an auxiliary (vector) variable. Then is equivalent to
tr(P(p)) =0, (20)

which must hold identically modulo . Note that the idea of represent-
ing Hamiltonian operators P by linear differential expressions of type P(p)
was used in [I8] to compute Hamiltonian cohomology. The advantage of
the above formulation is that finding Hamiltonian operators amounts to
solving a problem which is computationally the same as finding generalized
symmetries.

To apply this technique to system we introduce a potential substi-
tution u’ = b%, for reasons that will become clear soon, obtaining a non-
quasilinear system

bi = Vi(by). (21)

13



This substitution turns Hamiltonian operator into a first-order operator,
P = _(gij (bs)0s + Cz;j (bx)b:]f:x)? (22)

and the corresponding Hamiltonian can be calculated explicitly (see Sec-
tion . Note that the above Hamiltonian operator is not of Dubrovin—
Novikov type as its coefficients g**(b,) and c{*(b,) loose their geometric
interpretation: their transformation rule is no longer tensorial. The lineari-
sation operator of system is

with the adjoint '
. ov?
Up() = =Dy, + Dy i
The adjoint system is
by = V' (ba),
pk’,t — 6[)2862 wxPi abg pz,.’r'

Setting P(p) = —gijpm — czjb';l,pj, condition takes the form

tr(P(p)) = — 2974 ij 0, i 1
F = — 7% 92tPjx — 9 Pjaxt — 77 2tVz2Pj
6b§ xtt'],T 7T abg xtYxaxt’)
.. .. avi agjk
k k h
B Cgblﬂftp] - C’;fjbl“xpjyt + 8b]z < 8()2 raPk,x
. ot " "
+ g]kpkﬂm“ + aéj bfvxb];xph + Clgc bg’zxaﬁph + c]{; bf;xph,x .
x

Using differential consequences of the adjoint system,

i i i i oV’ oV’ oV’
b, =V, bipw = Vier Dhte = D”f)ibfcpi + 2Dz87b§cpm + Tbﬁpi’m’

14



we obtain

) VAL Y VA
(p(P(p)) = <_ng i Jh) P

ol oul?
8gih k ’Lj 8Vh ’L] k avh
" <_ bk 2D b Ry
oviggih | iho ke
ot o bt o} G s

h 21/ h
o gD, O gy s g, OV
ov,  obl, *

avi (ocl

The above expression is linear in pp, phz, Phaze, and the coefficients are

polynomials in %, b_.. So, the expression vanishes if and only if
OV oVt
gl 4 = gh =, 23a
A (23a)
w 02V ovk oV
ik zh kh
— - = 23b
aokan. oL Tt = (23b)

e e v
kobl, ObLObL, ovl,  obl b b,
PPvh 1 (9chovi — 9cih ovi . 02V
) <6bj L " ou 86;”) d bl by
1 (cij PVt g oV ) 1 (avi Och! OV ac{h>
™ OBl Ob, abf b obl, obl,  opl, ob

=0, (23¢)

ij

-9

(23d)

The conditions (23al), (23b)), (23c) can be simplified by using objects g;;, ¢;jx
with lower indices, leading to

ovi  ovi

gijW - ngh =0, (24a)
avm avm avm
Cmkl gy~ + ik =g+ Cmli =g =0 (24b)
0?Vk & ovm & ovm™
—— = ¢ Comi—— + 9" Csmi—— 24c

15



Indeed, lowering indices in (23a)) leads to (24a)). Similarly, lowering indices

in (23b) and using (24al) leads to (24c). Using (23b) to eliminate second-
order derivatives in (23c)) we get

ih a1k ' k i avh i 9.7k i
_0g" oV 5 c}ghﬁV oV ) i OV. n OV' g N 8V' lh _0

bk vl obt.  Obk obl.  ovl Obl, 9l
Lowering indices and using (24a)) again we obtain

et 200 o — eV VE
Yps,k Cspk L 9sk,l — Cskl oL Ckpl obs

Using we obtain (24b)). It remains to show that equation (23d) is a
differential consequence of equations . In order to prove this statement
we will need equation . Let us differentiate (24c]) with respect to b, and
lower the index k by the metric g. Using , , @ we obtain
PVm v n )OVm
Ikm 7 — 9 "\CkpiCqml CkplCqmi) 7
™ ObL.obi Obl. s T oy,
ovm™ ovm
+ 9" (ChpjCqmi + ChpiCqmi) = + 97 (ChpiCqmy + ChpjCami) 77
obL. ob’,
One can show that equation (23d|) can be brought to this form. Let us first
bring (23d) to the form

PVk 1 — ek Ve
s, ~ 20 (0 G e G (2
rzYYrY Y z T

1 . Dk W\ OV
— 39im (202” 9™ eqp + A + " g egps EoA (25b)

1 ovr
- §9kqgjm(cgnscqpl + C;nscqpi)@ (25¢)
1 dcsk Ok ovm
+ = g L ) —~. 25d
g Jem < av, " ol ) onl (254)
Observe that the term (25¢) can be rearranged as
ove
gim (" Capi " Cpi) a0
ove
ZQSb(ijicqpl + ijlcqpi)%
ov®

=9 (CujiCapt + ChjiCapi) Ja®

ove ovb oV Vb
= Capl \ OsiTpi T Chis gq ) — Cavi \ CosiTgoT + Cols 57 )

16



where we used (24a)) and (24b)). Lowering indices in , using

ok Benji Ogn

as well as , we arrive at . Replacing in b.. by u' we obtain
(11). To finish the proof, it remains to note that conditions imply
the existence of a (nonlocal) Hamiltonian, see Theorem [7] of Section for
explicit formulae. ]

ag im m,
F— gnk ag,; ok, (26)

m
l

2.2 Involutivity of system : proof of Theorem

In this section we establish the involutivity of system , and estimate the
number of parameters in the general solution.

Theorem System is in involution. Its general solution depends on

< w arbitrary constants.

Proof. We need to show that differentiation of first-order conditions
and does not lead to new first-order relations. Then, we need to
demonstrate consistency of second-order equations ; this is straightfor-
ward tensor algebra. Differentiating

giijp = gijZ-p,

we obtain
gipvﬁc + gip,kvjp = 9ipVir, + 9ipi Vi

Using (11c]) we get

A e Csmkvjm] + gip,kvf =
9ipd" [Csmk V™ + csmi V'] + Gip.k Vz‘p'

Thus,
CimiVi' + Cimk V" + Gip V] = cimiVi" + cjmiVi" + gip Vi
or, relabelling indices,
cipg Vi + cipk V] + 9ipk V) = cjph Vi + cipi Vi + gjp V7 -
This can be rewritten in the form

(C’ipj - c]m)vkp + (cipk + gzp,k;)V]p - (ijk —'I— g]p,k)‘/lp = O

17



Taking into account we obtain
(cipg = Cipi) Vi — cpir V| + cpji Vi = 0.
Due to (4b]) we can rewrite this as
(cipg = Cipi) Vi + oV + cpjiVi = 0.
Using (11b]) we obtain
(cipg — Cipi) Vi = cpig Vi, -

It remains to note that the equality c;p; — ¢jpi = cpi; holds identically due
to the cyclic condition . Thus, differentiation of (11a)) does not lead to
new first-order relations.

Similarly, differentiating (11b)) we obtain
Cmkt Vi + emkiVii + Cmik Vi + cmik V] cmii Vi + cnii Vi = 0.
The substitution of and gives
— g epmicaaVi" + cmrig™ (cspi Vi + cspi Vi)
— GP1CpmjCqitVi™ + cmikg™* (cspi V) 4 csp Vi)
— g epmicqiVi" + cmiig™ (cspr V) + cspi Vi) = 0.
Note that all terms apart from those containing Vjp cancel, leading to
9" (CmkiCspi + CmikCspl + CmiiCspk) V] = 0.
Due to , this expression can be rewritten as
—(Chpip + Cpikt + Cikp)) V] =0,

which is an identity due to (4c).

The compatibility of second-order relations (11c) can be shown as fol-

lows. Computation of the consistency condition Vé’k = Vlfj’i gives

g?]: [Csmj‘/;m + Csmivjm]
+ gps [CsmjV;Zl + Csmj,k’v;‘m + Csmiv}rl? + Csmi7k‘/}m]
= gﬁs [Csmj Vkm + Csmkv;'m]

+ % [csmi Vi + CsmgiVi" + csmk Vi + Csmri V"]
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Cancelling terms with V" results in a simplified expression,
g’p]: [Csmjvvim + Csmi‘/jm] + gps [Csmj,kvim + Csrm‘vjrl)g1 + csmi,k‘/jm]

= g,z;'s [Csmj Vkm + Csmkvjm] +g"° [Csmjvivkm + Csmkvgl + Csmk’iv}m]'

Contraction with g, gives
Ipad'y [csmi Vi + comiV]"| + cqmixVi™ + camiVig + cqmikVi"

S
= gpqu [csmijm + csmijm] + cqmj,ivkm + cquVign + cquﬂ/]m.

Taking into account ([11c) along with the identity Ipa9% = —9°Pgpg i We get

- gspgp%k[csmj Vzm + Csmi ng] + cqmj,kvim
+ capig*[esmi Vi + Csmkvjm] + Cqmi,kvjm
= 9" gpqilcsmiVi" + csmk V"] + cqmjiVi"
+ Capk g [Csmi Vi™ + CsmiV]"] + Cqmi,i V"

Rearrangement gives

[cqmijk — Capkd”’ Csmi — 9 Gpg kCsmi ] Vi™
+ [cqpig™ csmj + 97 Gpg,iCsmi — Cqmiil Vi
+ [cqmz’,k - gspgpq,kcsmi + quigpscsmk + gspgpq,icsmk
- cqpkgpscsmi - Cqu,i]vjm =0.

Taking into account (4al) we obtain

(Cqmie + 9% CsmjCpak)Vi™ — (Cqmyi + 9 ComijCpai) Vi

+[(Cqmi,k + gSpCsmiCqu) - (Cqu,i + gsPCskapqi)]ij =0,
which is an identity due to (4d).
Thus, system ([L1]) is in involution. Since equations (11c|) express all

second-order partial derivatives of V*, the general solution depends on no

more than n+n? parameters (values of V? and first-order derivatives thereof).
However, relations impose @ independent constraints on first-
order derivatives of V*. Thus, the general solution depends on no more
than n + n? — n(HQ_l) = n(n; 3) arbitrary constants: the inequality is due
to the extra first-order relations that are not so easy to control. Ex-
amples show that solution spaces to equations for different third-order
Hamiltonian operators (with the same number of components) may have
n(n+3)
2

different dimensions. In particular, the maximal possible dimension,
corresponds to constant-coefficient operators (g;; = const, ¢;j; = 0). O

)
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2.3 Integration of system ([l1): proof of Theorem

It is quite remarkable that system (11)) for the fluxes V?, which is a linear
involutive system with non-constant coefficients, can be integrated in closed
form. Let us recall that the metric g defining Hamiltonian operator can
be represented in factorised form @), gij = gbgﬂbf 1/}?, where ¢g, is a non-
degenerate constant symmetric matrix, and ¢, = wzmum + wz; here @/ng
and w) are constants such that ¢) = — . These constants satisfy a set
of quadratic relations @, . Using relations @ - , one can show
that in the new variables W7 defined as

W7 =y vE
system takes the form

S W + wW] — P W] =0,
Say W+l W+ W] =0,
W) =0,

where lower indices of W7 denote partial derivatives. The last condition
implies that W7 are linear functions,

W7 = npu™ + €7, (29)

while the first two conditions imply that the constants 7., and 7 satisfy a
linear system

Ppy W’z] M, @b]km ¢k177] ] =0,
(30)

bpr [0 ET + winl —winl] = 0.

Thus, finding conservative Hamiltonian systems for a given third-order Hamil-
tonian operator is reduced to linear algebra. Conversely, given conser-

vative system , the reconstruction of the associated Hamiltonian repre-

sentation from system reduces to a linear system for the coefficients of

a Monge metric. The above representation implies the following result.

Theorem (3, For Hamiltonian system the following conditions hold:

e The corresponding congruence @ is linear.

o System 1s linearly degenerate and belongs to the Temple class.
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o The fluzes V' are rational functions of the form

yie &
det

where det 1 is a polynomial of degree n—1 defining the singular surface,
and Q" are polynomials of degree n.

Proof. Linearity of the congruence can be demonstrated as follows. Substi-
tuting W7 = nhu™ + €7 and Py = @Z)Zmum + WZ into the formula W7 =
¥} V¥ we obtain a linear relation in the Pliicker coordinates (note the skew-
symmetry condition ¢ = -7 ),

1
izp,jm(umv’“ — PV + wZVk —nlu™ =& =0. (31)

This proves the linearity. Linear degeneracy and the Temple property of
system follow from the linearity of the corresponding congruence [2].
Finally, solving the equations W7 = @Z)sz for V¥ implies V* = 1/)’§VV7
where w,lj is the inverse matrix to ¢z. Thus, V¥ will have det in the
denominator, while numerators will be polynomials of degree n. O

2.4 Projective invariance: proof of Theorem

In this section we show that third-order Hamiltonian formalism is in-
variant under reciprocal transformations . This is in contrast with the
case of first-order Hamiltonian structures of Dubrovin-Novikov type, which
generally become nonlocal after a reciprocal transformation [12] [14].

Theorem The class of conservative systems possessing third-order
Hamiltonian formulation (@ is invariant under reciprocal transformations

@

Proof. A general reciprocal transformation (15) can be represented as a
composition,

(x—transformation) o (z < t) o (x—transformation),

where z-transformation is a reciprocal transformation changing the variable
x only, and x <> t denotes the ‘inversion’, that is, the interchange of = and ¢.
The invariance of Hamiltonian formalism under z-transformations was
established in [I5]. Thus, it remains to show that third-order Hamiltonian
formalism is invariant under the inversion. Under this transformation,
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the new dependent variables and the new fluxes are defined as @' = V*, Vi =
u’, respectively. Recall that system possesses Hamiltonian operator ([3))
if the following conditions are satisfied:

1. Metric g of Hamiltonian operator (3| possesses factorised form
9ij = ¢57¢’8 1/1], where ¢g, is a constant symmetric matrix and wk =
1/1kmu + wk, here the constants wk and skew-symmetric wk satisfy

relations @, .

2. The functions ¢] V¥ are linear in w: ¢ V* = nhu™ + £7, where the
constants 1,,, &7 satisfy relations .

We claim that the ‘inverted’ system is also Hamiltonian, and the metric of
the transformed Hamiltonian operator is given by

Gij = vin gmnvn (32)

note that this transformation rule is identical to that for first-order Hamil-
tonian operators of Dubrovin-Novikov type. Thus, we have to demonstrate
the following:

1. Metric g of the transformed Hamiltonian operator possesses factorised
form gw = ¢3ng 1,/Jj, where ¢Bv is a constant symmetric matrix, and

wk = z/;,mvm + @}; here @] and skew-symmetric ¢k must satisfy

relations @D, .
2. The expressions @Ezuk are linear in V: ﬁzuk = V™ + &7, where the
constants 7,,, £7 satisfy relations .
We claim that this is indeed the case, furthermore,

(;ﬂ’)/ = (ZSﬁV? TZJIZm = wgmv (:)Z = 7727 ﬁg = wga g’y = _677

note that the constants with tilde’s satisfy the same relations @D, , .

To establish part 1 we proceed as follows. Differentiating the relation
W7 = wgv’f with respect to 4™ we obtain n,, w VE 4 wkmvk Solving
for VTI,‘; gives V,fl = an djkd) V3, where @Z)k is the inverse matrix to Q[Jk

Thus, using ,
Gii = Vg VE = (7] — 00V ) g (60T — 9T V)
= (] — YLV by (UEn] — VRT V)
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= (1] =LV dpy (0] — UL V?) = (0] +0V )by (0] + 0T, V) = 0] 98],

which is the required formula. Finally, for part 2, it is a simple exercise to
verify that the relation 1] u® = 7, V™ 4 ¢ follows from ¢ V¥ = nhu™ +
&, O

2.5 Casimirs, Momentum, Hamiltonian

Given system satisfying conditions , in this section we derive explicit
formulae for the corresponding Casimirs, Momentum and the Hamiltonian.

To do so we introduce the substitution u* = b’ transforming system into
(non-quasilinear) first-order form (21,

bi = Vi(by).

In variables b, operator (3)) takes first-order form . Using g;; = gbﬁy%ﬁ w;
we can rewrite it in factorised form,

PY = — 4700,
recall that w/’é is the inverse matrix to wf .

Theorem 7. System can be represented in Hamiltonian form,

i = Vi(b,) = PY—,

with the local Hamiltonian

H = [ hde =~ [ | (Sivimby + S ) boie

ot (%q/}gqbpbg n wqﬁbQ) }dm,

note the explicit x-dependence. The n Casimirs are given by

oo = / dr = / (;w%kb§+w%> b dz. (34)

The Momentum has the form

1 1
M = /m dx = —/ <3¢57w5¢;mbmm + 2¢57w}€w3> bPbldz. (35)
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Remark. In the particular case £ = 0, equations , , were
obtained in [29]. If £ # 0, the corresponding Hamiltonian density h has

explicit z-dependence. It may be more than just a curiosity that all known
integrable systems with Hamiltonian structure admit a local compat-
ible first-order Hamiltonian operator iff A has no explicit z-dependence.

Proof. Using relations , one obtains the following expression for the
variational derivative of H,

oH
57 = 0o WM W) b + €12) = g (V7 + '),

Thus,
b = PUSE = =P uond 5 = 07 0h0n Gl (b + €V)
= OV0n b (b + €7x) = OP Yl bn (mB8 + €)
= Uy (bt +€) = viW" = V'(by),

as required. Similarly, variational derivatives of the Casimirs are

oC™ o a a
o7 = Vil =
so that
Yo ~ 0C™ ; j j
pii = _¢va1631 %W _ _¢Bv¢zﬁ3x¢%¢;¥ — _¢57w’68153 =0.

Finally, using , one computes variational derivatives of the Momentum,

oM _
S5 = O™ =~ o b
thus,
- OM . SM .
RN e PYR Yl X
as required. Note that in the original variables u?, all of the above densities
become nonlocal. O
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2.6 Algebraic reformulation of conditions (9)), (10), (30)

In this section we demonstrate that algebraic constraints @D, , can
be represented in a compact invariant form which substantially simplifies
their analysis. Let us note that lines pass through the points 3’ =
u', y"tt =1, y"*2 =0and ¢y’ =V, y"t!1 =0, y"T2 = 1, respectively. The
corresponding Pliicker coordinates, which are 2 x 2 minors of the 2 x (n+2)

wo... w10
vi ... vV o0 1)’

can be arranged into (n + 2) X (n + 2) skew-symmetric matrix,

matrix

Vi oyt
U :
Y = B VOB ,
vt ... vyn 0 1
7 — -1

here U is the skew-symmetric matrix with entries u'V7 — «w/ V% In this
notation, relations (31)) can be represented as

trY A7 =0,

where (n + 2) x (n + 2) skew-symmetric matrices A" are defined as

w{ nf
1y o
AT = wn |
—w] ... —wp 0 ¢
—77'{ el =1 =£7 0

here 17 is the skew-symmetric matrix with entries 1/17] What is remarkable,
relations @D, (110)), (30)) compactify into a single relation

dp, AP N AT =0,

where each A7 is interpreted as a 2-form.

2.7 Classification results: proof of Theorems [5], [6]

In this Section we summarise the classification of 2- and 3-component Hamil-
tonian systems of conservation laws based on the classification of linear con-
gruences in P? and P*.
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Theorem For n = 2, every Hamiltonian system of conservation laws
is linearisable (that is, equivalent to 2-component case of Example 1 from

Section .

Proof. Every linear congruence in P? consists of bisecants of two skew lines.
Modulo projective transformations, any such congruence can be brought to
the form
gl = uly® a2yt y? = u® o+ ulyl

where y* are homogeneous coordinates in P3. In the affine chart y* = 1, the
skew lines in question can be defined as 3> =1, y! =y? and % = —1, y!' =
—y?, respectively. The corresponding system of conservation laws is clearly
linear,

which is a particular case of Example 1. O

Theorem [6] For n = 3, every Hamiltonian system of conservation laws
is either linearisable (that is, equivalent to 3-component case of Example 1
from Section , or equivalent to the system of WDV'V equations (Example

2 from Section .

Proof. Linear congruences in P* were classified by Castelnuovo in [5]. In
our presentation we follow [2], and use (y' : --- : 3°) for homogeneous
coordinates in P*. Over C, every linear congruence in P* can be brought to
one of the four normal forms:

e Generic case: the focal variety is a generic projection of the Veronese
surface V2 C P? into P*:

yl — u1y4 +u2y5’ y2 — u2y4 +u3y5’ y3 — u3y4 + ((u2)2 7u1u3)y5.

The corresponding system,

1_ .2 2 _ .3
Uy = Uy, Up = Uy,

u? = ((u2)2 - ulu?’)w,

does not possess Riemann invariants (Example 2).

e The focal variety is reducible, and consists of a cubic scroll and a plane
which intersects the cubic scroll along its directrix:

1 9 u2u3

gl =yt udS = Wt 4+ dt, P = Syt + = "3

26



The corresponding system,
2,3
1_ 2 2 _ 3 3_ (uu
Uy = Uy, Up = Uy, ut_< 1> ’
U
T
possesses one Riemann invariant. One can show that this system does

not possess non-degenerate third-order Hamiltonian structures.

e The focal variety is reducible, and consists of a two-dimensional quadric
and two planes which intersect the quadric along rectilinear generators
of different families:

1 2 3

1.4 2 5 2.4 3.5 _ 3.4 (U3)2_15
Yy =uwy +uy, Yy =uy +uy, Yy =uy +-—55—

w2 7
The corresponding system,
3)2
1 2 2 3 3 (w’)” -1
ut - /U/x, ut - ux7 ’LLt - < ) 5
x

u

possesses two Riemann invariants. One can show that this system does
not possess non-degenerate third-order Hamiltonian structures.
e The focal variety consists of 3 planes in general position:

gl = ulyt S, g = wt a3, R = WPyt 4 P

The corresponding system is linear:

(Example 1).

Note that the number of planar components of the focal variety equals the
number of Riemann invariants of the associated system [2]. O

3 Concluding remarks

The classification of n-component Hamiltonian systems of conservation laws
has been reduced to the following algebraic problem: for a vector space W
of dimension n + 2, classify n-dimensional subspaces A C A%2(W) satisfying
a relation

¢p, AP N AT =0,

where A® is a basis of A and ¢ is symmetric and non-degenerate. This gives
rise to the following natural questions:
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e Classify normal forms of such subspaces A, at least for n = 4. This
would provide explicit coordinate representation of Hamiltonian sys-
tems of conservation laws.

e Classify subspaces A corresponding to integrable systems of conserva-
tion laws (note that for n = 2, 3 all Hamiltonian systems are automat-
ically integrable). We emphasise that for n > 4 the integrability is no
longer the case in general. We expect that Example 3 from Section
will play a key role in this classification.

We hope to return to these questions elsewhere.
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