
Bi-Hamiltonian structure of the
Oriented Associativity Equation

Maxim V. Pavlov1, Raffaele F. Vitolo2

1Lebedev Physical Institute of Russian Academy of Sciences,
Moscow, Leninskij Prospekt, 53;

2Department of Mathematics and Physics,
University of Salento, Lecce, Italy

and INFN, Section of Lecce
http://poincare.unisalento.it/vitolo

Published in
J. Phys. A: Theor. Math. – Letters,

Volume 52, Number 20 (2019)

Abstract

The Oriented Associativity equation plays a fundamental role in
the theory of Integrable Systems. In this paper we prove that the equa-
tion, besides being Hamiltonian with respect to a first-order Hamilto-
nian operator, has a third-order non-local homogeneous Hamiltonian
operator belonging to a class which has been recently studied, thus
providing a highly non-trivial example in that class and showing in-
triguing connections with algebraic geometry.

MSC2010: 37K05.

1 Introduction

The Associativity equation, or Witten-Dijkgraaf-Verlinde-Verlinde (WDVV)
equation, plays a fundamental role in the geometric theory of Integrable
Systems. Its solutions define Frobenius manifolds, which correspond to inte-
grable systems; Frobenius manifolds are an important part of the theory of
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quantum cohomology and Gromov–Witten invariants. These relationships
were shown by B. Dubrovin in his seminal paper [3].

The nonlinear partial differential system of equations

∂2ci

∂aj∂am
∂2cm

∂ak∂an
=

∂2ci

∂ak∂am
∂2cm

∂aj∂an
(1)

on N unknown functions (ci) of N independent variables (aj) was introduced
in [13] as a generalization of the Associativity equations. Its solutions de-
fine F -manifolds, which are still in correspondence with integrable systems.
The far-reaching implication of this generalization are an active subject of
study: flat and bi-flat F -manifolds have interesting connections with Painlevé
equations [1, 18, 19]; see also the papers [15, 16]) devoted to coisotropic de-
formations. We call the system (1) the Oriented Associativity equation.

The Oriented Associativity equation admits the scalar linear spectral
problem

∂2h

∂ai∂aj
= λ

∂2cm

∂ai∂aj
∂h

∂am
(2)

(see, for instance, [3, 23]) that ensure that the equation is integrable as it
possesses a Lax pair.

We observe that the Associativity equation [3] can be obtained from (1)
by the potential reduction ci = ηim∂F/∂am, where ηks is a constant nonde-
generate symmetric matrix.

In this paper, we will prove the existence of a bi-Hamiltonian formalism
for the Oriented Associativity equation (1) in the case N = 3.

The above result has strong analogies with the known results on the As-
sociativity (WDVV) equation. Indeed, the Associativity equation can be
written as N − 2 commuting hydrodynamic-type systems of conservation
laws [9]. For N = 3 the (only) system was shown to be bi-Hamiltonian
in [8]. Further investigations shown a similar situation in the case N = 4:
the Hamiltonian operators were, in both cases, a first-order homogeneous
operator (found in [9] for N = 4) and a third-order homogeneous operator
(found in [24] for N = 4). First-order homogeneous operators [4] can be
written as Aij1 = gij∂x, where (gij) is a constant matrix, in a suitable coordi-
nate system; third-order homogeneous operators [5] have a more complicated
structure, and can be brought to the form

Aij2 = ∂x
(
gij∂x + cijk u

k
x

)
∂x, (3)
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where uk are dependent variables. Such operators have been extensively
studied quite recently [10, 11].

A first-order homogeneous Hamiltonian operator for the simplest case
(N = 3) of Oriented Associativity equation (written in the form of a hydro-
dynamic-type system) was found [23] with the same method as in the Asso-
ciativity case. It was natural to conjecture that a third-order homogeneous
Hamiltonian operator might exist.

In this paper, we will prove that the Oriented Associativity equation in
hydrodynamic-type form admits a non-local third-order homogeneous Hamil-
tonian operator of a class that was recently introduced by M. Casati, E.V.
Ferapontov and the authors of this paper in [2]. We stress that the proof is
achieved in the simplest case N = 3 only.

The significance of the result is high: indeed, it is known that the Asso-
ciativity equations (in hydrodynamic form) in the cases N = 3 and N = 4
discussed above correspond to linear line congruences, which are algebraic
varieties in the Plücker variety all lines of a projective space [12]. Their
third-order Hamiltonian operators correspond to quadratic line complexes,
which are algebraic varieties of lines in a projective space of different dimen-
sion with respect to the previous lines [10, 11].

The Oriented Associativity equation (in hydrodynamic form) can also be
interpreted as a line congruence, even if we still do not know if the congruence
is linear. The third-order non-local homogeneous Hamiltonian operator that
we find as the main result in this paper also defines a quadratic line complex.
It is thus clear that the strong links between the Associativity equation and
projective-geometric varieties are preserved for the Oriented Associativity
equation. We believe that such structures play an important role in the rich
geometry of such equations, with lots of interesting Mathematics yet to be
discovered.

The computation related to finding the non-local Hamiltonian operator
is highly non-trivial, and it is made possible by a systematic use of computer
algebra systems, in particular Reduce and its package CDE for computations
with Hamiltonian operators [17, 25].
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2 The Oriented Associativity equation

It is shown in [23] that the Oriented Associativity equations can be regarded
as the compatibility conditions of N − 1 commuting flows of type

aitk = ∂x
∂ci

∂ak
, k = 2, . . . , N ; (4)

under a further condition on the unknowns ci, by analogy with the As-
sociativity equation: we set ∂ci/∂a1∂ak = δik. This specifies completely
the dependence of ci on a1: c1 = (1/2)(a1)2 + u1, ck = a1ak + uk where
ui = ui(a2, . . . , aN) are new unknown functions. The equations (4) can be
rewritten in terms of the new unknowns. In the case N = 3, if we set u1 = u,
u2 = v, u3 = w, the compatibility conditions of the 2 commuting flows in (4)
lead to the system of three quadratic second-order equations

uxx = vxtwxx − vxxwxt + w2
xt − wxxwtt,

uxt = vttwxx − vxtwxt,
utt = v2xt − vxxvtt + vttwxt − vxtwtt,

(5)

after renaming a2 = x, a3 = t. The system (5) is the Oriented Associativity
equation in the simplest case N = 3. It is endowed by the Lax pair ψ

ψ1

ψ2


x

= λ

 0 1 0
uxx vxx wxx
uxt vxt wxt

 ψ
ψ1

ψ2

 , (6)

 ψ
ψ1

ψ2


t

= λ

 0 0 1
uxt vxt wxt
utt vtt wtt

 ψ
ψ1

ψ2

 (7)

Let us introduce a new set of field variables q1 = uxx, q
2 = uxt, q

3 = vxx, q
4 =

vxt, q
5 = wxx, q

6 = wxt. Then, the quadratic system (5) becomes the six
component hydrodynamic type system of conservation laws

q1t = q2x, q2t = ∂x
q2q6 + q1q4 − q2q3

q5
,

q3t = q4x, q4t = ∂x
q2 + q4q6

q5
, (8)

q5t = q6x, q6t = ∂x
(q6)2 − q3q6 + q4q5 − q1

q5
.
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It is possible to prove that the system (8) has three further conservation laws:

∂tv
k = ∂x

(vk)2 − q3vk − q1

q5
, k = 1, 2, 3, (9)

where vi are the roots of the characteristic polynomial λ3 − (q3 + q6)λ2 +
(q3q6 − q4q5 − q1)λ + q1q6 − q2q5 of one of the matrices of the Lax pair (6).
By Viète’s theorem we have q3 + q6 = v1 + v2 + v3, so that only two of the
densities vi are new.

3 First-order Hamiltonian structure

The hydrodynamic-type system (8) admits a first-order homogeneous Hamil-
tonian operator. This class of Hamiltonian operators was first introduced in
[4]. Operators in this class always admit a coordinate system in which they
can be presented as A = hij∂x, where hij is a constant matrix. The results in
this sections were found in [23], using techniques that are analogous to those
used in [8].

We can change the coordinates in the above hydrodynamic-type system
to the new coordinates (uk) defined by the Viète formulae:

u1 = v1, u2 = v2,

u3 = v3, u4 = q4,

u5 = q5, u6 = 2q3 − (v1 + v2 + v3).

(10)

They are related with (qi) by the formulae

q1 =
1

4
(u1 + u2 + u3)2 − (u1u2 + u1u3 + u2u3)− 1

4
(u6)2 − u4u5,

q2 =
2u1u2u3 + (u1 + u2 + u3 − u6)q1

2u5
,

q3 =
1

2
(u1 + u2 + u3 + u6),

q4 = u4,

q5 = u5,

q6 =
1

2
(u1 + u2 + u3 − u6).

(11)
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Note that the inverse formulae contain cubic roots, and have a much more
complicated expression. In the coordinates (ui) a Hamiltonian formulation
of the system becomes immediate:

uit = hik∂x
∂H

∂uk
, where hik = −


0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 2

 , (12)

the Hamiltonian density is H = q2 and the momentum density is P = q1 =
1
2
hiku

iuk.

4 Third-order nonlocal operators and

systems of conservation laws

After the results in [23], we might be tempted to conjecture that, by analogy
with the Associativity equation, also the Oriented Associativity equation is
endowed by two local homogeneous Hamiltonian operators, of first order and
third order. Strictly speaking, this is not true. We recall that the conditions
for an operator of the form (3) to be Hamiltonian (provided det(gij) 6= 0)
are

gij = gji, (13a)

cnkm =
1

3
(gmn,k − gkn,m) (13b)

gij,k + gjk,i + gki,j = 0, (13c)

cnml,k + csmlcsnk = 0. (13d)

where (gij)
−1 = (gij) and cijk = giqgjpc

pq
k . By repeating the procedure that

led to the results in [24], we found a candidate (gij) for a leading term of
a third order homogeneous Hamiltonian operator. However, that candidate
fulfills (13a), (13b) and (13c) but it does not fulfill (13d). After the re-
sults in [2], we conjectured that the third-order homogeneous Hamiltonian
operator B = (Bij) might be nonlocal, of the type

Bij = ∂x ◦ F ij ◦ ∂x = ∂x(g
ij∂x + cijk q

k
x + cαwiαkq

k
x∂

−1
x wjαhq

h
x)∂x (14)
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and wiαk = wiαk(q
j), with cα ∈ R. In such an ansatz F ij has the same structure

as Ferapontov–Mokhov nonlocal first-order homogeneous operators [21, 6, 7].
However, the two compositions with ∂x change the conditions for the operator
to be Hamiltonian to [2]

wαij + wαji = 0, (15a)

wαij,l − csijwαsl = 0, (15b)

cnml,k + csmlcsnk + cαwαmlwαnk = 0, (15c)

in addition to (13a), (13b), (13c) (of course, (15c) is a modification of (13d)),
where wij = gisw

s
j . We remain with the problem of determining the tensors

wiαj. It is known that in Ferapontov–Mokhov case they are matrices of com-
muting flows with respect to the hydrodynamic-type system of which the
operator is Hamiltonian. In this case, that is false: the condition of compati-
bility between B and the Oriented Associativity equation (8) can be derived
by the condition that the Hamiltonian operator maps conserved quantities
into symmetries. It was shown in [14] that such a condition is equivalent to
finding solutions B to the equation

`E(B(p)) = 0, (16)

over the adjoint system (or cotangent covering){
E = 0,
`∗E(p) = 0,

(17)

where p is an auxiliary (vector) variable, Ei = uit − (V i)x = 0 is the initial
equation, with V i = V i(u) the vector of fluxes, `E is the formal linearization
(Fréchet derivative) of E and `∗E its adjoint operator.

It is easier to compute the condition (16) in potential coordinates bix = qi.
We have

Bij = −(gij(bx)∂x + cijk (bx)b
k
xx + cαwiαk(bx)b

k
xx∂

−1
x wjαh(bx)b

h
xx) (18)

and Ei = bit − V i(bx). Let us introduce the notation

∂V i

∂bkx
= V i

k ,
∂V i

∂bkx∂b
h
x

= V i
kh, gij,k =

∂gij

∂bkx
, cijk,h =

∂cijk
∂bhx

,

and similarly for other derivatives. We have

`F (ϕ) = ∂tϕ
i − V i

j ∂xϕ
j, `∗F (ψ) = −∂tψk + ∂x(V

i
kψi). (19)
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so that the adjoint system is

bit = V i(bx) (20)

pk,t = V i
khb

h
xxpi + V i

kpi,x (21)

If we assume that wiαj(bx)b
j
xx are symmetries of the system (20) then we can

prove that they yield conservation laws on the adjoint system whose densities
and fluxes are, respectively:

rαt = V i
j w

j
αkb

k
xxpi, rαx = wiαkb

k
xxpi. (22)

The potential variables rα allow us to represent the operator as

Bi(p) = −gijpj,x − cijk b
k
xxpj − cαwiαkbkxxrα. (23)

Lemma 1 The condition `F (B(p)) = 0 is equivalent to the conditions:

− gijV h
j + V i

j g
jh = 0 (24a)

− gih,kV k
l − gij2V h

jl − c
ij
l V

h
j + V i

j g
jh
,l + V i

j c
jh
l = 0 (24b)

− gikV h
kl − cihk V k

l + V i
k c
kh
l = 0. (24c)

− gijV h
jlm −

1

2

(
cihm,jV

j
l + cihl,jV

j
m

)
− cihk V k

lm

− 1

2

(
cijmV

h
jl + cijl V

h
jm

)
+

1

2

(
V i
j c
jh
m,l + V i

j c
jh
l,m

)
− cα1

2

(
V h
k (wiαlw

k
αm + wiαmw

k
αl) + V i

j (wjαlw
h
αm + wjαmw

h
αl)
)

= 0

(24d)

− wiαh,kV k
m − wiαm,kV k

h − wiαkV k
m,h

− wiαkV k
h,m + V i

kw
k
αm,h + V i

kw
k
αh,m = 0

(24e)

− wiαkV k
h + V i

kw
k
αh = 0 (24f)

Proof. We have:

`F (B(p))i =

=− gij,kb
k
xtpj,x − gijpj,xt − c

ij
k,hb

h
xtb

k
xxpj − c

ij
k b

k
xxtpj − c

ij
k b

k
xxpj,t

+ V i
j

(
gjk,h b

h
xxpk,x + gjkpk,xx + cjhk,lb

l
xxb

k
xxph + cjhk b

k
xxxph + cjhk b

k
xxph,x

)
− cαwiαk,hbhxtbkxxrα − cαwiαkbkxxtrα − cαwiαkbkxxV h

l w
l
αmb

m
xxph

+ V i
j c
α
(
wjαk,hb

h
xxb

k
xxrα + wjαkb

k
xxxrα + wjαkb

k
xxw

h
αlb

l
xxph).
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After replacing the derivatives bhxt, b
h
xxt and pj,xt using the equations (20) and

(21) we obtain a polynomial in pj, b
k
xx and higher x-derivatives; its coefficient

shall vanish, they are are the conditions of the statement.

Remark 2 A direct computation shows that the two flows V i and wjαku
k
xx

commute if and only if the conditions (24e) and (24f) hold true. Moreover,
by arguments that are similar to those of [12, Theorem 1] it can be proved
that (24d) is a consequence of the other equations (24) and (13), (15).

5 Third-order Hamiltonian structure

It is known[10] that gij shall be polynomials of second degree in the variables
(qk). Then, equations (24a), (24b), (24c) are easily solved with respect to
(gij), where V i is the vector of fluxes of the Oriented Associativity equation
(8). We obtain the unique solution:

(gij) =
2 0 q3 −q5
0 0 2q5 0
q3 2q5 −2(q1 + q4q5) q5(q3 − q6)
−q5 0 q5(q3 − q6) 2(q5)2

2q4 −q3 + 2q6 −q2 + q4(q3 − q6) −q1 + q3(−q3 + 2q6)− 2q4q5 − (q6)2

0 −q5 2q4q5 q5(−q3 + q6)

2q4 0
−q3 + 2q6 −q5

−q2 + q4(q3 − q6) 2q4q5

−q1 + q3(−q3 + 2q6)− 2q4q5 − (q6)2 q5(−q3 + q6)
2(q4)2 −q2 + q4(−q3 + q6)

−q2 + q4(−q3 + q6) −2q4q5

 (25)

The metric (gij) turns out to be a Monge metric of a quadratic line complex,
as it solves the equation (13c), but it does not fulfill (13d). Hence, we shall
compute suitable tensors wiαj.

A direct computation of wiαj as symmetries of (20) is very heavy. Since we
have at our disposal a Lax pair, we can compute a sequence of homogeneous
conserved quantities with a standard technique in the theory of integrable
systems; see [24] for details. Then, we can transform them into symmetries
using the Hamiltonian operator. We rewrite (6) in terms of (qi) and get ψ

ψ1

ψ2


x

= λ

 0 1 0
q1 q3 q5

q2 q4 q6

 ψ
ψ1

ψ2

 . (26)
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By eliminating ψ1, ψ2 from (26) we obtain the single linear PDE(
− q1xλ2q5 + q5xλ

2q1 + λ3q1q5q6 − λ3q2(q5)2
)
ψ+(

− q3xλq5 + q5xλq
3 − λ2q1q5 + λ2q3q5q6 − λ2q4(q5)2

)
ψx

+
(
− q5x − λq3q5 − λq5q6

)
ψ2x + q5ψ3x = 0

The substitution ψ = exp
∫
rdx yields a nonlinear ordinary differential equa-

tion on the function r and its first and second order derivatives. This function
r plays the role of a generating function of conservation law densities with
respect to the parameter λ for the system (8). The expansion of r at infinity
(i.e. λ→∞)

r = λh−1 + h0 +
h1
λ

+
h2

λ2
+ ...,

in the above equation leads to a sequence of differential relationships between
the coefficients h−1, h0, h1,. . . The leading term (the coefficient of λ3) co-
incides with the characteristic equation of the eigenvalues of the matrix in
(26). Thus, starting from h−1 = uk, k = 1, 2, 3, the expansion of r with
respect to λ has three branches of conservation law densities, that we denote
by hik, i = 0, 1,. . . Such densities are quasihomogeneous polynomials of de-
grees deg hik = i + 1 with respect to the grading deg u = 0, deg ∂x = 1, and
their coefficients are expressible via rational functions of (uk).

Using Reduce [17] we found all expressions of hik, for k = 1, 2, 3 and
i = 0: they are of the form h0k = cki(u)uix, where

h01 =
1

S1

(
− 4u4x(u

5)2 + u5x((u
6)2 − 2u6u1 + (u1)2 − (u2)2

+ 2u2u3 − (u3)2) + 2u6xu
5(−u6 + u1) + 2u1xu

5(−2u1 + u2 + u3)

+ 2u2xu
5(u2 − u3) + 2u3xu

5(−u2 + u3)
)

(27)

h02 =
1

S2

(
4u4x(u

5)2 + u5x(−(u6)2 + 2u6u2 + (u1)2 − 2u1u3

− (u2)2 + (u3)2) + 2u6xu
5(u6 − u2) + 2u1xu

5(−u1 + u3)+

2u2xu
5(−u1 + 2u2 − u3) + 2u3xu

5(u1 − u3)
)

(28)
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h03 =
1

S3

(
− 4u4x(u

5)2 + u5x((u
6)2 − 2u6u3 − (u1)2 + 2u1u2

− (u2)2 + (u3)2) + 2u6xu
5(−u6 + u3) + 2u1xu

5(u1 − u2)

+ 2u2xu
5(−u1 + u2) + 2u3xu

5(u1 + u2 − 2u3)
)

(29)

where S1 = 4u5((u1)2− u1u2− u1u3 + u2u3), S2 = 4u5(u1u2− u1u3− (u2)2 +
u2u3) S3 = 4u5(u1u2 − u1u3 − u2u3 + (u3)2).

We observe that the above conserved densities are not independent. It
holds:

h01 + h02 + h03 = 0. (30)

We get (higher) commuting flows from the above conserved densities by
the formula in potential coordinates

bit = hik∂−1
x

δh0i
δbk

= hik
(
−∂h0i
∂bkx

+ ∂x
∂h0i
∂bkxx

)
= wij(bx)b

j
xx. (31)

In particular, from the independent densities h01 and h02 we obtain the com-
muting flows wi1j(bx)b

j
xx and wi2j(bx)b

j
xx. We observe that they are commut-

ing flows for the system (20) in potential coordinates, and they define higher
commuting flows (wiαju

j
x)x for the system (10). So, they fulfill the conditions

(24e) and (24f) as they are invariant conditions. However, we need to check
the Hamiltonian property of the operator B in coordinates (qi).

In principle, it is possible to invert the coordinate change (11) and express
the commuting flows (wiαju

j
x)x in coordinates (qi).

Lemma 3 The change of coordinate formula for the flow (wiαj(u)ujx)x into
the flow (wiαj(q)qjx)x is

∂qk

∂uh
whi (u)

∂ui

∂qj
= wkj (q).

We remain with the computational problem of expressing (ui) in terms of
(qk). This would lead to complicated expressions involving roots, so we will
write down the matrix wαkj for the two flows (α = 1, 2) using the coordinates

11



(ui) as parameters for (qk). The two matrices wαkj turn out to be skew-
symmetric, so that the condition (15a) is satisfied. All coefficients wαkj have
denominators that contain factors of

∆ =
√
| det(gij)| = (u1 − u2)(u1 − u3)(u2 − u3)u5; (32)

if we introduce the notation w̃αkj = ∆wαkj, then the only nonzero compo-
nents of the two matrices w̃αkj (for k < j) are

w̃113 = −(u2+u3−u1−u6)(u2−u3)u5
2

w̃114 = (u2 − u3)(u5)2

w̃125 = −(u2+u3−u1−u6)(u2−u3)u5
2

w̃126 = (u2 − u3)(u5)2

w̃134 = (u2 − u3)(u5)2u1

w̃135 = −(4u4u5+(u6)2−2u6u1+(u1)2−(u2)2+2u2u3−(u3)2)(u6+u1−u2−u3)(u2−u3)
8

w̃145 = −(4u4u5+(u6)2−4u6u1−(u1)2+2u1u2+2u1u3−(u2)2+2u2u3−(u3)2)(u2−u3)u5
4

w̃146 = (u2 − u3)(u5)2u1

w̃156 = −(4u4u5+(u6)2−2u6u1+(u1)2−(u2)2+2u2u3−(u3)2)(u6+u1−u2−u3)(u2−u3)
8

and

w̃213 = −(u6−u1+u2−u3)(u1−u3)u5
2

w̃214 = −(u1 − u3)(u5)2

w̃225 = −(u6−u1+u2−u3)(u1−u3)u5
2

w̃226 = −(u1 − u3)(u5)2

w̃234 = −(u1 − u3)(u5)2u2

w̃235 = (4u4u5+(u6)2−2u6u2−(u1)2+2u1u3+(u2)2−(u3)2)(u6−u1+u2−u3)(u1−u3)
8

w̃245 = −((u2−u3)2+(u1)2−2(u2+u3)u1−(u6−4u2)u6−4u4u5)(u1−u3)u5
4

w̃246 = −(u1 − u3)(u5)2u2

w̃256 = (4u4u5+(u6)2−2u6u2−(u1)2+2u1u3+(u2)2−(u3)2)(u6−u1+u2−u3)(u1−u3)
8

We end this paper by exhibiting the third-order Hamiltonian operator for
the Oriented Associativity equation in hydrodynamic form.

12



Theorem 4 The Oriented Associativity equation in hydrodynamic form (8)
admits the non-local third-order homogeneous Hamiltonian operator

Bij = ∂x

(
gij∂x + cijk q

k
x + c1wi1kq

k
x∂

−1
x wj1hq

h
x

+ c2(wi1kq
k
x∂

−1
x wj2hq

h
x + wi2kq

k
x∂

−1
x wj1hq

h
x) + c3wi2kq

k
x∂

−1
x wj2hq

h
x

)
∂x (33)

where gij is the inverse of the Monge metric (25), cijk are defined through gij,
wi1j and wi2j are the matrices of the two commuting flows that we found above
and

c1 = 2, c2 = 1, c3 = 2. (34)

Proof. It is only necessary to check the conditions

cijk,l + gpqcpjkcqil+

c1w1jkw1il + c2(w1jkw2il + w1ilw2jk) + c3w2jkw2il = 0,
(35)

waij,s
∂us

∂ql
− gpqcpijwaql = 0, a = 1, 2 (36)

which yield the Hamiltonian property with the given values of the constants
ci.

Remark 5 The operator B can be rewritten as

Bij = Lij − ∂x
(
wi1kq

k
x

)
∂−1
x ∂x

(
wj1hq

h
x

)
− ∂x

(
(wi1k + wi2k)q

k
x

)
∂−1
x ∂x

(
(wj1h + wj2h)q

h
x

)
− ∂x

(
wi2kq

k
x

)
∂−1
x ∂x

(
wj2hq

h
x

)
(37)

where Lij is a local operator. This shows that B is also a new and highly non-
trivial example in the class of weakly nonlocal operators, introduced in [22].
We stress that the coefficients ∂x(w

i
αkq

k
x) are higher commuting flows of the

Oriented Associativity equation.

Remark 6 In the Associativity case, i.e. on Frobenius manifolds, it is given
a constant nondegenerate matrix ηαβ and ci are the components of the gra-
dient of a potential function F : ci = ηim∂F/∂am. If one is interested in
quasihomogeneous solutions of the Associativity equations then in the generic
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case ηαβ can be transformed into the antidiagonal identity [3]. Then, the As-
sociativity equation reduces to

fttt = f 2
xxt − fxttfxxx.

Introducing new variables a = fxxx, b = fxxt, c = fxtt, the compatibility con-
dition for the Associativity equation becomes the hydrodynamic-type system

at = bx, bt = cx, ct = (b2 − ac)x.

It is easy to show that there exists a unique Monge metric that fulfills (24a),
(24b) and (24c), namely

(gij) =

−2a b 1
b 1 0
1 0 0


This defines a local operator (wij = 0), as it fulfills the condition (13d), and
was discovered in [8] by different methods.
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