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Università del Salento

and Sezione INFN di Lecce
via per Arnesano, 73100 Lecce, Italy

e-mails: raffaele.vitolo@unisalento.it

Abstract

Poisson brackets between conserved quantities are a fundamental
tool in the theory of integrable systems. The subclass of weakly non-
local Poisson brackets occurs in many significant integrable systems.
Proving that a weakly nonlocal differential operator defines a Poisson
bracket can be challenging. We propose a computational approach to
this problem through the identification of such operators with super-
functions on supermanifolds.
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Introduction

In the geometric approach to the integrability of PDEs a central role is played
by Poisson brackets [1, 4, 24]. A system of PDEs

uit = f i(t, x, uj, ujx, u
j
xx, . . .) (1)

with n unknown functions u1,. . . , un (only two independent variables t, x
for simplicity) admits a Hamiltonian formulation if there exists a differential
operator P and a density H =

∫
h dx such that

uit = P ij

(
δH
δuj

)
(2)

where P = (P ij) is a Hamiltonian operator, i.e. a matrix of differential
operators P ij = P ijσ∂σ, where ∂σ = ∂x ◦ · · · ◦∂x (total x-derivatives σ times),
such that

{F,G}P =

∫
δF

δui
P ijσ∂σ

δG

δuj
dx (3)

is a Poisson bracket (skew-symmetric and Jacobi). Such properties are equiv-
alent to the conditions

1. P ∗ = −P , skew-adjointness of P , and

2. [P, P ] = 0, where the (square) bracket is the (variational) Schouten
bracket of differential operators.

Soon after the introduction of Hamiltonian operators in the theory of
PDEs it was observed that Hamiltonian operators for many PDEs were in-
deed nonlocal (or pseudodifferential) operators. This fact was first described
in [20] for the Krichever–Novikov equation. A wide class of such operators
is constituted by the so-called weakly-nonlocal Hamiltonian operators [18]:

P ij = P ijσ∂σ + eαwiα∂
−1
x wjα, (4)

where eα are constants and wiα = wiα(ui, uix, . . .). The problem of defining the
Schouten bracket of nonlocal operators in a non-ambiguous way has caught
the interest of researchers, and it is still a lively topic. Indeed, the definition
of (local) Hamiltonian is geometrically invariant. This implies that we can
consider them as geometric properties of PDEs, like symmetries or conserved
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quantities (see [14]). A rigorous approach to the computation of Schouten
bracket for a wide class of nonlocal Hamiltonian operators has been proposed
in [3], and it is based on the notion of nonlocal Poisson Vertex Algebra. In
the case of weakly nonlocal Hamiltonian operators a computational solution
to the problem has been recently proposed through the parallel development
of an algorithm in the three different languages of distributions, operators,
and Poisson Vertex Algebras [2].

The Poisson bracket construction for local operators can be rephrased
by means of the well-known isomorphism between skew-symmetric linear
differential operators and superfunctions on jets of superbundles [10] (see
also [11, 12, 14]). Basically, n new odd dependent variables p1,. . . , pn are
introduced such that the isomorphism reads on P as

P ijσψ1
i ∂σψ

2
j −→ P ijσpipjσ, (5)

where ψ1 and ψ2 are the arguments of P as a differential operator. Here
the product pipjσ is the Grassmann product. Then, the Schouten bracket
between two operators can be written through a very elegant formula:

[P,Q] =

∫ (
(−1)|P |

δP

δui
δQ

δpi
+
δP

δpi

δQ

δui

)
dx. (6)

This implies that in order to check that the expression vanishes one should
calculate the Euler–Lagrange operator of the integrand and see if the result is
zero. Note that skew-adjointness of the operators P and Q must hold for (6)
to make sense; the condition of skew-adjointness can also be verified on the
superfunctions that correspond to P and Q by a suitable formula, see [16].

When writing [2] we considered the possibility to extend the results of the
paper to the formalism of superfunctions. Nonlocal terms in operators can
be represented by introducing new odd nonlocal variables. Such a technique
was first introduced for Hamiltonian operators in [13]. In the case of weakly
nonlocal operators, this amounts at representing P in (4) as

P = P ijσpipjσ + eαwiαpirα, (7)

where rα are new nonlocal odd variables defined by ∂xrα = wjαpj.
Unfortunately, a naive rephrasing of the arguments of [2] in terms of

superfunctions does not work, as superfunctions do not allow to keep the
role of the arguments ψ1, ψ2, ψ3 distinct in the three-vectors.

3



Weakly nonlocal Poisson operators associated with conformally flat met-
rics can be interpreted as Jacobi structures. This beautiful observation al-
lowed to find a generalization of the formula (6) to such operators in the
framework of supermanifolds (see [17] for details).

In the present paper we consider general weakly nonlocal operators. Our
starting observation is that it is possible to extend the formula (6) to weakly
nonlocal superfunctions by a computational formula for the variational deriva-
tives of nonlocal odd variables.

We illustrate this extension through examples that cover a large class of
nonlocal Hamiltonian operators. More precisely, we prove the Hamiltonian
property for pseudodifferential operators for the Krichever-Novikov equation
and the modified KdV equation. Finally, we prove the well-known conditions
that are equivalent to the Hamiltonian property for an important subclass of
first-order weakly nonlocal operators introduced by Ferapontov [9].

In the Conclusions we outline some features of this computational ap-
proach that are promising in view of future investigations.
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to the research reported in this paper.

1 Schouten bracket as Poisson bracket

We introduce new anticommuting (Grassmann) variables pi, i = 1, . . . , n
and their x-derivatives (σ-times) pi,σ. So, we work on the (infinite order)
jet of a superbundle with even coordinates (x, ui, uiσ) and odd coordinates
(pi, pi,σ).

The formula (6) for the variational Schouten bracket between two oper-
ators, written as the superfunctions P = P ij,σpipj,σ, Q = Qij,σpipj,σ, makes

4



use of the variational derivatives

δP

δui
= (−1)|σ|∂σ

(
∂P

∂uiσ

)
,

δP

δpi
= (−1)|σ|∂σ

(
∂P

∂piσ

)
, (8)

and similarly for Q. Note that the derivatives with respect to odd coordinates
are odd derivatives, and total derivatives (7) are extended to odd variables
as

∂λ =
∂

∂xλ
+ uiσ,λ

∂

∂uiσ
+ piσ,λ

∂

∂piσ
. (9)

The expression of the bracket at the right-hand side of (6) means that we
are in an equivalence class: the integrand is defined up to total divergencies
of superfunctions. Thus, in order to check that [P,Q] = 0 we need to com-
pute the variational derivative of the superfunction of degree 3 which is the
integrand in (6) and check that it is zero.

We would like to extend the Schouten bracket to weakly nonlocal oper-
ators. For simplicity, we will only consider the case of one non-vanishing
coefficient eα; this means that we need to compute with superfunctions of
the type

P = P ij,σpipj,σ +W ipir, (10)

where r is a superfunction of degree 1 which is defined by the equation

rx = Zjpj, (11)

where W ’s and Z’s are functions defined on the even part of the jet of the
superbundle. Note that in the case of just one nonlocal variable r we have
W = Z in order to guarantee skew-adjointness; but, as in more general cases
we might have several summands rearranged in such a way that W 6= Z, we
prefer to give a more general formula.

Since the Poisson bracket for superfunctions is graded-bilinear, in order
to be able to compute it for nonlocal superfunctions we just need a formula
for the variational derivative of the nonlocal part of the superfunction

N = W ipir. (12)

Let us introduce the notation W = W ipi and Z = Zipi, and a new su-
perfunction s of degree 1 defined by the equation sx = W ipi. Denote the
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Euler–Lagrange operator by E . It is well-known [21] that if we have a density
N =

∫
n dx, and if we denote by `N its linearization (or Fréchet derivative)1:

`N(ϕ) =

∫ (
∂n

∂uiσ
∂σϕ

i + (−1)|n|+1 ∂n

∂pj,σ
∂σϕ

j

)
dx (13)

then we have

E(N) = `∗N(1) =

(
δn

δui
,
δn

δpj

)
; (14)

note that signs on the odd part cancel after taking the adjoint. We also recall
the formula `∆1◦∆2(ϕ) = `∆1(∆2(ϕ)) + ∆1 ◦ `∆2(ϕ).

In order to compute the above expression, we also need the definition of
the adjoint operator of a superdifferential operator ([21]; see also [11, 12]

〈ψ,∆(ϕ)〉 = (−1)|∆||ψ|〈∆∗(ψ), ϕ〉 (15)

where ∆ is a differential operator between vector-valued functions, ∆∗ is its
adjoint, operating between covector-valued densities, and the angular brack-
ets stand for the natural pairing with values in the variational cohomology
(i.e., the result is a density up to total divergencies). We have

〈`∗N(1), ϕ〉 = 〈1, `N(ϕ)〉 = 〈1, `W,r(ϕ) +W∂−1
x (`Z(ϕ))〉

= 〈`∗W,r(1) + `∗Z,s(1), ϕ〉. (16)

In the above formulae, expressions like `W,r(ϕ) are linearizations of the term
W with fixed r. Note that the parity of ∂−1

x is 0 and that ∂−1
x
∗

= −∂−1
x . In

coordinates, we have

δN

δui
= (−1)|σ|∂σ

(
∂W

∂uiσ
r

)
+ (−1)|σ|∂σ

(
∂Z

∂uiσ
s

)
, (17)

δN

δpi
= (−1)|σ|∂σ

(
∂W

∂pi,σ
r

)
+ (−1)|σ|∂σ

(
∂Z

∂pi,σ
s

)
, (18)

The integrand at the right-hand side of (6) is a superfunction of degree
3; in order to check the vanishing of [P,Q] we should be able to determine
if the expression (6) is a total divergence. So, we need to compute the
Euler–Lagrange operator of a 3-superfunction with nonlocal terms. The only
problems come from the nonlocal terms. There might be two distinct types
of nonlocal terms:

1Here and in what follows absolute values of objects, like |n|, represent the parity of
the object, 1 or 0.
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1. T1 = Y i1,σ1;i2,σ2
1 pi1,σ1pi2,σ2r; if we set Y1 = Y i1,σ1;i2,σ2

1 pi1,σ1pi2,σ2 we can
proceed in a way which is similar to what we did for the nonlocal
bivector N (but keep into account the different gradings!), and get the
formula

`∗T1(1) = `∗Y1,r(1)− `∗Z,y1(1). (19)

In coordinates:

δT1

δui
= (−1)|σ|∂σ

(
∂Y1

∂uiσ
r

)
− (−1)|σ|∂σ

(
∂Z

∂uiσ
y1

)
, (20)

δT1

δpi
= (−1)|σ|∂σ

(
∂Y1

∂pi,σ
r

)
− (−1)|σ|∂σ

(
∂Z

∂pi,σ
y1

)
, (21)

where y1,x = Y1.

2. T2 = Y i1,σ1
2 pi1,σ1rs; if we set Y2 = Y i1,σ1

2 pi1,σ1 we have

〈`∗T2(1), ϕ〉 =〈1, `T2(ϕ)〉 (22)

=〈1, `Y2,rs(ϕ) + Y2`r,s(ϕ) + Y2r`s(ϕ)〉 (23)

=〈1, `Y2,rs(ϕ) + Y2∂
−1
x `Z,s(ϕ) + Y2r∂

−1
x `W (ϕ)〉 (24)

=〈`∗Y2,rs(1)− `∗Z,sy2(1)− `∗W,y3(1), ϕ〉 (25)

where y2 is defined by (y2)x = Y2 and y3 by (y3)x = Y2r.

We stress that the above approach is purely computational, as in the proof of
our formulae we make use of ∂−1

x which has no ‘good’ geometrical definition.
However, we can show that in concrete computations our formula reproduces
known results; we hope to be able to provide a geometric justification of the
formula in the future. Some new interesting developments in this directon
can be found in [15], where nonlocal operators are treated in the framework
of the geometry of jet spaces.

2 Examples of computation

In this Section we consider known examples of weakly nonlocal Hamiltonian
operators defining Poisson brackets. We provide a systematic computational
approach to the calculation of the Schouten bracket.

7



2.1 Krichever–Novikov equation

The Krichever–Novikov equation

ut = uxxx −
3

2

u2
xx

ux
(26)

has the Hamiltonian operator P = ux∂
−1
x ux [20]. We rewrite it as P = N =

Wr = uxpr, where rx = uxp. The Schouten bracket is

[N,N ] = 2
δN

δu

δN

δp
, (27)

where

δN

δu
= 2

∑
(−1)k∂kx

(
δW

δu(k)

r

)
= −2∂x(pr) = −2pxr− 2p2ux = −2pxr, (28)

and
δN

δp
= 2

∑
(−1)k∂kx

(
δW

δp(k)

r

)
= −2∂x(pr) = 2uxr. (29)

Hence [N,N ] = −8uxpxr
2 = 0 (no need to compute the variational derivative

of the 3-superfunction in this simple case).

2.2 Modified KdV

The modified KdV equation is

ut = u2ux + uxxx; (30)

it has the weakly nonlocal Hamiltonian operator [23]

P = ∂3
x +

2

3
u2∂x +

2

3
uux −

2

3
ux∂

−1
x ux. (31)

Let us set P = L + N , with L = pxxxp + 2
3
u2pxp and N = 2

3
uxpr. In the

previous subsection we proved that [N,N ] = 0, hence the Schouten bracket
[P, P ] reduces to

[L+N,L+N ] = [L,L] + 2[L,N ] (32)

By a direct computation we have

[L,L] =
16

3
uppxpxxx. (33)
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Moreover

[L,N ] =
δL

δu

δN

δp
+
δN

δu

δL

δp

=

(
4

3
upxp

)(
4

3
uxr

)
+

(
−4

3
pxr

)(
−pxxx −

2

3
u2px −

2

3
∂x(u

2p)− ∂3
x(p)

)
=

16

9
uuxpxpr −

4

3
rpxpxxx +

16

9
uuxpxrp+

4

3
pxrpxxx = −8

3
rpxpxxx

Hence

[L+N,L+N ] =
16

3
(uppx − rpx)pxxx. (34)

The above expression yields, after integrating it by parts:

16

3
(uppx − rpx)pxxx = −16

3
∂x(uppx − rpx)pxx

=
16

3
(−uxppx + uxppx)pxx = 0. (35)

More systematically, we can compute the Euler–Lagrange operator of (34).
Let us set TL = uppxpxxx and TN = −pxpxxxr. We have:

δTL
δu

=ppxpxxx (36)

δTL
δp

=− 3uxxppxx − 2uxppxxx − uxxxppx − 3uxpxpxx (37)

where the above computations have been done by the CDE package of Reduce
[16, 19]. If y1 is defined by y1,x = −pxpxxx we observe that, in this case
y1 = −pxpxx. We have

δTN
δu

=(−1)|σ|∂σ

(
∂(−pxpxxx)

∂uσ
r

)
− (−1)|σ|∂σ

(
∂(uxp)

∂uσ
y1

)
(38)

=− ∂x(ppxpxx) = −ppxpxxx, (39)

and

δTN
δp

=(−1)|σ|∂σ

(
∂(−pxpxxx)

∂pσ
r

)
− (−1)|σ|∂σ

(
∂(uxp)

∂pσ
y1

)
(40)

=− ∂x(−pxxxr)− ∂3x(pxr)− ux(−pxpxx) (41)

=3uxxppxx + 2uxppxxx + uxxxppx + 3uxpxpxx (42)

which yields the result. We stress that, without the explicit integration of
y1, the simplification would have not been possible.
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2.3 Example: first-order homogeneous weakly nonlo-
cal operators

The class of first-order homogeneous Poisson brackets was introduced in [5].
This class is defined by first-order differential operators that are homogeneous
with respect to x-derivatives. The main feature of such operators is that
their ‘form’ is preserved by coordinate transformations of the type ūi =
ūi(uj). This implies that the skew-symmetry and Jacobi property of the
Poisson brackets translate into geometric properties of the coefficients of the
differential operator.

The weakly nonlocal generalization of the above operators was introduced
in a very special case in [7], and later in a much wider sense in [8]. The
geometry of such operators is very rich and interesting; we invite the reader
to have a look at [9] and references therein. We will consider a weakly
nonlocal first-order operator P of the type:

P ij = gij∂x + Γijk u
k
x +W i

ku
k
x∂
−1
x W j

hu
h
x, (43)

although more general operators are possible and natural [9]. Let us intro-
duce a nonlocal odd variable r defined by rx = W j

hu
h
xpj, and rewrite the

operator P in odd variables:

P = gijpj,xpi + Γijk u
k
xpjpi +W i

ku
k
x rpi (44)

Let us write P = L+N , where

L = gijpj,xpi + Γijk u
k
xpjpi, N = W i

ku
k
x rpi. (45)

We have to prove that the coefficients of P satisfy the following set of con-
ditions (see [9])

gij = gji, (46a)

gij,k = Γijk + Γjik , (46b)

gisΓjks = gjsΓiks , (46c)

gisW j
s = gjsW i

s (46d)

∇iW
j
k = ∇kW

j
i , (46e)

Rij
kh = W i

kW
j
h −W

j
kW

i
h. (46f)
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The skew-symmetry is equivalent to (46a) and (46b), and is assumed through-
out the computation.

We use the formula

[P, P ] = [L+N,L+N ] = [L,L] + 2[L,N ] + [N,N ]. (47)

Then, from (6) it is clear that we need the formulae:

δL

δul
=2Γjil pj,xpi + (Γijk,l − Γijl,k)u

k
xpjpi (48)

δL

δpl
=− 2gljpj,x + (Γjlk − Γljk − g

jl
,k)u

k
xpj = −2gljpj,x − 2Γljk u

k
xpj (49)

δN

δul
=2(W i

l,k −W i
k,l)u

k
xpi r + 2W i

lW
j
ku

k
xpipj + 2W i

l pi,xr (50)

δN

δpl
=− 2W l

ku
k
x r (51)

Using (47) we compute three expressions; they are defined up to total deriva-
tives. We have:

[L,L] = 2
δL

δui
δL

δpi
=

= 8Γjil g
lmpipj,xpm,x +

(
8Γjil Γlmk + 4glj(Γimk,l − Γiml,k )

)
ukxpj,xpmpi

−4(Γijh,l − Γijl,h)Γ
lm
k u

h
xu

k
xpjpipm

[L,N ] =
δN

δui
δL

δpi
+
δL

δui
δN

δpi
=

=
(
4glj(W i

l,k −W i
k,l)− 4ΓlikW

j
l + 4Γjil W

l
k

)
ukxpipj,x r +(

4Γljh (W i
l,k −W i

k,l)− 2W l
k(Γ

ji
h,l − Γjil,h)

)
uhxu

k
xpipj r

−4glmW i
lW

j
ku

k
xpipjpm,x − 4Γlmh W

i
lW

j
ku

k
xu

h
xpipjpm + 4gljW i

l pi,xpj,xr

Finally, taking into account that r2 = 0 we obtain

[N,N ] = 2
δN

δui
δN

δpi
= −8W i

lW
j
kW

l
mu

k
xu

m
x pipj r.

Collecting all the terms together we get

[P, P ] = Aijhpipj,xph,x +Bijh
k ukxpipjph,x + Cijh

kmu
k
xu

m
x pipjph +

Dij
k u

k
xpipj,xr + Eij

khu
k
xu

h
xpipjr + F ij

hkpi,xpj,xr
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that can be also written as

[P, P ] = Ãijhpipj,xph,x + B̃ijh
k ukxpipjph,x + C̃ijh

kmu
k
xu

m
x pipjph +

D̃ij
k u

k
xpipj,xr + Ẽij

khu
k
xu

h
xpipjr + F̃ ijpi,xpj,xr

with

Ãijh =
1

2
(Aijh − Aihj),

B̃ijh
k =

1

2
(Bijh

k −B
jih
k )

C̃ijm
hk =

1

12
(Cijm

kh − C
imj
kh − C

jim
kh + Cjmi

kh + Cmij
kh − C

mji
kh ) +

1

12
(Cijm

hk − C
imj
hk − C

jim
hk + Cjmi

hk + Cmij
hk − C

mji
hk )

D̃ij
k = Dij

k ,

Ẽij
kh =

1

4
(Eij

kh − E
ji
kh) +

1

4
(Eij

hk − E
ji
hk),

F̃ ij =
1

2
(F ij − F ji)

We obtain

Ãijh = 4(glhΓjil − g
ljΓhil )

B̃ijh
k = 4Rijh

k + 4gli(W h
kW

j
l −W

j
kW

h
l )

C̃ijm
hk = −2

3
Γlmk (Rij

lh −W
i
lW

j
h +W j

l W
i
h)−

2

3
Γlmh (Rij

lk −W
i
lW

j
k +W j

l W
i
k)

+
2

3
Γlik (Rmj

lh −W
m
l W

j
h +W j

l W
m
h ) +

2

3
Γlih(Rmj

lk −W
m
l W

j
k +W j

l W
m
k )

−2

3
Γljk (Rmi

lh −Wm
l W

i
h +W i

lW
m
h )− 2

3
Γljh (Rmi

lk −Wm
l W

i
k +W i

lW
m
k )

D̃ij
k = 2glj(∇kW

i
l −∇lW

i
k)− 2Γimk(g

jlWm
l − gmlW

j
l )

Ẽij
hk = 2Γljh (∇kW

i
l −∇lW

i
k)− 2Γlih(∇kW

j
l −∇lW

j
k ) +

2Γljk (∇hW
i
l −∇lW

i
h)− 2Γlik (∇hW

j
l −∇lW

j
h) +

W l
k(R

ij
lh −W

i
lW

j
h +W j

l W
i
h) +W l

h(R
ij
lk −W

i
lW

j
k +W j

l W
i
k)

−W l
k(R

ji
lh −W

j
l W

i
h +W i

lW
j
h)−W l

h(R
ji
lk −W

j
l W

i
k +W i

lW
j
k )

F̃ ij = 2(gljW i
l − gliW

j
l )
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Let us set T = [P, P ]. The system

δT

δul
= 0,

δT

δpl
= 0, (52)

yields the following conditions:

� B̃ijh
l = 0, which is the coefficient of pipjph,2x in δT/δul;

� 2Ãilj = 0, which is the coefficient of pipj,2x in δT/δpl;

� −D̃il
k = 0, which is the coefficient of uk2xpir in δT/δpl;

� 2F̃ il = 0, which is the coefficient of pi,2xr in δT/δpl.

The above conditions are equivalent to the conditions (46c), (46d), (46e),
(46f), and imply the vanishing of the coefficients C̃ and Ẽ.

We remark that the last step of the computation of the Schouten bracket
is very straightforward: it is easy to derive the vanishing conditions from few
selected coefficients in the variational derivative.

3 Conclusions

Weakly nonlocal hamiltonian operators arise naturally in the theory and
applications of integrable systems [18].

In [2] we developed an algorithm to compute Schouten brackets of such
operators using three different formalisms: distributions, pseudodifferential
operators, Poisson vertex algebras. In this paper we propose an alternative
approach based on the identification of weakly non local hamiltonian opera-
tors with superfunctions on supermanifolds. This approach requires to define
variational derivative for nonlocal variables. This allows to extend the known
formula for the Schouten bracket of local operators in a straightforward way.

Finding necessary and sufficient conditions for the vanishing of the bracket
is not immediate, the main difficulty being that the nonlocal odd variables
that arise in the computations should be checked in order to see if they can
be integrated (see Section 2.2). However this problem can be easily fixed and
the implementation of the main result on a computer algebra program seems
possible. For instance, the Reduce package CDE [16, 22] already allows to use
local and nonlocal variables and contains an implementation of the Schouten
bracket for local operators in terms of odd variables.

13



A set of software packages for the symbolic calculation of the Schouten
bracket adapted to all the above formalisms will be the subject of our future
work.
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