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Résumé

Nous donnons une condition nécessaire et suffisante sur l’existence de struc-
tures quantiques sur un espace–temps courbe avec temps absolu et classifions
ces structures. Nous nous référons au formalisme géométrique de la mécanique
quantique sur un espace–temps galiléen développé par Jadczyk et Modugno.
Ces résultats sont analogues à ceux de la quantification géométrique, mais ils
dépendent de la topologie de l’espace–temps plutôt que de la topologie de l’espace
de configuration.

Abstract

We give a necessary and sufficient condition on the existence of quantum
structures on a curved spacetime with absolute time, and classify these structures.
We refer to the geometric approach to quantum mechanics on a Galilei general
relativistic background, as formulated by Jadczyk and Modugno. These results
are analogous to those of geometric quantisation, but they involve the topology
of spacetime, rather than the topology of the configuration space.
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2 Quantum structures in Galilei general relativity

Introduction

The problem of finding a covariant formulation of quantum mechanics has been chal-
lenged by many authors. One way to solve this problem is to start from a covariant for-
mulation of classical mechanics and to give a covariant procedure of quantisation. There
are several formulations of classical mechanics and the quantisation procedure based
on a curved spacetime with absolute time (see, for example, [4, 5, 15, 17, 24, 25, 26]).
These formulations can inspire interesting investigations of the case of Einstein’s general
relativity (see, for example, [20]).

Here, we consider a recent formulation of Galilei classical and quantum mechan-
ics based on jets, connections and cosymplectic forms due to Canarutto, Jadczyk and
Modugno [2, 9, 10] (see also [27]). This approach presents analogies with geometric
quantisation [14, 23, 7, 22, 31] but important novelties as well. In a few words, space-
time is a fibred manifold equipped with a vertical metric, a gravitational connection
and an electromagnetic field; these structures produce naturally a cosymplectic form.
Moreover, quantum mechanics is formulated on a line bundle over spacetime equipped
with a connection whose curvature is proportional to the above form.

This formulation is manifestly covariant, due to the use of intrinsic techniques on
manifolds. Moreover, it reduces to standard quantisation in the flat case, hence it
recovers all standard examples of quantum mechanics. In particular, the standard
examples of geometric quantisation (i.e. harmonic oscillator and hydrogen atom) are
recovered in an easier way. Another interesting feature of the above formulation is that
it can be extended to Einstein’s general relativity [12, 13, 28, 29].

The existence of quantum structures of the above quantisation procedure is an
important problem. In this paper, we give a theorem of Kostant–Souriau type (see, for
instance, [14, 23, 7, 19]), which states a topological necessary and sufficient existence
condition on the spacetime and the cosymplectic form. Also, we give a classification
theorem for quantum structures. As one could expect, the results are analogous to
those of geometric quantisation, but involve the topology of spacetime, rather than the
topology of the configuration space.

Finally, we illustrate the above formulation and results by means of some examples.
As a consequence, we recover a result of [27] in a simpler way.

Now, we are going to assume the fundamental spaces of units of measurement and
constants.

The theory of unit spaces has been developed in [9, 10] to make the independence of
classical and quantum mechanics from scales explicit. Unit spaces are defined similarly
to vector spaces, but using the abelian semigroup IR+ instead of the field of real numbers
IR. In particular, positive unit spaces are defined to be 1–dimensional (over IR+) unit
spaces. It is possible to define n–th tensorial powers and n–th roots of unit spaces.
Moreover, if P is a positive unit space and p ∈ P, then we denote by 1/p ∈ P

∗ the dual
element. Hence, we can set P−1 := P

∗. In this way, we can introduce rational powers
of unit spaces.

We assume the following unit spaces.
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–T , the oriented one–dimensional vector space of time intervals ;
–L , the positive unit space of length units;
–M , the positive unit space of mass units.
The positively oriented component of T (which is a positive unit space) is denoted

by T
+. A positively oriented non–zero element u0 ∈ T

+ (or u0 ∈ (T+)−1) represents a
time unit of measurement , a charge is represented by an element q ∈ T

−1⊗L
3/2⊗M

1/2,
and a particle is represented by a pair (m, q), where m is a mass and q is a charge. A
tensor field with values into mixed rational powers of T, L, M is said to be scaled . We
assume the Planck’s constant ~ ∈ (T+)−1⊗L

2⊗M.
We end this introduction by assuming manifolds and maps to be C∞.

Acknowledgements. I would like to thank Pedro Luis Garćıa Pérez, Antonio
Lopez Almorox, Marco Modugno and Carlos Tejero Prieto for stimulating discussions.
Moreover, I would like to thank the anonymous referee for its suggestions.

1 Classical structures

In this section we present an overview of Galilei’s general relativity, as formulated in
[9, 10], together with some results of [19].

Assumption G.1. We assume the spacetime to be a fibred manifold t : E → T , where
dimE = 4, dimT = 1, and T is an affine space associated with an oriented vector
space T.

We will denote with (x0, yi) a fibred chart on E adapted to a time unit of measure-
ment u0 ∈ T. We will deal with the tangent and vertical bundles TE and VE := kerTt
⊂ TE on E. We denote by (∂0, ∂i), (d

0, di) and (ďi) the local bases of vector fields on E,
of 1–forms on E and of sections of the dual bundle V ∗E → E induced by an adapted
chart. Latin indices i, j, . . . will denote space–like coordinates, Greek indices λ, µ, . . .
will denote spacetime coordinates.

We will deal also with the first jet bundle t10 : J1E → E, i.e. the space of equivalence
classes of sections having a first–order contact at a certain point. The charts induced
on J1E by an adapted chart on E are denoted by (x0, yi, yi0); the local vector fields and
forms of J1E induced by (yi0) are denoted by (∂0i ) and (di0), respectively.

We recall the natural inclusion D : J1E → T ∗T ⊗TE over E, whose coordinate
expression is D = d0⊗ (∂0 + yi0∂i). We have the complementary map id − D := θ :
J1E → T ∗E⊗VE. The map θ yields the inclusion θ∗ : J1E×

E
V ∗E → J1E×

E
T ∗E over

J1E, sending the local basis (ďi) into θi := (di − yi0d
0). See [18] for more details about

jets and the related natural maps.
A motion is defined to be a section s : T → E.
An observer is defined to be a section

o : E → J1E ⊂ T
∗⊗TE .
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An observer o can be regarded as a scaled vector field on E whose integral curves are
motions; hence o yields a local fibred splitting E → T ×P , where P is a set of integral
curves of o. An observer is said to be complete if the above splitting is a global splitting
ofE. An observer o can also be regarded as a connection on the fibred manifoldE → T .
Accordingly, we define the translation fibred isomorphism ∇[o] associated with o

∇[o] : J1E → T
∗⊗VE : σ 7→ ∇[o](σ) := σ − o(t10(σ)) .

We have the coordinate expressions o = u0⊗(∂0+o
i
0 ∂i), ∇[o] = (yi0−o

i
0) d

0⊗∂i. A fibred
chart (x0, yi) is said to be adapted to an observer o if it is adapted to local splitting of
E induced by o, i.e. oi0 = 0.

Next, we consider additional structures on our fibred manifold given by special types
of metrics and connections.

Assumption G.2. We assume the spacetime to be endowed with a scaled vertical
Riemannian metric

g : E → L
2⊗(V ∗E ⊗

E
V ∗E) .

We have the coordinate expression g = gij ď
i⊗ ďj, with gij ∈ C∞(E,L2⊗IR). We

denote by g the contravariant metric induced by g. An observer o is said to be isometric
if Log = 0.

Definition 1.1. We define a spacetime connection to be a torsion free linear connection

K : TE → T ∗E ⊗
TE

TTE

on TE → E, such that

∇dt = 0 .

The coordinate expression of a spacetime connection K is of the type

K = dλ⊗(∂λ +Kλ
i∂̇i) , Kλ

i := Kλ
i
0ẋ

0 +Kλ
i
j ẏ

j ,(1)

where Kλ
i
µ ∈ C∞(E).

We can prove [10] that any spacetime connection K yields an affine connection Γ[K]
on J1E. The coordinate expression of such a correspondence is Γλ

i
µ = Kλ

i
µ. Moreover,

the connection Γ[K] yields a connection

γ[K] := D yΓ[K] : J1E → T
∗⊗TJ1E(2)

on the fibred manifold J1E → T . We have the coordinate expression

γ[K] = u0⊗(∂0 + yi0∂i + γi∂0i ) , γi := Kh
i
ky

h
0y

k
0 + 2Kh

i
0y

h +K0
i
0 .(3)
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We can interpret a spacetime connection K through an observer o. We have
the splitting of ∇[K]o into its symmetric and antisymmetric part, namely ∇[K]o =
1/2 (Σ[o] + Φ[o]), with coordinate expressions

Σ[o] = −2u0⊗(Γ0j0 d
0 ⊙ dj + Γij0 d

i ⊙ dj) ,

Φ[o] = −2u0⊗(Γ0j0 d
0 ∧ dj + Γij0 d

i ∧ dj) .

So, o splits the spacetime connection K into the triple (Ǩ, Σ̌[o],Φ[o]), where Ǩ and
Σ̌[o] are the restrictions of K and Σ[o] to the fibers of E → T . The correspondence

K 7→ (Ǩ, Σ̌[o],Φ[o])

turns out to be a bijection between the set of spacetime connections and the set of
triples constituted by a linear connection on the fibres of E → T , a scaled symmetric
2–form on the vertical bundle and a scaled antisymmetric 2–form on spacetime. By the
way, this proves the existence of spacetime connections.

A spacetime connection K is said to be metric if ∇[K ′]g = 0, where K ′ is the
restriction of K to the vertical bundle VE → E. The metric g does not determine
completely a metric spacetime connection K, as in the Einstein case; this is due to the
degeneracy of g. More precisely, Ǩ coincides with the Riemannian connection induced
by g on the fibres of E → T and any observer o yields the equality Σ̌[o] = g ◦ (Log).
In coordinates adapted to an observer o the above two conditions read, respectively, as

Kihj = −
1

2
(∂ighj + ∂jghi − ∂hgij) , K0ij +K0ji = −∂0gij .(4)

Remark 1.1. The choice of an observer yields a bijection between the set of metric
spacetime connections and the set of scaled 2–forms of the type

Φ : E → (T∗⊗L
2)⊗

2
∧T ∗E .

This fact implies the existence of metric spacetime connections.

Now, we introduce a geometric object which plays a key role in the formulation of
field equations and of classical and quantum mechanics.

Definition 1.2. Let K be a spacetime connection. The 2–form

Ω := νΓ[K]∧θ : J1E → (T∗⊗L
2)⊗

2
∧T ∗J1E ,

where ∧ is the wedge product followed by a metric contraction, and νΓ[K] is the verti-
cal projection complementary to Γ[K], is said to be the fundamental 2–form on J1E
induced by g and K.
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In what follows, we will indicate the dependence of Ω on the spacetime connection
by the symbol Ω[K]. It has been proved that Ω[K] is the unique scaled 2–form on J1E
which is naturally induced by g and K [11]. We have the coordinate expression

Ω[K] = giju
0⊗

(

di0 −
(

K i
λky

k
0 +K i

λ◦

)

dλ
)

∧ θj(5)

Now, we postulate the gravitational field as a spacetime connection, and we postu-
late the electromagnetic field as a 2–form on E2. Next, we state the field equations.
Then, we will see how to encode the two fields into a single spacetime connection.

Assumption G.3. We assume that E is endowed with a spacetime connection K♮,

the gravitational field , and with a scaled 2–form F : E → (L1/2⊗M
1/2)

2
∧ T ∗E, the

electromagnetic field .

Assumption G.4. We assume that K♮ and F fulfill the following first field equations :

dΩ[K♮] = 0 , dF = 0 .

Any particle (m, q) allows us to realise the coupling between the gravitational and
electromagnetic field as

Ω := Ω[K♮] +
q

2m
F .(6)

The form Ω turns out to be closed, i.e. dΩ = 0. Moreover, one can see that Ω is non
degenerate, i.e. dt ∧ Ω ∧ Ω ∧ Ω 6= 0.

Definition 1.3. We say Ω to be the cosymplectic form of E associated with g, K and
dt.

It can be seen [9, 10] that there exists a unique spacetime connection K such that
Ω = Ω[K]. The coefficients of K turns out to be

Kh
i
k = K♮

h
i
k, K0

i
k = K♮

0
i
k +

q

2m
F i

k, K0
i
0 = K♮

0
i
0 +

q

m
F i

0.(7)

We can interpret the first field equation through an observer o [9, 10]. It is easy to
prove (e.g., in adapted coordinates) that Φ[o] = 2o∗Ω[K]. Then, the first field equation
is equivalent to the system

∇[K ′]g = 0 , dΦ[o] = 0 .(8)

So, K is a metric spacetime connection and Φ[o] is closed.
Now, we show that the closed 2–form Ω[K] admits a distinguished class of potentials.

We will see that these potentials play a key role in the quantisation procedure. We note

2This formulation of the electromagnetic field is very similar to those of [1, 16]
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that the constant m/~ yields the non–scaled 2–form m/~Ω[K]; it is natural to search
the potentials of this 2–form.

Let o be an observer. We define the kinetic energy and the kinetic momentum form,
respectively, as

k[o] := 1/2
m

~
g◦(∇[o],∇[o]) : J1E → T

∗ ,

p[o] := θ∗ y
m

~
g♭◦∇[o] : J1E → T ∗E .

Moreover, we denote by α[o] : E → T ∗E a generic local potential ofm/~Φ[o], according
to 2dα[o] = m/~Φ[o].

Theorem 1.1. Let o be an observer. Then the local section

τ := k[o] + p[o] + α[o] : J1E → T ∗E ⊂ T ∗J1E

is a local potential of m/~Ω[K], according to 2dτ = m/~Ω[K]. Moreover, any other
potential τ ′ of m/~Ω[K] with values in T ∗E is of the above type, and the form

τ − τ ′ : E → T ∗E

is a closed form on E, rather than on J1E.

For a proof, see [19]. We have the coordinate expression

τ = −
m

2~
u0gijy

i
0y

j
0 d

0 +
m

~
u0gijy

j
0 d

i + αλ d
λ(9)

Definition 1.4. A (local) potential of m/~Ω[K] of the above type is said to be a
Poincaré–Cartan form associated with m/~Ω[K].

Remark 1.2. We will not discuss the second field equations in detail. For example, in
the vacuum we assume the second field equations

r[K♮] = 0 , div♮ F = 0

where r[K♮] is the Ricci tensor of K♮, and div♮ is the covariant divergence operator
induced by K♮ (see [2, 9, 10] for a more complete discussion).

Remark 1.3. The law of particle motion [2, 9, 10] for a motion s is assumed to be

∇[γ[K]]j1s := Tj1s− γ◦j1s = 0 ,

with coordinate expression

∂200s
i − (Kh

i
k◦s)∂0s

h∂0s
k − 2(K0

i
k◦s)∂0s

k − (K0
i
0◦s) =

q

m

(

F i
0◦s+ F i

k◦s∂0s
k
)

.

The connection γ can be regarded (up to a time scale) as a vector field on J1E,
hence a motion fulfilling the above equation is just an integral curve of γ. Moreover,
it can be easily seen that γ fulfills iγΩ = 0; in [2, 9, 10] it is proved that γ is the
unique connection on J1E → T , which is projectable on D and whose components γi

are second order polynomials in the variables yi0, fulfilling the above equation. In other
words, the law of particle motion is given by the foliation ker(Ω[K]).
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Remark 1.4. It is proved [19] that the form Ω[K] induces naturally an intrinsic Euler–
Lagrange morphism E whose Euler–Lagrange equations are equivalent to the the law of
particle motion. The morphism E is locally variational, and there exists a distinguished
class of Lagrangians which induce E , and whose Poincaré–Cartan forms [6] turn out to
be the Poincaré–Cartan forms associated with m/~Ω[K].

2 Quantum structures

A covariant formulation of the quantisation of classical mechanics of one scalar particle
has been developed starting from the above classical theory in [9, 10].

In this section, we recall the geometric structures which allow to formulate the quan-
tisation procedure of [9, 10], namely the quantum bundle and the quantum connection.
Then, we will present a necessary and sufficient condition for the existence of quantum
structures on a given background, together with a classification theorem. Those results
are inspired from the analogous results in geometric quantisation [14, 23, 7]. Finally,
we analyse some examples of applications to exact solutions [28].

In this section, we denote by Ω ≡ Ω[K] the cosymplectic form on E associated with
g and K. Also, we assume a particle (m, q).

Quantum bundle and quantum connection

Definition 2.1. A quantum bundle is defined to be a complex line bundle Q → E on
spacetime, endowed with a Hermitian metric h.

Two complex line bundles Q, Q′ on E are said to be equivalent if there exists
an isomorphism of complex line bundles f : Q → Q′ on E. If Q, Q′ are equivalent
Hermitian complex line bundles, then Q, Q′ are also isometric, due to the fact that the
fibres have complex dimension 1.

Let us denote by L(E) the set of equivalence classes of (Hermitian) complex line
bundles. Then L(E) has a natural structure of abelian group with respect to complex
tensor product, and there exists a natural abelian group isomorphism L(E) → H2(E,Z)
[7, 30].

Quantum histories are represented by sections ψ : E → Q. We denote by

i : Q → VQ ≃ Q×
E
Q : q 7→ (q, q)

the Liouville form on Q.

Definition 2.2. A quantum connection is defined to be a connection q on the bundle
J1E ×

E
Q → J1E fulfilling the properties:

1. q is Hermitian;

2. q is universal (see [10, 18] for a definition);
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3. the curvature R[q] of q fulfills:

R[q] = i
m

~
Ω⊗i .

The universality is equivalent to the fact that q is a family of connections on Q → E

parametrised by observers. We remark that the first field equation dΩ = 0 turns out to
be equivalent to the Bianchi identity for a quantum connection q.

Definition 2.3. A pair (Q,q) is said to be a quantum structure. Two quantum
structures (Q1,q1), (Q2,q2), are said to be equivalent if there exists an equivalence
f : Q1 → Q2 which maps q1 into q2.

As we will see in next section, in general not any quantum bundle admits a quantum
structure. We say a quantum bundle Q to be admissible if there exists a quantum
structure (Q,q). We denote by

QB ⊂ L(E)(10)

the set of equivalence classes of admissible quantum bundles.
Let [Q] ∈ QB. Then we define QS[Q] to be the set of equivalence classes of

quantum structures having quantum bundles in the equivalence class [Q]. If [Q′] ∈ QB
and [Q] 6= [Q′], then QS[Q] and QS[Q′] are clearly disjoint. So, we define

QS :=
⊔

[Q]∈QB

QS[Q](11)

to be the set of equivalence classes of quantum structures.
The task of the rest of the paper is to analyse the structures of B and Q. To this

aim, we devote the final part of this subsection to some technical result.

Theorem 2.1. For any star–shaped open subset U ⊂ E, chosen a trivialisation of Q
over U , we have

q = q

‖

U + iτU⊗i

where q

‖

U is the local flat connection induced by the trivialisation, and τU is a dis-
tinguished choice (induced by q) of a Poincaré–Cartan form over U associated with
m/~Ω.

Proof. In fact, the coordinate expression of a Hermitian connection q on J1E ×
E

Q → J1E is

q = dλ⊗∂λ + di0⊗∂
0
i + iqλd

λ⊗i + iq0
i d

i
0⊗i ,

and universality is expressed by q
0
i = 0. The result follows from the coordinate expres-

sion of R[q].
QED
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Now, we study the change of the coordinate expression of a quantum connection q

with respect to a change of chart. Let U 1,U 2 ⊂ E be two star–shaped open subsets
such that U 1 ∩ U 2 6= ∅, and b1, b2 be two local bases for sections Q over U 1, U 2,
respectively. Suppose that we have the change of base expressions

b1 = c12b2 = exp(2πif12)b2 ,

with c12 : U 1 ∩U 2 → U(1) ⊂ C and f12 : U 1 ∩U 2 → IR. Let

q = q

‖

1 + iτ1⊗i = q

‖

2 + iτ2⊗i

on U 1 ∩U 2. Then, it follows from a coordinate computation that

q

‖

1 − q

‖

2 = −2πidf12⊗i τ1 − τ2 = 2πdf12(12)

Remark 2.1. We have introduced the quantum structures on a Galilei general rela-
tivistic background. We could proceed by defining an algebra of quantisable functions,
a quantum Lagrangian (which yields the generalised Schroedinger equation) and an
algebra of quantum operators [9, 10].

Existence of quantum structures

In this subsection we give a necessary and sufficient condition for the existence of a
quantum bundle and a quantum connection. A fundamental role is played by the
properties of the Poincaré–Cartan form.

We follow a presentation of the Kostant–Souriau theorem [14, 23] given in [7]. See
also [19, 29]. We denote the Čech cohomology of E with values in Z (IR) by H∗(E,Z)
(H∗(E, IR)). We recall that the inclusion i : Z → IR yields a group morphism

i : H2(E,Z) → H2(E, IR)(13)

which is not necessarily an injective morphism. We also recall the natural isomorphism
H∗(E, IR) → H∗

de Rham(E).
We observe that there is a (not natural) isomorphism H∗(J1E, IR) ≃ H∗(E, IR), due

to the topological triviality of the fibers of J1E → E. Anyway, due to the properties
of the Poincaré–Cartan form, the closed form Ω yields naturally a class in H2(E, IR).

Lemma 2.1. The class [m/~Ω] ∈ H2
de Rham

(J1E) yields a class

[qs] ≡ [qs]
(

[
m

~
Ω]
)

∈ H2(E, IR) .

Proof. Let U = {Ui}i∈I be a good cover of E, i.e. an open cover in which any finite
intersection is either empty or diffeomorphic to IRn. For any i ∈ I choose a Poincaré–
Cartan form τi of Ω on the tubular neighbourhood t10

−1
(Ui). For any i, j ∈ I such that

Ui ∩ Uj 6= ∅, by virtue of theorem 1.1, choose a potential 2πfij ∈ C∞(E) of the closed
one–form τi − τj on E. We define a 2–cochain qs as follows: for each i, j, k ∈ I such
that Ui ∩ Uj ∩ Uk 6= ∅ let (qs)ijk := fij + fjk − fik. It is easily proved that qs is closed
and the class [qs] depends only on the class [m/~Ω]. QED
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Theorem 2.2. The following conditions are equivalent.

1. There exists a quantum structure (Q,q).

2. The cohomology class [qs] ∈ H2(E, IR) determined by the (de Rham class of the)
closed scaled 2–form Ω lies in the subgroup

[qs] ∈ i(H2(E,Z)) ⊂ H2(E, IR) .

Proof. Let U = {Ui}i∈I be a good cover of E. Suppose that the second condition
holds. Then, we observe that the morphism i : H2(E,Z) → H2(E, IR) is given as
i([qs]) = [i(qs)], where (i(qs))ijk := i((qs)ijk) for each i, j, k ∈ I with Ui ∩ Uj ∩ Uk 6= ∅.

Hence, there exist functions fij, fjk, fik like in the above Lemma such that (fij +
fjk − fik) ∈ Z. Let us set

cij : U i ∩U j → U(1) : x 7→ exp 2πifij

We have cijcjk = cik, hence cij is the cocycle of an isomorphism class in L(E).
Moreover, we have

τi − τj = 2πdfij =
1

i

dcij
cij

;

hence, the one–forms iτi⊗i yield a global quantum connection.
Conversely, if the first condition holds, we use theorem 2.1 and equation (12) with

respect to the the trivialisation over the good cover. In this way, the functions fij
give rise to the constant functions fij + fjk − fik with values in Z, hence to a class
[qs] ∈ i(H2(E,Z)). QED

Classification of quantum structures

In this subsection we will use a more general definition of affine space rather than the
usual one. Namely, the triple (A,G, ·) is defined to be an affine space A associated with
the group G if A is a set, G is a group and · is a free and transitive right action of G
on A. Note that to every a ∈ A the map ra : G→ A : g 7→ ag is a bijection.

We start by assuming that the existence condition is satisfied by the spacetime.

Assumption Q.1. We assume that the cosymplectic 2–form Ω fulfills the following
integrality condition:

[qs] ≡ [qs]
(

[
m

~
Ω]
)

∈ i(H2(E,Z)) ⊂ H2(E, IR) .

The first classification result shows the structure of QB.

Theorem 2.3. The set QB ⊂ L(E) of quantum bundles compatible with Ω is the set

i−1([qs]) ⊂ H2(E,Z) ,

hence QB has a natural structure of affine space associated with the abelian group ker i ⊂
H2(E,Z).
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Proof. The first part of the statement comes directly from the proof of the exis-
tence theorem; the rest of the statement is trivial.

QED

Let [Q,q], [Q′,q′] ∈ QS[Q], f : Q → Q′ be an equivalence and f∗ be the induced
map on connections. Then we have

q
′ − f∗q = −2πiD⊗i ,(14)

where D is a closed 1–form on E, and [Q,q] = [Q′,q′] if and only if

D =
1

2πi

dc

c
,

where c : E → U(1).

Lemma 2.2. There exists an abelian group isomorphism

H1(E,Z) →

{

1

2πi

dc

c

∣

∣c : E → U(1)

}

.

Proof. Using a procedure similar to the proof of the existence theorem we can
prove that

{

1

2πi

dc

c

∣

∣c : E → U(1)

}

is isomorphic to i(H1(E,Z)). A standard argument [30] shows that i : H1(E,Z) →
H1(E, IR) is an injective morphism. QED

Now, we are able to classify the (inequivalent) quantum structures having equivalent
quantum bundles.

Theorem 2.4. Let [Q] ∈ QB. Then the set QS[Q] has a natural structure of affine
space associated with the abelian group

H1(E, IR)
/

H1(E,Z) .

If [D] ∈ H1(E, IR)
/

H1(E,Z) and [Q,q] ∈ QS[Q], then the affine space operation is
defined by

[Q,q] · [D] := [Q,q− 2πiD⊗i] .

The structure of the set QS is easily recovered from its definition and the above two
theorems. Let us set

p : QS → QB : [Q,q] 7→ [Q] ;(15)

p is a surjective map.



R. Vitolo 13

Theorem 2.5. There exists a pair of bijections (B,B) such that the following diagram
commutes

QS
B
✲ H1(E, IR)

/

H1(E,Z)× ker i

QB

p

❄ B
✲ ker i

pr 2

❄

In concrete applications it is preferable to express the product group in the above
diagram in a more compact way. A standard cohomological argument [7, 30] yields the
exact sequence

0 → H1(E, IR)
/

H1(E,Z) → H1(E, U(1))
δ1→ ker i→ 0 ,

where δ1 is the Bockstein morphism. So, for every equivalence class [Q] ∈ ker i the set
δ1

−1([Q]) has a natural structure of affine space associated with H1(E, IR)
/

H1(E,Z).

Corollary 2.1. The set of quantum structures is in bijection with the abelian group
H1(E, U(1)). If E is simply connected, then there exists only one equivalence class of
quantum structures.

Proof. The first assertion is due to the structure of the map δ1. The second one
follows from the isomorphism H1(E, U(1)) ≃ Hom(π1(E), U(1)). QED

Examples of quantum structures

From a physical viewpoint, it is interesting to study concrete examples of Galilei gen-
eral relativistic classical spacetimes, and investigate the existence and classification of
quantum structures over such spacetimes.

Example 2.1. (Newtonian spacetimes). The Newtonian spacetime has been introduced
in [10], here we will just recall the basic facts. We assume further hypotheses on E, g,
K♮ and F .

– We assume that E is an affine space associated with a vector space Ē, and t is an
affine map associated with a linear map t̄ : Ē → T.

It turns out that VE ≃ E × P → E is a trivial bundle, where P := ker t̄.
– We assume that g is a scaled metric g ∈ L

2⊗P ∗⊗P ∗ on the vector space P .
Denote by K‖ the natural flat connection on E induced by the affine structure.

Clearly, we have∇[K‖′]g = 0, whereK‖′ is the restriction ofK‖ to the bundle VE → E.
–We assume that the restrictions K♮′ and K‖′ of K♮ and K‖ to the bundle VE → E

coincide.
–We assume F = 0.
The above hypotheses imply

K♮ = K‖ + dt⊗dt⊗N ,
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where N : E → T
∗⊗T

∗⊗VE, with coordinate expression N = N0
i
0 u

0⊗u0⊗∂i. Hence,
the law of particle motion takes the form

∇[γ[K‖]]j1s = N ◦s ;

in coordinates, ∂00s
i = N i◦s.

In this case, E is topologically trivial, hence H2(E, IR) = {0}, so that the integrality
condition is fulfilled. Corollary 2.1 implies that there is only one equivalence class of
quantum structures.

Example 2.2. (Spherically symmetric exact solution). In [27] we found that, in the
case F = 0, under spherical symmetry assumptions on E, g and K♮, there exists a
unique Galilei classical spacetime. Also, we found a unique equivalence class of quantum
structures under spherical symmetry hypotheses.

Here, we repeat some of the constructions and give a simplified and improved version
of the results obtained so far.

– We assume that E → T is a bundle, and s : T → E is a global section.
– We assume that each fibre of E → T endowed with the restriction of g is a

complete, spherically symmetric Riemannian manifold in the sense of [27].
The above assumptions on E and g imply that E → T is (not naturally) isometric

to T ×P → T , where P is a Euclidean vector space, the isometry being provided by a
complete isometric observer. Let E′ := E \ s(T ). Then we have the natural splitting
E′ ≃ L× S, where L represents the distance from the origin in each fibre and S → T

is a bundle whose fibres represent space–like directions. Now, by recalling remark 1.1,
we implement the intuitive idea of spherically symmetric gravitational field as follows.

–We assume that there exists a complete isometric observer o (which is said to be a
spherically symmetric observer) such that Φ[o] is a scaled 2–form on L× T .

As a solution of the field equations in the vacuum we obtain a unique spherically
symmetric gravitational field K♮ defined on E′. Namely, we have

K♮ = K‖ + dt⊗dt⊗N ♮ ,

where K‖ is the natural flat connection on E′ and N ♮ = k
r2

where k : T → T
−2⊗L

3

and r is the space–like distance from the origin. Moreover, we have the coordinate
expression

Φ[o] = 2o∗Ω[K♮] = −2u0⊗
k

r2
d0 ∧ dr .

By the way, there exists a unique spherically symmetric observer.
We can easily generalise the above result to the case F 6= 0, obtaining a Coulomb–

like field.
Now, by a comparison with the classical Newton’s law of gravitation, if we assume

that the field K♮ is generated by a particle (m, q), then we can assume k = −km, where
k ∈ (T+)−2⊗L

3⊗M
∗ is the gravitational coupling constant (the minus sign is chosen in

order to have an attractive force).
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We choose the global potential α[o] = +k(u0)m/(~r) d
0 of the form m/~Φ[o], ac-

cording to 2dα[o] = m/~Φ[o], and introduce the quantum connection

q := q

‖

+ iτi ,

on the quantum bundle E × C, where

τ = −
m

2~
u0gijy

i
0y

j
0d

0 +
m

~
u0gijy

j
0dy

i +
k(u0)m

~r
d0 .

The integrality condition is clearly fulfilled, and, by Corollary 2.1, there is a unique
equivalence class of quantum connections.

The result is the same obtained in [27], but with weaker hypotheses. There, we made
hypotheses of spherical symmetry on the quantum bundle and the quantum connection;
here, we did not need this. Moreover, the results can be easily generalised to the case
of a spherically symmetric (Coulomb) field F 6= 0.

Example 2.3. (Dirac’s monopole) Usually, Dirac’s monopole is defined to be a certain
type of magnetic field on Minkowski spacetime. Here, we define and study it in the
Galilei’s case.

– We assume on E and g the same hypotheses of the Newtonian case; moreover, we
assume that E is endowed with the flat gravitational field K♮ ≡ K‖.

– We assume an inertial motion s : T → E, i.e. a motion which is also an affine
map.

The motion s induces a complete isometric observer o by means of the translations
of E, hence an isometric splitting E ≃ T × P , where P is a Euclidean vector space,
and an isometric splitting

E′ := E \ {s(T )} → T× L× S ,

where L represents the distance from the origin and S is the space of directions. The
manifold S has a natural metric such that any l ∈ L yields an isometry of S with the
unit sphere in P . The scaled multiples of the volume form ν on S are natural candidates
of electromagnetic field.

– We assume a particle (m, q). Moreover, we assume the magnetic field

F := µν : S → (L1/2⊗M
1/2)⊗

2
∧T ∗S ,(16)

where µ ∈ L
1/2⊗M

1/2 is assumed to be the magnetic charge of the monopole.
The coordinate expression of F with respect to polar coordinates turns out to be

F = µ sinϑdϑ ∧ dϕ .

Of course, we have dF = 0, and a direct computation shows that div♮ F = 0.
We have

[
m

~
Ω] = [

m

~
Ω[K‖] +

m

~

q

2m
F ] = [

qµ

2~
ν] .(17)
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A computation [8, p.164] shows that if (qµ)/~ ∈ Z then [m
~
Ω] fulfills the integrality

condition.
Being spacetime topologically equivalent to IR × (IR3 \ {0}), Corollary 2.1 yields

that for any (qµ)/~ ∈ Z there exists a unique equivalence class of quantum structures
compatible with F .

It is interesting to note that if µ′ ∈ L
1/2⊗M1/2 with µ 6= µ′ and (qµ′)/~ ∈ Z, then the

respective quantum bundles are not isomorphic; the same holds by considering another
particle (m′, q′), with q 6= q′ and (q′µ)/~ ∈ Z. In particular, if q 6= 0, then the class of
quantum bundles compatible with F is not the trivial class. So, this is a first example
of non–trivial quantum structure on a spacetime with absolute time.

We remark that there exists a purely gravitational example of such a non–trivial
situation provided by the nonrelativistic limit of the Taub–NUT solution, and leading
to quantisation of mass [3].
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[1] M. Le Bellac, J.–M. Lévy–Leblond, Nuovo Cimento 14 B, 217 (1973).

[2] D. Canarutto, A. Jadczyk, M. Modugno: Quantum mechanics of a spin particle

in a curved spacetime with absolute time, Rep. on Math. Phys., 36, 1 (1995), 95–140.
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[12] J. Janyška, M. Modugno: Classical particle phase space in general relativity , Proc.
“Diff. Geom. and Appl.”, Brno, 1995.
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