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Abstract

We introduce the notion of a “quantum structure” on an Einstein general rela-
tivistic classical spacetime M . It consists of a line bundle over M equipped with a
connection fulfilling certain conditions. We give a necessary and sufficient condition
for the existence of quantum structures, and classify them. The existence and classifi-
cation results are analogous to those of geometric quantisation (Kostant and Souriau),
but they involve the topology of spacetime, rather than the topology of the configura-
tion space. We provide physically relevant examples, such as the Dirac monopole, the
Aharonov–Bohm effect and the Kerr–Newman spacetime.

Our formulation is carried out by analogy with the geometric approach to quantum
mechanics on a spacetime with absolute time, given by Jadczyk and Modugno.
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2 Quantum structures in Einstein general relativity

Introduction

With the view of the unification of quantum theories and general relativistic theories of grav-
itation an important achievement would be a covariant formulation of quantum mechanics,
which requires a geometric approach.

Important non relativistic geometric formulations of quantum mechanics have been pro-
posed so far: we mention the geometric quantisation [8, 19, 28, 29, 37] and the deformation
quantisation [2].Several authors have proposed covariant formulations of classical and quan-
tum mechanics on a curved spacetime with absolute time (see, for example, [4, 7, 20, 21, 30,
31]).

Recently, a covariant formulation has been presented of Galilei classical mechanics and
quantum mechanics on a curved spacetime with absolute time and spacelike Riemannian
metric, based on jets, connections and cosymplectic forms (see [12, 13] for the scalar case,
and [3] for a generalisation to spin). This formulation presents some analogies and several
novelties with respect to geometric quantisation. Namely, it is manifestly covariant with
respect to any frame; accordingly, time is not just a parameter, but it plays a deep role in
the geometric structure of the theory. In the flat case, this theory reduces to the standard
quantummechanics, hence recovers all standard examples (i.e. , hydrogen atom and harmonic
oscillator). New non–standard examples have been studied as well [35]. In this context, the
problem of existence and classification of inequivalent quantum structures has been solved
[25, 33, 34].

The above theory stands in between the standard non relativistic quantum theory and a
possibile general relativistic theory on a Lorentz manifold. Then, it would be interesting to
investigate an Einstein version of the Galilei theory. Indeed, several procedures and results
of the Galilei case have been successfully transferred to the Einstein case. In particular, [16]
formulates the classical phase space in Einstein’s general relativity in terms of jets and equips
it with a cosymplectic form (in the sense of [1, 6, 22]) which incorporates the gravitational
and electromagnetic fields. Moreover, [17] introduces a Lie algebra of quantisable functions
and [18] proves that it is isomorphic to a Lie algebra of pre–quantum operators. Further-
more, [15] derives the Klein-Gordon equation by covariance arguments. We are aware of
the well known difficulties for physical interpretation of the probability current and for the
formulation of the Hilbert stuff. Perhaps, the solution of these problems might arise from a
non linear generalisation of the standard quantum structures reflecting the non linearity of
the underlying spacetime manifold.

In this paper, we formulate a definition of Einstein’s general relativistic quantum struc-
ture in analogy with the Galilei case. Namely, we define a quantum structure to be a Her-
mitian complex line bundle over spacetime endowed with a “universal” connection whose
curvature is proportional to the cosymplectic form.

Moreover, we prove a theorem of Kostant–Souriau type (see, for instance, [19, 29]), which
states a necessary and sufficient condition for existence of quantum structures involving the
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topology of spacetime and the cosymplectic form. Also, we classify quantum structures
by means of a topological invariant of the spacetime manifold. Finally, we illustrate the
above formulation and results by means of some physically relevant examples. In particular,
we consider the cases of Minkowski spacetime, Schwartzschild spacetime, Dirac monopole,
Aharonov–Bohm effect and Kerr–Newman spacetime.

We end this introduction by some mathematical preliminaries.

The theory of unit space has been developed in [12, 13] in order to make explicit the
independence of classical and quantum mechanics from the choice of unit of measurements.
Unit spaces have the same algebraic structure as IR+, but no natural basis. We assume the
(one–dimensional) unit spaces T (space of time intervals), L (space of lengths) and M (space
of masses). We set T−1 ≡ T

∗, and analogously for L,M.

We assume the following constant elements: the light velocity c ∈ T
−1⊗L, the Planck’s

constant ~ ∈ T
−1⊗L

2⊗M, and the gravitational coupling constant κ ∈ T
−2 ⊗ L

3 ⊗ M
−1.

Moreover, we say a charge to be an element q ∈ T
−1⊗L

3/2⊗M
1/2⊗IR.

We will assume coordinates to be dimensionless (i.e. , real valued). We assume manifolds
and maps to be C∞.

Acknowledgements. I would like to thank P. L. Garćıa Pérez, A. Jadczyk, J. Janyška,
A. Lopez Almorox, K. B. Marathe, M. Modugno, P. Rotelli, C. Tejero Prieto for stimulating
discussions. Moreover, I would like to thank the anonymous referee for useful comments.

1 Classical structures

In this section we summarise the results on the geometry of the phase space given by Janyška
and Modugno [16]. By the way, we see that the geometric constructions of Galilei general
relativistic spacetime [12, 13] can be recovered in Einstein’s case. The major difficulty is
that many objects which live on spacetime in Galilei’s case, are defined on the phase space
in Einstein’s case.

1.1 Spacetime and phase space

Assumption C.1 We assume the spacetime to be a manifold M , with dimM = 4,
endowed with a scaled Lorentz metric g : M → L

2⊗T ∗M ⊗
M
T ∗M whose signature is

(+−−−). Moreover, we assume M to be oriented and time–like oriented.

Charts on M are denoted by (xϕ), ϕ = 0, 1, 2, 3. An element u0 ∈ T, or, equivalently,
its dual u0 ∈ T

−1, is said to be a time unit of measurement , and will be used in coordinate
expressions throughout. We have the coordinate expressions g = gϕψd

ϕ⊗dψ, where gϕψ :
M → L

2⊗IR.
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In what follows we will use charts such that ∂0 is time–like and time–like oriented, and
∂1, ∂2, ∂3 are space–like; hence g00 > 0, g11, g22, g33 < 0. Latin indexes i, j, p, . . . will label
space–like coordinates, greek indexes λ, µ, ϕ, . . . will label spacetime coordinates.

A one–jet of a one–dimensional submanifold s ⊂ M at x ∈ M is defined to be the
equivalence class of one–dimensional submanifolds having a contact with s of order one at x
[24]. The equivalence class is denoted by j1s(x), and the quotient set by J1(M , 1). The set
J1(M , 1) has a natural manifold structure and a natural bundle structure π1

0 : J1(M , 1) →
M . A time–like one–dimensional submanifold s ⊂ M is said to be a motion, whose velocity
is j1s. The set U1M , of velocities of motions is said to be the phase space. By a restriction
we have the natural bundle structure π1

0 : U1M → M . A section o : M → U1M is said
to be an observer . A typical chart (x0, xi) on M induces a local fibred chart (x0, xi; xi0) on
U1M . More precisely, if s ⊂ M is a one–dimensional submanifold such that xi|s = si ◦ x0|s,
then xi0◦j1s = ∂0s

i = (Dsi)◦(x0|s).
The fibration π1

0 induces the contact structure on U1M [24] (which is the analogue of the
contact structure on jet spaces of fibred manifolds)

d1 : U1M → T
∗⊗TM , τ := c−2 g♭◦d1 : U1M → T⊗T ∗M ,

with coordinate expressions

d1 = cα d10 = cα (∂0 + xi0∂i) , τ ≡ τλ d
λ = cαu0 (g0λ + giλx

i
0)d

λ .

where α = 1/‖d10‖g = 1
/

√

g00 + 2g0jx
j
0 + gijxi0x

j
0 ∈ L

−1.

We have g ◦ (d1,d1) = c2. Hence U1M can be regarded as a non–linear subbundle
U1M ⊂ T

∗⊗TM , whose fibres are diffeomorphic to IR3.
If s is a motion, then d1 ◦ js : s → T

∗⊗TM is the vector field representing the velocity
of s.

The metric g yields an orthogonal splitting of the tangent space TM on each x ∈ M

on which a time–like direction has been assigned. In other words, we have the splitting [16]
U1M ×

M
TM = T ‖M ⊕

U1M
T⊥M . The projection on T⊥M is denoted by θ, with coordinate

expression θ = hiµhiνd
ν⊗∂µ, where we have set hiν := giν − c2τiτν and hiµ := giµ − xi0g

0µ.
The vertical derivative V d1 induces the linear fibred isomorphism v⊥ : V U1M → T

∗⊗
T⊥M over U1M , with coordinate expression v⊥ = cα di0⊗(∂i − cατid10).

1.2 Gravitational and electromagnetic forms

The Levi–Civita connection K♮ on TM → M induces naturally a (non linear) connection
Γ♮ on U1M → M [16], which is expressed by a section Γ : U1M → T ∗M ⊗

U1M
TU1M , and

has the coordinate expression

Γ = dϕ⊗(∂ϕ + Γϕ
i
0∂

0
i ) ,(1)
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with Γϕ
i
0 = Kϕ

i
jx
j
0 +Kϕ

i
0 − xi0(Kϕ

0
jx
j
0 +Kϕ

0
0). The connections K

♮ and Γ♮ are said to be
gravitational .

Let m be a mass. Then, the gravitational connection Γ♮ and the metric g induce the
form on U1M

Ω♮ :=
m

~
(v⊥◦νΓ♮)∧θ : U1M → 2∧T ∗U1M ,

where ∧ denotes ∧ followed by a contraction with g, and the factor m/~ is put in order to
obtain a non scaled object.

Definition 1.1 The above cosymplectic (in the sense of [1, 6, 22]) form Ω♮ is said to be
the gravitational form.

Remark 1.1 Let us set τ ♮ :=(mc2)/~ τ : U1M → T ∗M . Then, we can prove that the
form Ω♮ is an exact form on U1M . Moreover, the form τ ♮ is a distinguished potential of Ω♮

[16].
Finally, Ω♮ is non degenerate in the sense that

τ ♮ ∧ Ω♮ ∧ Ω♮ ∧ Ω♮

is a volume form on U1M .

We have the coordinate expression

Ω♮ =
m

~
αhiµ(d

i
0 − Γϕ

i
0) ∧ dµ .

Now, we introduce the electromagnetic field.

Assumption C.2 We assume the electromagnetic field to be a closed form on M

f : M → (T−1⊗L
3/2⊗M

1/2)⊗∧2T ∗M .

Given a charge q, it is convenient to introduce the “normalised” electromagnetic field
F ≡ q/(~c) f : M → ∧2T ∗M . We denote a local potential of F with A : M → T ∗M ,
according to 2dA = F .

The forms on U1M E :=−d yF and B :=F + 2τ ♮ ∧ E, with

E : U1M → T
∗⊗T ∗

⊥M , B : U1M → ∧2T ∗
⊥M ,

are said to be, respectively, the universal electric field and the universal magnetic field. We
have F = −2τ ♮ ∧ E + B. We can read E and B through an observer o : M → U1M ; in a
chart adapted to o, i.e. a chart such that oi0 = 0, we have

o∗E = − 1√
g00

F0ju
0⊗dj , o∗B = (Fij −

1

g00
(gi0F0j − gj0F0i))d

i ∧ dj .
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The electromagnetic field F can be incorporated into the geometrical structure of the
phase space, i.e. the gravitational form. Namely, we define the total form

Ω :=Ω♮ +
1

2
F : U1M → ∧2T ∗U1M .

It is clear that Ω is a closed form, i.e. dΩ = 0; anyway, Ω does not have, in general, a global
potential. Locally, we can write

(τ ♮ + A) ∧ Ω ∧ Ω ∧ Ω = (τ ♮ + A) ∧ Ω♮ ∧ Ω♮ ∧ Ω♮ ,

so Ω is non degenerate. Hence, Ω is a cosymplectic form encoding gravitational and elec-
tromagnetic (classical) structures. By the way, we recall that a unique connection Γ on
U1M → M can be characterised through Ω [16].

2 Quantum bundle and quantum connection

A covariant formulation of the quantisation of classical mechanics of one particle can be
developed in Einstein general relativity by analogy with the Galilei general relativistic case
[12, 13]. One of the major difficulties occurs in the geometrical structure of the phase space,
which is more complicated in Einstein’s case than in Galilei’s case.

We make use of the theory presented in the previous section in order to develop the
geometric structures for the quantisation of the mechanics of one particle in an Einstein
general relativistic background. [32, 33]. In particular, we introduce the quantum bundle
and the quantum connection.

We refer to a particle with mass m and charge q.

Definition 2.1 A quantum bundle is defined to be a complex line bundle Q → M on
spacetime, endowed with a Hermitian metric h.

Two complex line bundles Q, Q′ on M are said to be equivalent if there exists an
isomorphism of complex line bundles f : Q → Q′ onM . In this case, ifQ, Q′ are Hermitian,
then Q, Q′ are also isometric. The set of equivalence classes of (Hermitian) complex line
bundles L(M ) is isomorphic to H2(M ,Z) [8, 36].

Quantum histories are represented by quantum sections Ψ : M → Q. A normalised
complex adapted chart on Q is denoted by (x0, xi, z), and the corresponding local base for
quantum sections is denoted by b. Hence, a quantum section has the coordinate expression
Ψ = ψb.

We denote by i : Q → VQ ≃ Q ×
M

Q : q 7→ (q, q) the Liouville field on Q.

Let us consider the bundle Q↑ : U1M ×
M

Q → U1M . A universal connection is a

connection Ξ on Q↑ such that X yΞ = 0 for every vertical vector field X : M → V U1M .
The universal connection can also be interpreted as a family of connections on Q → M

parametrised by observers, i.e. sections of U1M → M .
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Definition 2.2 A connection q on the bundle Q↑ which is Hermitian, universal and
whose curvature R[q] fulfill R[q] = iΩ⊗i, is said to be a quantum connection.

We remark that the identity dΩ = 0 turns out to be equivalent to the Bianchi identity for a
quantum connection q.

Definition 2.3 A pair (Q,q) is said to be a quantum structure. Two quantum structures
(Q1,q1), (Q2,q2), are said to be equivalent if there exists an equivalence f : Q1 → Q2 which
maps q1 into q2.

As we will see, in general not any quantum bundle admits a quantum structure. We
say a quantum bundle Q to be admissible if there exists a quantum structure (Q,q). We
denote by QB ⊂ L(M ) the set of equivalence classes of admissible quantum bundles. Let
[Q] ∈ QB. Then we define QS[Q] to be the set of equivalence classes of quantum structures
having quantum bundles in [Q]. If [Q′] ∈ QB and [Q] 6= [Q′], then QS[Q] and QS[Q′] are
clearly disjoint. So, we define

QS :=
⊔

[Q]∈QB

QS[Q](2)

to be the set of equivalence classes of quantum structures.
The task of the rest of the paper is to analyse the structures of QB and QS. With this

objective in mind, we devote the final part of this subsection to some technical results.

Lemma 2.1 Let U ⊂ M be a star–shaped trivialising neighbourhood of Q. Then, q =
q

‖

U + iτU ⊗i where q
‖

U is the flat connection on the trivialisation induced in Q↑, and τU
is a potential of Ω on a trivialisation induced in U1M . More precisely, τU takes the form
τU = τ ♮ + A, where A : M → T ∗M is a (local) form such that 2dA = F .

The proof of the above lemma is obtained by means of the coordinate expression q =
dλ⊗∂λ + di0⊗∂0i + iqλd

λ⊗i and the expression of R[q].

Remark 2.1 The above theorem shows that there is a bijection between quantum con-
nections and Hermitian connections on Q → M such that their curvature is iF⊗i. Anyway,
in several points of this quantum theory we need geometric objects on Q↑ [12, 13].

Now, we study the change of the coordinate expression of a quantum connection q with
respect to a change of chart. Let U 1 and U 2 be two coordinate star–shaped open subsets of
M such that U 1∩U 2 6= ∅, and b1, b2 be the local bases for quantum sections induced by the
choice of two corresponding trivialisations ofQ. Suppose that the change of base is expressed
by c12, or, equivalently, by f12, as b1 = c12b2 = exp(2πif12)b2, where c12 : U 1∩U 2 → U(1) and

f12 : U 1∩U 2 → IR. According to the above lemma, inU 1∩U 2 let q = q
‖

1+iτ1⊗i = q
‖

2+iτ2⊗i.
Then, it follows from a coordinate computation that

q
‖

1 = q
‖

2 − 2πidf12⊗i τ1 = τ2 + 2πidf12⊗i(3)
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Remark 2.2 We have introduced the quantum structures on an Einstein’s general rela-
tivistic background, by analogy with the Galilei general relativistic quantum structures. In
[17] an algebra of quantisable functions was introduced, and in [18] a corresponding alge-
bra of quantum operators has been studied. This leads to a covariant prequantisation of
the mechanics of a scalar particle on Einstein general relativistic spacetime (see [15] for the
covariant Klein–Gordon equation). Quantisation will be the subject of future works.

Now, we give a necessary and sufficient condition for the existence of a quantum bundle
and a quantum connection. This is carried on by analogy with the Galilei’s general rela-
tivistic case [32, 33, 34] and the standard geometric quantisation [8, 19]. In particular, the
necessary and sufficient condition is Einstein general relativistic analogue of the Kostant–
Soriau theorem in the standard geometric quantisation.

We follow a presentation of the Kostant–Souriau theorem [19, 29] given in [8]. See
also [25, 33]. We recall the (not necessarily injective) group morphism i : H2(M ,Z) →
H2(M , IR) induced by the inclusion Z →֒ IR. Moreover, we remark that the cohomology
class of the closed total form Ω depends only on the cohomology class of the electromagnetic
form F .

Theorem 2.1 The following conditions are equivalent.

1. There exists a quantum structure (Q,q).

2. The cohomology class [qs] ∈ H2(M , IR) determined by the (de Rham class of the)
closed form Ω (hence by F ) lies in the subgroup

[qs] ∈ i(H2(M ,Z)) ⊂ H2(M , IR) .

Proof. Let U = {Ui}i∈I be a good cover of M , i.e. an open cover in which any finite
intersection is either empty or diffeomorphic to IRn. Suppose that the second condition of
the statement holds. Then, we observe that the morphism i : H2(M ,Z) → H2(M , IR) is
given as i([qs]) = [i(qs)], where (i(qs))ijk := i((qs)ijk) for each i, j, k ∈ I with Ui∩Uj∩Uk 6= ∅.

So, for each i ∈ I we can choose potentials Ai of F defined on Ui, and for each i, j ∈ I
with Ui ∩ Uj 6= ∅ we can choose potentials fij of Ai − Aj on Ui ∩ Uj such that for any
i, j, k ∈ I with Ui∩Uj ∩Uk 6= ∅ we have (fij + fjk− fik) ∈ Z. Let us set cij := exp 2πifij. We
have cijcjk = cik, so we obtain a 1–cocycle on M which gives rise to an isomorphism class
[Q] ∈ L(M )

Moreover, we have Ai − Aj = 1/(2πi) dcij/cij; so the forms i(τ ♮ + Ai)⊗i give a global
quantum connection.

Conversely, if the first condition of the statement holds, we use theorem 2.1 and equation
(3) with respect to a trivialisation over the good cover. The functions fij give rise to the
constant functions fij + fjk− fik with values in Z, hence to a class [qs] ∈ i(H2(M ,Z)). QED
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Now, we classify inequivalent quantum structure on a given classical background (which,
of course, fulfills the existence condition). Let m be a mass and q a particle. We start by
assuming that the existence condition is satisfied.

Assumption Q.1 We assume that the electromagnetic form F fulfills the following in-
tegrality condition: [F ] ∈ i(H2(M ,Z)) ⊂ H2(M , IR).

The first (rather obvious) classification result shows the structure of QB.

Theorem 2.2 The set QB ⊂ L(M ) of quantum bundles compatible with Ω is the set
i−1([qs]) ⊂ H2(M ,Z); this set is in bijection with ker i ⊂ H2(M ,Z).

Let [Q,q], [Q′,q′] ∈ QS[Q], f : Q → Q′ be a bundle equivalence and f∗ be the induced
map on connections. Then we have q

′ − f∗q = −2πiD⊗i, where D is a closed form on M .
Moreover, [Q,q] = [Q′,q′] if and only if D = 1/(2πi) dc/c, where c : M → U(1).

Lemma 2.2 There exists an abelian group isomorphism

H1(M ,Z) →
{

1

2πi

dc

c

∣

∣c : M → U(1)

}

.

Proof. Using a procedure similar to the proof of the existence theorem we can prove
that the right–hand set is isomorphic to i(H1(M ,Z)). A standard argument [36] shows that
i : H1(M ,Z) → H1(M , IR) is an injective morphism. QED

Now, we are able to classify the (inequivalent) quantum structures having equivalent
quantum bundles. In fact, the above lemma suggests that inequivalent quantum structures
are parametrised by elements [D] ∈ H1(M , IR)

/

H1(M ,Z).

Theorem 2.3 Let [Q] ∈ QB. Then the set QS[Q] is in bijection with the quotient group
H1(M , IR)

/

H1(M ,Z).

The structure of the set QS is easily recovered from its definition and the above two
theorems. Let us set p : QS → QB : [Q,q] 7→ [Q]; p is a surjective map.

Theorem 2.4 There exists a bijection B : QS → H1(M , IR)
/

H1(M ,Z)× ker i.

Sometimes it is preferable to express the above product group in a more compact way.
A standard cohomological argument [8, 36] yields the exact sequence

0 → H1(M , IR)
/

H1(M ,Z) → H1(M , U(1))
δ1→ ker i→ 0 ,

where δ1 is the Bockstein morphism. So, for every equivalence class [Q] ∈ ker i the set
δ1

−1([Q]) is in bijection with H1(M , IR)
/

H1(M ,Z).
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Corollary 2.1 The set of quantum structures is in bijection with the abelian group
H1(M , U(1)). If M is simply connected, then there exists only one equivalence class of
quantum structures.

Proof. The first assertion is due to the structure of the map δ1. The last assertion
follows from the natural isomorphism H1(M , U(1)) ≃ Hom(π1(M), U(1)). QED

3 Examples of quantum structures

From a physical viewpoint, it is very interesting to study concrete exact solutions. The
following examples are a starting point for an analysis of the classification of quantum
structures on exact solutions of Einstein’s general relativity.

Example 3.1 Minkowski spacetime is topologically trivial, hence the equivalence class
of F in H2(M , IR) is the zero class. Therefore, the integrality condition is fulfilled, and
the Minkowski spacetime admits quantum structures. Corollary 2.1 yields that there exists
a unique equivalence class of quantum structures. A distinguished set of representatives
of this equivalence class is provided by the trivial quantum bundle together with quantum
connections built by means of the natural flat connection, τ ♮, and one global potential of F .

Example 3.2 Schwartzschild spacetime has the topology of IR×(IR3\{0}) [10, 23], hence
it is simply connected. Being F = 0, the integrality condition is fulfilled, and Corollary 2.1
yields the existence of a unique equivalence class of quantum structures. A distinguished
representative of this equivalence class is provided by the trivial quantum bundle together
with the quantum connection built by means of the natural flat connection and τ ♮.

We observe that the same considerations hold for Kruskal spacetime, yielding the same
results.

Example 3.3 Dirac’s monopole is a particular kind of electromagnetic field F built
starting from Minkowski spacetime M .

We define an inertial motion s ⊂ M to be a positively oriented time–like one–dimensional
affine subspace of M . Let us denote by M̄ the vector space associated with M . Then,
by the natural isomorphism TM ≃ M × M̄ , we have the natural isomorphism U1M ≃
M ×T

∗ ⊗ M̄ t, where M̄ t denotes the subset of time–like vectors of M̄ . We say an inertial
observer o to be an observer which yields a constant map M → T

∗⊗M̄ t through the above
identification. Of course, the flow of an inertial observer consists of inertial motions.

–We assume an inertial motion s ⊂ M .
Such a motion induces an inertial observer o by means of the translations of M , hence a

splitting M → s×P , where P is the set of (inertial) motions s′ ⊂ M fulfilling j1s
′ = o ◦ s′.

The above splitting carries the scaled metric of M into a scaled metric on s × P . It turns
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out that P is endowed with the structure of an Euclidean vector space, the 0 representing
the motion s. Let us set P ′ :=P \ {0}; we have the isometric splitting P ′ → L × S2,
where L represents the distance from the origin and S2 is the space of directions which is
diffeomorphic to the unit sphere in P and is endowed with a natural non–scaled metric. The
scaled multiples of the volume form ν on S2 are natural candidates for the electromagnetic
field.

– We assume a mass m and a charge q. Moreover, we assume the magnetic field

F := kν : S2 → 2∧T ∗S2 ,(4)

where k is a real constant. The coordinate expression of F with respect to polar coordinates
turns out to be F = k sinϑ dϑ ∧ dϕ. Of course, we have dF = 0.

We have

[Ω] = [
1

2
F ] = [

1

2
k ν] .

A computation [9, p.164] shows that if k ∈ Z then [Ω] fulfills the integrality condition. Being
spacetime topologically equivalent to IR× (IR3 \ {0}), corollary 2.1 yields that for any k ∈ Z

there exists a unique equivalence class of quantum structures compatible with F .
It is interesting to note that if k, k′ ∈ Z, then the respective quantum bundles are not

isomorphic. In particular, if k 6= 0, then the class of quantum bundles compatible with F is
not the trivial class. So, this is a first example of non–trivial quantum structure.

Following [9], we can give a physical interpretation to k. In particular, we can set f = µν,
where µ ∈ T

−1⊗L
3/2⊗M

1/2 is assumed to be the magnetic charge of the monopole. So,
k = (qµ)/(~c).

We remark that there exists a purely gravitational example of such a non–trivial situation
provided by the nonrelativistic limit of the Taub–NUT solution, and leading to quantisation
of mass [5].

Example 3.4 The Aharonov–Bohm effect is produced in a Minkowski spacetime M by
a solenoidal magnetic field in the region where the magnetic field vanishes. In this region
the vector potential can be different from zero, producing effects at the quantum level. The
reader can compare our formalisation with the discussions in [11, 37].

–We assume a one–parameter family of inertial motions {st}t∈IR, fulfilling the relation
st = s0 + tv.

Each st induces the same inertial observer o. Hence, we have the splitting M → s0 ×P .
The family {st} is represented by a line S ⊂ P passing through the origin in P . This line
is the model of our ideal solenoid. Let us set P ′ :=P \ S; we have the isometric splitting
P ′ → S × L × S1, where L represents the distance from the line S and S1 is the space
of directions, which is diffeomorphic to a unit circle in P and is endowed with a natural
non–scaled metric. We set M ′ := s0 × P ′.
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– We assume a mass m and a charge q. Moreover, we assume the magnetic field F = 0
on M ′.

Of course, the spacetime M ′ endowed with the induced metric from M and the elec-
tromagnetic field F = 0 fulfills the integrality condition. But the cohomologies of M ′ and
S1 are isomorphic, hence this spacetime admits H1(M ′, IR)/H1(M ′,Z) ≃ U(1) inequiva-
lent quantum structures. A direct computation shows that ker i = {0}. Then, we have a
unique equivalence class of admissible quantum bundles, represented by the trivial bundle
M ′ × C → M ′, and U(1) inequivalent quantum connections.

We consider the (real) multiples of the volume form ν on S1 kν : S1 → T ∗S1, with
coordinate expression kν = kdθ. The quantum connection

q[k] :=q
‖ + i(τ ♮ + kν)⊗i

is an admissible quantum connection. Moreover, q[k] is equivalent to q[k′] if and only if
k′ − k is an integer. Hence, we have described the set of inequivalent quantum structures on
M ′. We can interpret kν as the potential of F = 0, and set k = (qµ)/(~c) as in the above
example, µ being the magnetic charge of the solenoid.

Example 3.5 The Kerr–Newman spacetime is the unique axisymmetric static exact
solution of Einstein equations in the vacuum [10, 23].

– We assume a one–parameter family of inertial motions {st}t∈IR, fulfilling the relation
st = s0 + tv.

As in the previous example, we have the isomorphism M → s0 × P , and, in this case,
the line S stands for the position of the symmetry axis. Moreover, here we make use
of a coordinate system (t, r, θ, φ) on M ′ := s0 × P ′ provided by a diffeomorphism P ′ ≃
IR+×]0, π[×S1, where S1 is the unit circle in IR2.

– We assume a mass M , a charge Q, and an angular momentum S ∈ T
−1 ⊗ L

2 ⊗M.

The Kerr–Newman spacetime is determined uniquely by the three above constants to-
gether with the gravitational coupling constant κ [23]. We set a :=S/(Mc), b :=

√
κQ/c2,

p = κM/c2, ∆ = r2 − 2pr + a2 + b2, ρ2 = r2 + a2 cos2 θ.

– We assume the metric

g = −∆

ρ2
(dt − a sin2 θdφ)2 +

sin2 θ

ρ2
dr⊗dr + ρ2 dθ⊗dθ

and the electromagnetic field

F =bρ−4(r2 − a2 cos2 θ) dr ∧ (dt − a sin2 θ dφ)+

2bρ−4ar cos θ sin θ dθ ∧ ((r2 + a2) dφ − a dt)

(of course, F and g are globally defined).



R. Vitolo 13

The electromagnetic field F has a global potential

A = −br
ρ2

(dt − a sin2 θ dφ)

hence the integrality condition is fulfilled. The topological analysis of M leads to the same
conclusions as the above example. Thus, we have the trivial quantum bundle as the repre-
sentative of the class of admissible quantum bundles. Moreover,

q[k] :=q
‖ + i(τ ♮ + A+ kν)⊗i

is an admissible quantum connection. Of course, q[k] is equivalent to q[k′] if and only if
k′ − k is an integer. Hence, we have described the set of inequivalent quantum structures on
M ′.

We do not know any significant physical interpretation of the potential kν. If k 6= 0,
then such a term would imply quantum effects of the Aharonov–Bohm type nearby a charged
rotating black hole.

Remark 3.1 We have no experimental evidence for the Dirac monopole example. Con-
versely, the Aharonov–Bohm effect was verified with electrons, while our theory deals only
with scalar particles. The computations of the last example seem to indicate the existence
of quantum effects of the Aharonov–Bohm type nearby a charged rotating black hole. We
do not know if there is any possibility of experimental verification of such an effect.
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