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Abstract

In the framework of finite order variational sequences a new class of Lagrangians
arises, namely, special Lagrangians. These Lagrangians are the horizontalization of
forms on a jet space of lower order. We describe their properties together with properties
of related objects, such as Poincaré–Cartan and Euler–Lagrange forms, momenta and
momenta of generating forms, a new geometric object arising in variational sequences.
Finally, we provide a simple but important example of special Lagrangian, namely the
Einstein–Hilbert Lagrangian.
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1 Introduction

The theory of variational sequences provides a geometric framework for the calcu-
lus of variations. In this theory the Euler–Lagrange operator is just a morphism in
an exact sequence of vector spaces (or sheaves of vector spaces). Geometric objects
like Lagrangians, momenta, Poincaré–Cartan forms, Helmholtz conditions, find a nice
interpretation in the vector spaces of the sequence.

We are concerned with some aspects of the theory of variational sequences in finite
order jet spaces (see [17, 18, 20] for the basics on this subject), which was mainly
developed in [14, 15, 21, 22]. In this theory a subset of r–th order Lagrangians is
selected in a natural way by the geometric structure of finite order jets. Namely, this
distinguished subset is made by r–th order Lagrangians which are the horizontalization
[14, 21, 22] of n–forms on the jet space of order r − 1. Such Lagrangians are said to
be special.
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2 Partially supported by GNFM of INDAM, MURST, Universities of Florence and Lecce.
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2 On a class of polynomial Lagrangians

The aim of this paper is to study in detail the properties of special Lagrangians
and related geometric objects.

In the second section, we review the main results on the geometry of spaces of jets
JrY of a fibration Y → X. We recall that the tangent space TJrY has a natural
splitting when pulled back to the higher order jet space Jr+1Y . Namely, it splits into
the (pullback of the) vertical subbundle plus a bundle which is fiberwise isomorphic to
TX. Then, we introduce horizontalization as the projection of forms on JrY , or r–th

order forms, on forms on Jr+1Y having the highest exterior factor
k
∧T ∗X in their target

space. We then recall Krupka’s theory of finite order variational sequences [14]. A
variational sequence on JrY is produced by taking the quotient of de Rham sequence
on JrY with respect to a sequence defined through the kernel of horizontalization.
The commutative diagram built by the three sequences is said to be the (finite order)
variational bicomplex.

In the third section, we describe the horizontalization of k–forms, with k ≤ n
(here n is the dimension of the base manifold). Horizontal n–forms of order r + 1 are
usually interpreted as (r + 1)–th order Lagrangians, [3, 5, 6, 10, 17, 19], but we prove
that not any horizontal form of order r + 1 is the horizontalization of some form of
order r. We see that the components of horizontalized (r + 1)–th order k–forms have
polynomial coefficients of degree k in the derivatives of order r + 1. Then, we define
special Lagrangians of order r + 1 to be n–forms coming from the horizontalization
of a r–th order n–form. We see that horizontalization provides an isomorphism of
the quotient space of n–forms in the variational sequence on JrY with the space of
(r + 1)–th order special Lagrangians.

The fourth section is devoted to Euler–Lagrange forms. We recall that Euler–
Lagrange forms are representatives of classes of (n + 1)–forms in the variational se-
quence [22], through horizontalization and a geometric version of Green’s formula [10].
In particular, we are able to split any horizontalized (n+ 1)–form, which we call gen-
erating form, into an Euler–Lagrange form (not necessarily induced by a Lagrangian)
and the horizontal differential (i.e. the total divergence) of a form, which is said to be
a momentum for the generating form. These momenta were first introduced in [22],
but here we study their properties in detail. Then, we prove that it is possible to
compute the Euler–Lagrange form for special Lagrangians both in the standard way
and by using the commutativity of the variational bicomplex. Finally, we describe the
polynomial structure of the Euler–Lagrange forms induced by special Lagrangians.

The fifth section contains a description of properties of momenta of generating
forms and their relationship with standard momenta of (special) Lagrangians. We
give a detailed analysis of their uniqueness properties. Namely, we prove that such
momenta are uniquely determined either for dimX = 1 or for generating forms of
order 2. We show that such a momentum can be naturally determined for generating
forms of order 3. We think that momenta for generating forms could play an important
role in multisymplectic theories (see [7, 8] and their rich bibliography). These theories
are a generalization of symplectic formalism to field theory. They all involve a closed
(n + 1)–form Ω on J1Y as the main geometric object. An analysis of these theories
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with the powerful tool of variational sequences has never been attempted. Indeed,
field equations can be easily recovered via the Euler–Lagrange form induced by the
generating form h(Ω). Here, momentum should play an essential role. This will be the
subject of further studies. This is also a good motivation for introducing and studying
such objects.

In the fifth section, we give a characterization of Poincaré–Cartan forms for both
special and general Lagrangians. Namely, we prove that a form θ is a Poincaré–Cartan
form for a given Lagrangian if the Lagrangian is the horizontalization of θ, the vertical
part of θ is in the space of momenta and the momentum of the generating form h(dθ)
can be chosen to be zero. Of course, this can also be taken as a definition of Poincaré–
Cartan form inspired by the variational sequences.

In the last section, we will show a relevant example of special Lagrangian, namely
the Hilbert–Einstein Lagrangian. We provide also the related objects, such as the
Poincaré–Cartan form, the momentum, the Euler–Lagrange form and the momentum
of the natural generating form.

Here, manifolds and maps between manifolds are assumed to be C∞.

2 Jet spaces and variational sequences

In this section we recall some basic facts about jet spaces [2, 18, 20] and Krupka’s
formulation of the finite order variational sequence [14, 22].

Our framework is a fibered manifold π : Y → X, with dimX = n and dimY =
n+m.

For r ≥ 0 we are concerned with the r–jet space JrY ; in particular, we set J0Y ≡
Y . We recall the natural fiberings πr

s : JrY → JsY , r ≥ s, πr : JrY → X, and,
among these, the affine fiberings πr

r−1. We denote by V Y the vector subbundle of the
tangent bundle TY of vectors on Y which are vertical with respect to the fibering π.

Charts on Y adapted to π are denoted by (xλ, yi). Greek indices λ, µ, . . . run
from 1 to n and they label base coordinates, while Latin indices i, j, . . . run from 1 to
m and label fiber coordinates, unless otherwise specified. We denote by (∂λ, ∂i) and
(dλ, di) the local bases of vector fields and 1–forms on Y induced by an adapted chart,
respectively.

We denote multi–indices of dimension n by the boldface Greek letters γ, δ. We
have γ = (γ1, . . . , γn) with 0 ≤ γµ, µ = 1, . . . , n; by an abuse of notation, we denote
by λ the multi–index such that γµ = 0 if µ 6= λ, γµ = 1 if µ = λ. We also set
|γ| := γ1 + · · ·+ γn and γ! := γ1! . . . γn!.

The charts induced on JrY are denoted by (xλ, yiγ), with 0 ≤ |γ| ≤ r; in particular,
we set yi

0
≡ yi. The local vector fields and forms of JrY induced by the above

coordinates are denoted by (∂γ
i ) and (diγ), respectively.

In the theory of variational sequences a fundamental role is played by the contact
maps on jet spaces (see [2, 18, 20]). Namely, for r ≥ 1, we consider the natural
complementary fibered morphisms over JrY → Jr−1Y

D : JrY ×
X
TX → TJr−1Y , ϑ : JrY ×

Jr−1Y
TJr−1Y → V Jr−1Y ,
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with coordinate expressions, for 0 ≤ |γ| ≤ r − 1, given by

D = dλ⊗Dλ = dλ⊗(∂λ + yjγ+λ∂
γ
j ) , ϑ = ϑj

γ⊗∂γ
j = (djγ − yjγ+λd

λ)⊗∂γ
j .

We have

JrY ×
Jr−1Y

T ∗Jr−1Y =

(

JrY ×
Jr−1Y

T ∗X

)

⊕
∗

Cr−1[Y ] ,(1)

where
∗

Cr−1[Y ] := imϑ∗

r.
Now, we introduce some distinguished sheaves of forms on jet spaces [22]. Let

k ≥ 0.

1. For r ≥ 0, we consider the standard sheaf
k

Λr of k–forms on JrY . We have the
coordinate expression

α = α
γ1...γh

i1...ih λh+1...λk
di1γ1

∧ . . . ∧ dihγh
∧ dλh+1 ∧ . . . ∧ dλk .

2. For 0 ≤ s ≤ r, we consider the sheaves
k

H(r,s) and
k

Hr of horizontal forms ,
i.e. of local fibered morphisms over JrY → JsY and JrY → X of the type,
respectively,

α : JrY →
k
∧T ∗JsY and λ : JrY →

k
∧T ∗X ;

in coordinates λ = λλ1...λk
dλ1 ∧ . . . ∧ dλk .

3. Furthermore, we consider the subsheaf
k

HP
r ⊂

k

Hr of local fibered morphisms

α ∈
k

Hr such that α is a polynomial fibered morphism over Jr−1Y → X of
degree k. In coordinates, the components λλ1...λn

are polynomials in yiγ of degree
k, where |γ| = r.

4. For 0 ≤ s < r, we consider the subsheaf
k

C(r,s) ⊂
k

H(r,s) of contact forms , i.e. of
local fibered morphisms over JrY → JsY of the type

α : JrY →
k
∧

∗

Cs[Y ] ⊂
k
∧T ∗JsY ,

and the subsheaf
k

Cr ⊂
k

C(r+1,r) of local fibered morphisms α ∈
k

C(r+1,r) such that
α̃ projects down onto JrY .

The fibered splitting (1) yields the sheaf splitting

k

H(r+1,r) = ⊕k
l=0

k−l

C (r+1,r) ∧
l

Hr+1(2)
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[20, 22]. We set h to be the restriction to
k

Λr of the projection of the above splitting
on the term with the highest degree of the horizontal factor. We set also v to be the
complementary projection v := id−h. We say h to be the horizontalization of forms
on jet spaces.

The splitting (1) induces also a decomposition of the exterior differential on Y ,
(πr+1

r )∗ ◦ d = dH + dV , where dH and dV are defined to be the horizontal and the
vertical differential [20].

We recall now Krupka’s variational sequence on finite order jet spaces [14].
Let us denote by d kerh the sheaf generated by the presheaf d kerh (see [23]). We

set
∗

Θr := kerh + d kerh. In [14] it is proved that the following diagram is commutative
and that its rows and columns are exact:

0 0 0 0 0 0

0 ✲ 0
❄

✲ 0
❄

✲

1

Θr

❄

d
✲

2

Θr

❄

d
✲ . . .

d
✲

I

Θr

❄

d
✲ 0

❄

✲ . . . ✲ 0

0 ✲ R

❄

✲

0

Λr

❄

d
✲

1

Λr

❄

d
✲

2

Λr

❄

d
✲ . . .

d
✲

I

Λr

❄

d
✲

I+1

Λ r

❄

d
✲ . . .

d
✲ 0

0 ✲ R

❄

✲

0

Λr

❄

E0
✲

1

Λr/
1

Θr

❄

E1
✲

2

Λr/
2

Θr

❄

E2
✲ . . .

EI−1
✲

I

Λr/
I

Θr

❄

EI
✲

I+1

Λ r

❄

d
✲ . . .

d
✲ 0

0
❄

0
❄

0
❄

0
❄

0
❄

0
❄

The top row of the above diagram is said to be the r–th order contact sequence and
the bottom row is said to be the r–th order variational sequence associated with the
fibered manifold Y → X (see [14, 22] for the relationship with calculus of variations).

The variational sequence can be read through some intrinsic isomorphisms of quo-
tient sheaves with sheaves of forms on jets [22]. This shows the connection of the
variational sequence with the geometric formulations of the calculus of variations
[3, 5, 6, 10, 17, 19]. Here, we are concerned with the columns of n and n+ 1 forms.

3 Special Lagrangians

In this section, we introduce special Lagrangians as distinguished representatives of

equivalence classes in
n

Λr/
n

Θr. More precisely, this representative will be obtained
through horizontalization.

For k ≤ n, let us set

k

Hh
r+1 :=h(

k

Λr) .
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We say
k

Hh
r+1 to be the sheaf of special horizontal forms of order r + 1.

Special horizontal k–forms are k–th degree polynomial in higher order derivatives,

i.e.
k

Hh
r+1 ⊂

k

HP
r+1. In fact, if α ∈

k

Λr, then

h(α) = yi1γ1+λ1
. . . yihγh+λh

α
γ1...γh

i1...ih λh+1...λk
dλ1 ∧ . . . ∧ dλk ,

with 0 ≤ h ≤ k.

Remark 3.1 The sheaf
k

Hh
r+1 admits the following characterization [22]: a section

α ∈
k

HP
r+1 is a section of the subsheaf

k

Hh
r+1 if and only if there exists a section β ∈

k

Λr

such that

(jrσ)
∗β = (jr+1σ)

∗α

for each section σ : X → Y .

If dimX = 1 then the inclusion
k

Hh
r+1 ⊂

k

HP
r+1 is an equality. In fact, in this case

the above coordinate expression turns out to be the general coordinate expression for

a section of
1

H
P

r+1.

If dimX 6= 1, then the inclusion
k

Hh
r+1 ⊂

k

HP
r+1 is not an equality, in general, due

to the above characterization. We can check it via the following example. Consider

a 1–form β ∈
1

Λ0. Then we have the coordinate expressions β = βλd
λ + βid

i, h(β) =

(βλ+yiλβi)d
λ. If α ∈

1

HP
1 , then we have the coordinate expression α = (αλ+yiµα

µ
i λ)d

λ.

It is evident that, in general, there does not exist β ∈
1

Λr such that h(β) = α.

Let us recall that, according to the standard definition, an r–th order Lagrangian

is defined to be a form λ ∈
n

Hr [3, 5, 6, 10, 17, 19].

The horizontalization induces a natural sheaf isomorphism between
n

Λr/
n

Θr and
n

Hh
r+1. This motivates the following definition.

Definition 3.2 We say forms in
n

Hh
r+1 to be special Lagrangians of order r+1.

We also say a Lagrangian λ ∈
n

Hr to be general if it is not special. Equivalently, λ

is general either if it is not the horizontalization of a form in
n

Λr−1, or if λ 6∈
n

Hh
r .

Remark 3.3 Special Lagrangians of order r + 1 differs from both general and
polynomial Lagrangians of order r+1 for one essential feature: they come from a form

in
n

Λr through horizontalization.
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4 Euler–Lagrange forms and special Lagrangians

Here we describe the properties of Euler–Lagrange forms induced by special La-
grangians. We see that any Euler–Lagrange form (even not induced by a Lagrangian)
is obtained from a horizontalized (n+ 1)–form by adding a suitable form which is an
exact horizontal differential. The horizontalized (n+1)–form is said to be a generating
form, while a (horizontal) potential of the exact form is said to be a momentum for
the Euler–Lagrange form. Then, we prove that it is possible to compute the Euler–
Lagrange form for special Lagrangians both in the standard way and by using the
commutativity of the variational bicomplex. Finally, we describe the structure of
Euler–Lagrange forms of special Lagrangians.

The horizontalization induces the natural injective sheaf morphism

(

n+1

Λ r/
n+1

Θ r

)

→
(

1

Cr ∧
n

Hh
r+1

)

/

h(d kerh) : [α] 7→ [h(α)] .

Then, it can be proved that h(d kerh) ⊂ dH(
1

Cr ∧
n−1

H h
r+1) [22]. So, we can use Kolář’s

geometric version of Green’s formula to provide an isomorphism of the above quotient

sheaf with a sheaf of forms on jet spaces. Namely, Let us consider h(α) ∈
1

Cr ∧
n

Hh
r+1;

such a form is said to be a generating form. It is proved in [10] that for any generating
form h(α) then there is a unique pair of sheaf morphisms

Eh(α) ∈
1

C(2r,0) ∧
n

Hh
2r+1 , Fh(α) ∈

1

C(2r,r−1) ∧
n

Hh
2r ,(3)

such that h(α) = Eh(α) + Fh(α) and Fh(α) is locally of the form Fh(α) = dHph(α), with

ph(α) ∈
1

C(2r−1,r−1) ∧
n−1

H h
2r. Note that a global section ph(α) such that Fh(α) = dHph(α)

always exists [2, 3, 5, 10], essentially due to the fact that dH has zero cohomology
when restricted on certain subsequences (see [1] for a deeper discussion).

Definition 4.1 Let α ∈
n+1

Λ r. Then any form ph(α) is said to be a momentum of
the generating form h(α).

Notice that we are able to consider momentum also for Euler–Lagrange forms which
are not variational, i.e. which do not come from any Lagrangian.

Remark 4.2 We think that momenta of this kind could play an important role
in the study of multisymplectic theories (see [7, 8] and their rich bibliography). These
theories are a generalization of symplectic formalism to field theory and all of them
involve a closed (n+ 1)–form Ω on J1Y as the main geometric object. An analysis of
these theories with the powerful tool of variational sequences has never been attempted.
Indeed, field equations can be easily recovered via the Euler–Lagrange form induced
by the generating form h(Ω). Here, momentum could play an essential role.
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The above yields [22] the sheaf isomorphism
(

1

Cr ∧
n

Hh
r+1

)

/

h(d kerh) →
n+1

V r : [h(α)] 7→ Eh(α) ,(4)

where
n+1

V r :=

(

1

Cr ∧
n

Hh
r+1 + dH(

1

C(2r,r−1) ∧
n−1

H 2r)

)

∩
(

1

C(2r+1,0) ∧
n

H2r+1

)

. It is now

clear that generating forms of order r + 1 provide all Euler–Lagrange forms in the
quotient space of (n+ 1)–forms in the variational sequence of order r.

Let us recall the standard definition of Euler–Lagrange form and momentum for a

Lagrangian λ ∈
n

Hr [2, 3, 5, 10, 17]. We apply (3) to obtain dλ = Edλ + dHpdλ for any
choice of pdλ. We say

– Edλ to be the Euler–Lagrange form of the Lagrangian λ;
– pdλ to be a momentum of the Lagrangian λ.
The momentum of a Lagrangian is uniquely defined only in some special cases

[2, 3, 5, 10]. Namely, either if dimX = 1 or if r = 1. If r = 2 then we are able to
naturally determine pdλ through a further assumption [10]. If r = 3 then there does
not exist, in the general situation, a natural pdλ [11]. Anyway, an intrinsic choice of
pdλ is always possible [10].

We show that the operator En of the variational sequence associates to any La-
grangian its Euler–Lagrange form through the above isomorphism (4).

Proposition 4.3 Let λ ∈
n

Hh
r+1 and β ∈

n

Λr such that h(β) = λ. Then we have
En(λ) = Eh(dβ). Moreover, Eh(dβ) = Edλ .

Proof. By the above decomposition formula, h(dβ) = Eh(dβ) + dHph(dβ) for any
choice of ph(dβ). But the commutativity of the diagram

n

Λr

d
✲

n+1

Λ r

n

Hh
r

❄

En
✲

n+1

V r

❄

yields En(λ) = Eh(dβ). As for the second result, we consider λ as being a form λ ∈
n

Λr+1.
In this case, En(λ) = Edλ. By the inclusion of the r–th variational bicomplex into the
(r + 1)–th one [14, 22], we obtain Eh(dβ) = Edλ. QED

If λ ∈
n

Hr is general, then the form Edλ is defined on J2rY , and has a peculiar
structure with respect to the derivative coordinates of order greater than r. In fact, if
we assign to the variables yiγ with |γ| = r + s the weight s, then it is easily seen that
Edλ is a polynomial with weighted degree r with respect to yiγ , with |γ| > r [12].

Corollary 4.4 If λ ∈
n

Hr is special, then the form Edλ is defined on J2r−1Y , and
the coefficients of the polynomials in Edλ are polynomials of (standard) degree n + 1
with respect to the coordinates yiγ, with |γ| = r + 1.
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5 Momentum and special Lagrangians

Now, we describe general properties of momentum for generating forms h(α) ∈
1

Cr ∧
n

Hh
r+1. Then, we see the relationship with momenta for special Lagrangians.
We recall the coordinate expression h(α) = α̃γ

i ϑ
i
γ ∧ ω, where α̃γ

i are polynomials
of (standard) degree n with respect to the coordinates yiγ , with |γ| = r + 1, with
coefficients the components of α.

As we already said, global momenta ph(α) for any generating form h(α) exist. This
is essentially due to the fact that dH has zero cohomology. A proof of this can be found
in an early work by Kolář (see references in [10]). See also [1] for a cohomological proof.

Then, we check uniqueness properties of ph(α). Of course, if dimX = 1 then
ph(α) is unique. This is because dH ph(α) = 0 implies ph(α) = 0, as it is easily seen in
coordinates.

Remark 5.1 There exists a natural sheaf morphism [11, 19, 20, 22]

p :
1

C(r,1) ∧
n

Hr →
1

C(r,0) ∧
n−1

H r .

If φ ∈
1

C(r,1)∧
n

Hr has the coordinate expression φ = αi ϑ
i∧ω+φλ

i ϑ
i
λ∧ω, then we have

the coordinate expression pφ = φλ
i ϑ

i ∧ ωλ.

Theorem 5.2 (Uniqueness I). Let α ∈
n

Λ1. Then, the momentum ph(α) of h(α) is
unique. We have the coordinate expression

ph(α) = α̃λ
i ϑ

i ∧ ωλ .

Proof. In fact, we deduce the above coordinate expression from (3). Then, it is
clear that ph(α) is defined up a n–form whose horizontal differential vanish. It is easy
to see in coordinates that such a form must be zero. QED

Remark 5.3 It is easy to verify that if we start with α ∈
n

Λ2 we obtain h(α) ∈
1

C(3,1) ∧
n

Hh
3 , so h(α) is not in the domain of p.

In the case r = 2 there is not a unique choice of momentum for the generating
form h(α). But we are able to choose it in a natural way.

Remark 5.4 There exists a natural sheaf morphism [11, 22]

s :
1

C(r,1) ∧
n−1

H r →
1

C(r,0) ∧
n−2

H r .

If p ∈
1

C(r,1) ∧
n−1

H r has the coordinate expression p = p µ
i ϑi ∧ωµ + pλµi ϑi

λ ∧ωµ, then we

have the coordinate expression s(p) = pλµi ϑi ∧ ωλµ.
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Theorem 5.5 (Uniqueness II). Let α ∈
n

Λ2. Then, there exists a unique momen-
tum ph(α) of h(α) such that s(ph(α)) = 0. We have the coordinate expression

ph(α) = (α̃λ
i −Dµα̃

µ+λ
i )ϑi ∧ ωλ + α̃µ+λ

i ϑi
µ ∧ ωλ .

Proof. Suppose that ph(dβ) = pλi ϑ
i ∧ ωλ + pλµi ϑi

µ ∧ ωλ. Then s(ph(α)) = 0 yields

pλµi = −pµλi . By (3) one obtains the above ph(dβ) as the unique momentum fulfilling
the above requirement. QED

Remark 5.6 It is easy to verify that if we start with h(α) ∈
n

Λ3 then we obtain

h(α) ∈
1

C(4,2)∧
n

Hh
4 , hence ph(α) ∈

1

C(5,2)∧
n

Hh
5 , so that ph(α) is not in the domain of s.

Remark 5.7 The reader could have realized that the above proofs go in the same
way as in the case of general Lagrangians λ [10]. The difference is that here we used
generating forms h(α) instead. This means that, even if results refer to orders 1 and 2
as in the case of Lagrangians, generating forms are of order 2 and 3, respectively.

Now, we deal with the interplay between the two kind of momenta that we in-
troduced: momenta of (special) Lagrangians and momenta of generating forms. Let

λ ∈
n

Hh
r+1 be a special Lagrangian. Then, there exists β ∈

n

Λr such that h(β) = λ. So,
we can consider the generating form h(dβ) and evaluate its momentum ph(dβ). It is
natural to ask the relationship between the momentum pdλ of λ and the momentum
ph(dβ) of h(dβ).

First of all, we note that β is not unique, hence all uniqueness results referring to
ph(dβ) that we evaluated above cannot be related to λ.

Theorem 5.8 We have h(dβ) = h(dH v(β)) + dλ, hence the momenta ph(dβ) and
pdλ can be chosen to be equal if and only if h(dH v(β)) = 0.

Proof. In fact,

h(dβ) = h((dH + dV )(λ+ v(β)))

= h(dH v(β) + dV λ+ dV v(β))

= h(dH v(β)) + dV λ ,

where, in this case, dV λ = dλ.

Corollary 5.9 Let λ ∈
n

Hr ⊂
n

Hh
r+1 be a general Lagrangian. Then, the momenta

ph(dβ) and pdλ can be chosen to be equal.

Proof. In fact, in this case β = λ hence v(β) = 0 and we can choose ph(dβ) = pdλ.
QED
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6 Poincaré–Cartan forms and special Lagrangians

Here, we give a characterization of Poincaré–Cartan forms in the framework of varia-
tional sequences. This characterization is inspired by and formulated through special
(r + 1)–th order Lagrangians, but obviously it holds also for general Lagrangians of
any order.

We recall that, given a Lagrangian λ ∈
n

Hr, we define the form θλ :=λ+pdλ ∈
n

Λ2r−1

to be a Poincaré–Cartan form [2, 3, 5, 10, 17, 19, 20]. Such a definition is motivated
by the fact that the differential of the Poincaré–Cartan form splits into the sum of the
Euler–Lagrange form for λ plus a contact form, namely dθλ = Edλ+dV pdλ. Uniqueness
consideration for the Poincaré–Cartan form are the same as momentum (3).

Our characterization of Poincaré–Cartan forms is inspired by the fact that we can
choose zero momentum for the generating form dθλ!

Theorem 6.1 Let λ ∈
n

Hh
r+1 be a special Lagrangian. Then there exists a unique

class of forms θ ∈
n

Λ2r fulfilling

1 – h(θ) = λ;

2 – v(θ) ∈
1

C2r ∧
n−1

H 2r;

3 – h(dθ) = Eh(dθ), or we can choose zero momentum for the generating form dθ.

Namely, θ = θλ.

Proof. In fact, requirements 1 and 2 imply that θ should be of the form θ = λ+p,

with p ∈
1

C2r ∧
n−1

H 2r. Now,

h(dθ) = h(dHp) + dV λ = h(dHp) + Edλ − dHpdλ

But h(dθ) = Eh(dθ) = Edλ due to theorem 4.3. Moreover, requirement 2 imply
h(dHp) = dHp. Summing up, dH(p− pdλ) = 0, hence p is also a momentum for λ.

Conversely, it is trivial to see that Poincaré–Cartan forms fulfill the requirements
of the theorem. QED

Remark 6.2 We would like to justify the requirements of the above theorem.
The first requirement is obviously necessary. The second requirement is a requirement
of ‘minimality’ of the vertical part of θ with respect to the splitting 2. The third
requirement is inspired by the main property of Poincaré–Cartan forms that we recalled
at the beginning of the section.

Remark 6.3 Of course, the requirements of the above theorem could be taken as
a definition of Poincaré–Cartan form naturally provided by variational sequences. This
in the same spirit as definitions of Lagrangians, Euler–Lagrange forms and momenta
in the above framework.
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7 The Hilbert–Einstein Lagrangian

In this brief section we show an important and simple example of special Lagrangian,
namely the Hilbert–Einstein Lagrangian. We also derive all related geometric objects
like the momentum of the Hilbert–Einstein Lagrangian, its Euler–Lagrange form and
the momentum of the Euler–Lagrange form.

Let dimX = 4 and X be orientable. Let Lor(X) be the bundle of Lorenzian
metrics on X (provided that it exists). Local fibered coordinates on J2(Lor(X)) are
(xλ; gµν , gµν,σ, gµν,σρ).

The Hilbert–Einstein Lagrangian is the form λHE ∈
4

H2 defined by λHE = LHEω,
were LHE = r

√
g. Here r : J2(Lor(X)) → R is the function such that, for any Lorenz

metric g, we have r ◦ j2g = s, being s the scalar curvature associated with g, and g is
the determinant of g.

The function LHE is a linear function in the second derivatives of g. In fact, let us
set Gαβǫγ := gαǫgβγ + gαγgβǫ − 2gαβgǫγ; then we have [4]

r =
1

2
Gαβǫγ

(

gǫγ,αβ + gµνΓ
µ
αβΓ

ν
ǫγ

)

.

We can prove even more. Indeed, λHE ∈
4

Hh
2 . In fact, the momentum for the second

order Lagrangian λHE (in the sense of [10]) turns out to be [4]

pλHE
=

1

2

(

Gαβǫγgµν∂
µν,λ

(

Γµ
αβΓ

ν
ǫγ

)

−Dρ(G
λρµν√g)

)

ϑµν ∧ ωλ+

1

2
Gλρµν √

gϑµν,ρ ∧ ωλ ,

and the Poincaré–Cartan form

θλHE
=

1

2
GαβǫγgµνΓ

µ
αβΓ

ν
ǫγ

√
g ω+

1

2

(

Gαβǫγgµν∂
µν,λ

(

Γµ
αβΓ

ν
ǫγ

)

−Dρ(G
λρµν√g)

)

ϑµν ∧ ωλ+

1

2
Gλρµν √

gϑµν,ρ ∧ ωλ .

Of course, θλHE
∈

4

Λ1. Moreover, a direct computation shows that

h(θλHE
) = λHE .

So, λHE is a special Lagrangian (r = 1).
In view of the previous results, its Euler–Lagrange form should be an element

EdλHE
∈

1

C(2,0) ∧
4

H3. But, due to a property of λHE [4], we have EdλHE
∈

1

C(2,0) ∧
4

H2.
Of course, a direct computation shows that EdλHE

= G :=R− 1
2
s g, R being the Ricci

tensor of the metric g.
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Another important consideration is that we can also compute EdλHE
through propo-

sition 4.3, namely as EdλHE
= Eh(dβ). In this case, we have a natural candidate of β,

namely we can take β = θλHE
∈

4

Λ1. So,

dθλHE
= EdλHE

+ dV pdλHE

(see the above section), which yields the natural generating form h(dθλHE
) = EdλHE

=
Eh(dθλHE

). So, by theorem 5.2, the unique momentum of the generating form h(dθλHE
)

is the zero form. This very peculiar behaviour is due to the geometric structure of
general relativity. It is also an example of a special Lagrangian with a non trivial
momentum and whose momentum of the natural generating form vanishes.
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of variations, Proc. Diff. Geom. and Appl. (Nové Město na Moravě, 1983); D. Krupka ed., J.E.
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[5] P.L. Garcia, J. Muñoz: On the geometrical structure of higher order variational calculus,
Proc. IUTAM–ISIMM Symp. on Modern Developments Anal. Mech., (Torino, 1982); S. Benenti,
M. Francaviglia, A. Lichnerowicz eds., Tecnoprint (Bologna, 1983) 127–147.
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[14] D. Krupka: Variational sequences on finite order jet spaces, Proc. Diff. Geom. Appl. (Brno,
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