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Abstract

Within the context of the inverse Lie problem the question whether there exist
PDEs that are characterized by their Lie point symmetries may be addressed.
In a recent paper the authors called these equations Lie remarkable. In this
paper we exhibit various examples of Lie remarkable equations, including some
multidimensional Monge-Ampère type equations.

Keywords: Lie symmetries of differential equations, jet spaces

Dedicated to Antonio Greco
on the occasion of his 65th birthday

1 Introduction

One of the most powerful tools for studying differential equations (DEs), either ordinary
or partial, is provided by the theory of symmetries (see Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9]).
Symmetries of DEs are (finite or infinitesimal) transformations of the independent and
dependent variables and derivatives of the latter with respect to the former, with the
further property of sending solutions into solutions. Among symmetries, there is a
distinguished class, that of symmetries coming from a transformation of the independent
and dependent variables, namely point symmetries.

1Speaker at the Conference
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Given a (system of) DE(s) the direct Lie problem consists in finding the admitted
algebra of point symmetries. This task is accomplished by means of the Lie’s algorithm,
requiring the straightforward though tedious solution of an overdetermined system of
DEs, possibly by using some computer algebra packages like Dimsym[10], MathLie[9],
or Relie[11].

The problem of finding the symmetries of a DE has associated a natural inverse
problem, namely, the problem of finding the most general form of a DE admitting
a given (abstract) Lie algebra as subalgebra of point symmetries. This problem was
considered, for instance, in Refs. [12, 13].

An aspect of this problem has been considered in Ref. [14], where the authors,
starting from a given DE, found necessary and sufficient conditions for it to be uniquely
determined by its point symmetries. By following the terminology already used in
Refs. [15, 16, 14, 17], we call such a DE Lie remarkable. A similar problem was also
considered in Refs. [18, 19].

In this paper we review some of the results obtained in Ref. [14], and give examples
of Lie remarkable equations. Here we also treat the case of a multidimensional Monge-
Ampère equation, i.e., with more than two independent variables.

The plan of the paper is the following. In section 2, we introduce a DE of order r
as a submanifold of a suitable jet space (of order r). Then we distinguish two types of
Lie remarkable equations: strongly and weakly Lie remarkable equations. Strongly Lie
remarkable equations are uniquely determined by their point symmetries; weakly Lie
remarkable equations are equations which do not intersect other equations admitting
the same symmetries. Then we report [14, 16] necessary as well as sufficient conditions
for an equation to be strongly or weakly Lie remarkable.

In section 3, we give various examples of either strongly or weakly Lie remarkable
equations: they include equations of Monge-Ampère type, with two and three indepen-
dent variables, and minimal surface equations.

2 Theoretical framework

Here we recall some basic facts regarding jet spaces (for more details, see Refs. [8, 5, 20])
and the basic theory on DEs determined by their Lie point symmetries[14].

All manifolds and maps are supposed to be C∞. If E is a manifold then we denote
by χ(E) the Lie algebra of vector fields on E. Also, for the sake of simplicity, all
submanifolds of E are embedded submanifolds.

Let E be an (n+m)-dimensional smooth manifold and L an n-dimensional subman-
ifold of E. Let (V, yA) be a local chart on E. The coordinates (yA) can be divided in two
sets, (yA) = (xλ, ui), λ = 1 . . . n and i = 1 . . . m, such that the submanifold L is locally
described as the graph of a vector function ui = f i(x1, . . . , xn). In what follows, Greek
indices run from 1 to n and Latin indices run from 1 to m unless otherwise specified.

The set of equivalence classes [L]rp of submanifolds L having at p ∈ E a contact
of order r is said to be the r-jet of n-dimensional submanifolds of E (also known as
extended bundles [5]), and is denoted by Jr(E, n). If E is endowed with a bundle
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π : E → M where dim M = n, then the r-th order jet Jrπ of local sections of π is an
open dense subset of Jr(E, n). We have the natural maps jrL : L → Jr(E, n), p 7→ [L]rp,
and πk,h : Jk(E, n) → Jh(E, n), [L]kp 7→ [L]hp , k ≥ h.

The set Jr(E, n) is a smooth manifold whose dimension is

dim Jr(E, n) = n + m

r∑

h=0

(
n + h − 1

n − 1

)
= n + m

(
n + r

r

)
, (1)

whose charts are (xλ, ui
σ
), where ui

σ
◦jrL = ∂|σ|f i/∂xσ, where 0 ≤ |σ| ≤ r. On Jr(E, n)

there is a distribution, the contact distribution, which is generated by the vectors

Dλ
def

=
∂

∂xλ
+ uj

σλ

∂

∂uj
σ

and
∂

∂uj
τ

,

where 0 ≤ |σ| ≤ r − 1, |τ | = r and σλ denotes the multi-index (σ1, . . . , σr−1, λ). Any
vector field Ξ ∈ χ(E) can be lifted to a vector field Ξ(k) ∈ χ(Jk(E, n)) which preserves
the contact distribution. In coordinates, if Ξ = Ξλ∂/∂xλ + Ξi∂/∂ui is a vector field on
E, then its k-lift Ξ(k) has the coordinate expression

Ξ(k) = Ξλ ∂

∂xλ
+ Ξi

σ

∂

∂ui
σ

, (2)

where Ξj
τ ,λ = Dλ(Ξ

j
τ
) − uj

τ ,βDλ(Ξ
β) with |τ | < k.

A differential equation E of order r on n-dimensional submanifolds of a manifold E
is a submanifold of Jr(E, n). The manifold Jr(E, n) is called the trivial equation. An
infinitesimal point symmetry of E is a vector field of the type Ξ(r) which is tangent to
E .

Let E be locally described by {F i = 0}, i = 1 . . . k with k < dim Jr(E, n). Then
finding point symmetries amounts to solve the system

Ξ(r)
(
F i

)
= 0 whenever F i = 0

for some Ξ ∈ χ(E).
We denote by sym(E) the Lie algebra of infinitesimal point symmetries of the equa-

tion E .
By an r-th order differential invariant of a Lie subalgebra s of χ(E) we mean a

smooth function I : Jr(E, n) → R such that for all Ξ ∈ s we have Ξ(r)(I) = 0.
The problem of determining the Lie algebra sym(E) is said to be the direct Lie

problem. Conversely, given a Lie subalgebra s ⊂ χ(E), we consider the inverse Lie
problem, i.e., the problem of characterizing the equations E ⊂ Jr(E, n) such that s ⊆
sym(E) [1, 21].

1 Definition. Let E be a manifold, dim E = n + m, and let r ∈ N, r > 0. An
l-dimensional equation E ⊂ Jr(E, n) is said to be

1. weakly Lie remarkable if E is the only maximal (with respect to the inclusion)
l-dimensional equation in Jr(E, n) passing at any θ ∈ E admitting sym(E) as
subalgebra of the algebra of its infinitesimal point symmetries;

3



2. strongly Lie remarkable if E is the only maximal (with respect to the inclusion)
l-dimensional equation in Jr(E, n) admitting sym(E) as subalgebra of the algebra
of its infinitesimal point symmetries.

Of course, a strongly Lie remarkable equation is also weakly Lie remarkable. Some
direct consequences of our definitions are due. For each θ ∈ Jr(E, n) denote by Sθ(E) ⊂
TθJ

r(E, n) the subspace generated by the values of infinitesimal point symmetries of
E at θ. Let us set S(E) def

=
⋃

θ∈Jr(E,n) Sθ(E). In general, dim Sθ(E) may change with

θ ∈ Jr(E, n). The following inequality holds:

dim sym(E) ≥ dim Sθ(E), ∀ θ ∈ Jr(E, n), (3)

where dim sym(E) is the dimension, as real vector space, of the Lie algebra of infinites-
imal point symmetries sym(E) of E . If the rank of S(E) at each θ ∈ Jr(E, n) is the
same, then S(E) is an involutive (smooth) distribution.

A submanifold N of Jr(E, n) is an integral submanifold of S(E) if TθN = Sθ(E) for
each θ ∈ N . Of course, an integral submanifold of S(E) is an equation in Jr(E, n) which
admits all elements in sym(E) as infinitesimal point symmetries. The points of Jr(E, n)
of maximal rank of S(E) form an open set of Jr(E, n) [14]. It follows that E can not
coincide with the set of points of maximal rank of S(E). The following theorems [14]
can be proved.

2 Theorem.

1. A necessary condition for the differential equation E to be strongly Lie remarkable
is that

dim sym(E) > dim E .

2. A necessary condition for the differential equation E to be weakly Lie remarkable
is that

dim sym(E) ≥ dim E .

In Ref. [14] also sufficient conditions have been established, that reveal useful when
computing examples and applications.

3 Theorem.

1. If S(E)|E is an l-dimensional distribution on E ⊂ Jr(E, n), then E is a weakly Lie
remarkable equation.

2. Let S(E) be such that for any θ 6∈ E we have dim Sθ(E) > l. Then E is a strongly
Lie remarkable equation.

The next theorem [14] gives the relationship between Lie remarkability and differ-
ential invariants.
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4 Theorem. Let s be a Lie subalgebra of χ(Jr(E, n)). Let us suppose that the r-
prolongation subalgebra of s acts regularly on Jr(E, n) and that the set of r-th order
functionally independent differential invariants of s reduces to a unique element I ∈
C∞(Jr(E, n)). Then the submanifold of Jr(E, n) described by ∆(I) = 0 (in particular
I = k for any k ∈ R), with ∆ an arbitrary smooth function, is a weakly Lie remarkable
equation.

To prove that a PDE is strongly or weakly Lie remarkable the following steps are
required:

1. determine its Lie point symmetries;

2. determine the rank k of the distribution generated by its r–order prolongations
and compare it with the dimension of the equation;

3. determine the submanifolds where the rank of the distribution decreases.

3 Examples

In what follows we give some examples of Monge-Ampère equations (of various order)
and minimal surface equations which are Lie remarkable. Since we deal with (infinites-
imal) point symmetries of these equations, as we are interested to local aspects, we will
interpret them as submanifolds of jets of a trivial bundle R

n × R → R
n, with n = 2, 3,

which we denote, following our notation, by Jr(Rn+1, n).

3.1 Second order Monge-Ampère equation

The 2nd order Monge-Ampère equation in 2 independent variables has been introduced
by Ampère in 1815; in 1968, Boillat[22] discovered that it is the only second order
equation being completely exceptional in the sense of Lax. The requirement of complete
exceptionality has been used to derive Monge-Ampère equations involving more than 2
independent variables[23, 24, 25].

5 Proposition (Boillat, 1991). Given an unknown field

u(x0, x1, . . . , xn), (x0 denoting the time),

and its associated Hessian matrix H =
∥∥∥ ∂2u

∂xα∂xβ

∥∥∥, the most general 2nd order PDE

being completely exceptional (and called Monge-Ampère equation) is provided by a linear
combination of all minors extracted from H, with coefficients depending at most on xα,
u and first order derivatives of u.

The classical Monge-Ampère equation written in the form

κ1(uttuxx − u2
tx) + κ2utt + κ3utx + κ4uxx + κ5 = 0,
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where the coefficients κi (κ1 6= 0) are constant, through the substitution

u → u −
κ4

2κ1

x2 +
κ3

2κ1

xt −
κ2

2κ1

t2

is mapped to

uttuxx − u2
tx = κ, κ =

4κ2κ4 − 4κ1κ5 − κ2
3

4κ2
1

.

If κ = 0 we have the homogeneous Monge-Ampère equation for the surface u(t, x)
with zero Gaussian curvature.

6 Theorem. Equation
uttuxx − u2

tx = κ (4)

is weakly Lie remarkable if κ 6= 0, whereas it is strongly Lie remarkable if κ = 0.

Proof. Equation (4) is a hypersurface of J2(R3, 2). If κ 6= 0, equation (4) admits a
9-parameter group of point symmetries whose Lie algebra is spanned by the vector
fields

Ξ1 = ∂
∂x

, Ξ2 = ∂
∂t

, Ξ3 = ∂
∂u

,
Ξ4 = x ∂

∂t
, Ξ5 = t ∂

∂x
, Ξ6 = x ∂

∂u
,

Ξ7 = t ∂
∂u

, Ξ8 = x ∂
∂x

+ u ∂
∂u

, Ξ9 = t ∂
∂t

+ u ∂
∂u

.

The 2nd order prolonged vector fields give rise to a distribution of rank 7 (equation
(4) is a 7–dimensional submanifold!) on the whole jet space provided we exclude the
5–dimensional submanifolds locally described by uxx = utx = utt = 0 where the rank
reduces to 5. Thus, non-homogeneous equation (4) is weakly Lie remarkable.

On the contrary, if κ = 0, equation (4) admits a 15–dimensional Lie algebra of point
symmetries spanned by

∂

∂a
, a

∂

∂b
, a

∂

∂b
, a

(
∂

∂x
+

∂

∂t
+

∂

∂u

)
, ∀a, b ∈ {x, t, u}.

In this case, the 2nd order prolonged vector fields give rise to a distribution of rank
8 on J2(R3, 2) (which has dimension 8), provided we exclude the submanifold charac-
terized by the equation itself (where the rank is at most 7; in fact on the submanifold
uxx = utx = utt = 0 the rank reduces to 5). Hence, the homogeneous equation for a
surface with vanishing Gaussian curvature is strongly Lie remarkable.

3.2 Monge-Ampère equation in 3 independent variables

Consider the 2nd order Monge-Ampère equation in 3 independent variables[23]:

κ1[utt(uxxuyy − u2
xy) + utx(utyuxy − utxuyy + uty(utxuxy − utyuxx)]

+κ2(uxxuyy − u2
xy) + κ3(utyuxy − utxuyy) + κ4(utxuxy − utyuxx)

+κ5(uttuyy − u2
ty) + κ6(utxuty − uttuxy) + κ7(uttuxx − u2

tx)

+κ8utt + κ9utx + κ10uty + κ11uxx + κ12uxy + κ13uyy + κ14 = 0,
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where κi (i = 1, . . . , 14) are taken constant.
The explicit determination of the infinitesimal generators of the admitted Lie group

results quite complicated and the use of Computer Algebra packages reveals extremely
memory consuming since the expression of the infinitesimals involves thousands of
terms. Nevertheless, without loss of generality, it is possible to introduce the sub-
stitution

u → u + α1t
2 + α2tx + α3ty + α4x

2 + α5xy + α6y
2,

αi being suitable constants, so reducing the equation to the equivalent form

κ1[utt(uxxuyy − u2
xy) + utx(utyuxy − utxuyy + uty(utxuxy − utyuxx)]

+κ2(uxxuyy − u2
xy) + κ3(utyuxy − utxuyy) + κ4(utxuxy − utyuxx)

+κ5(uttuyy − u2
ty) + κ6(utxuty − uttuxy) + κ7(uttuxx − u2

tx) = κ, (5)

In general this equation admits an 11–dimensional Lie algebra of point symmetries.
Since the equation represents a 12–dimensional submanifold of J2(R4, 3) (which is a
13–dimensional manifold), it can not be neither strongly nor weakly Lie remarkable.
However, the following theorem holds.

7 Theorem. The 2nd order Monge-Ampère equation (5), when the coefficients are such
that

κ1 = 1, κ2κ
2
6 − κ3κ4κ6 + κ2

4κ5 − (4κ2κ5 − κ2
3)κ7 = 0,

is weakly Lie remarkable.

Proof. In fact:

1. the dimension of the submanifold described by (5) is 12;

2. the Lie algebra of point symmetries is 13–dimensional;

3. the 2nd order prolongations of the admitted vector fields give rise to a distribution
of rank 12 provided that we exclude some submanifolds not contained in the
equation itself.

Hence, due to theorem 3, equation (5) is weakly Lie remarkable.

8 Remark. It may be verified that the unique 2nd order differential invariant of the
Lie symmetries of equation (5) is

I = (uttuxxuyy − uttu
2
xy − u2

txuyy + 2utxutyuxy − u2
tyuxx)

+κ2(uxxuyy − u2
xy) − κ3(utxuyy − utyuxy) + κ4(utxuxy − utyuxx)

+κ5(uttuyy − u2
ty) − κ6(uttuxy − utxuty) + κ7(uttuxx − u2

tx),

whereupon if follows that they characterize the equation

∆(I) = 0 ⇒ I = κ, κ constant

More generally, some other 2nd order Monge-Ampère equations, involving more
than 3 independent variables, are weakly Lie remarkable.
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3.3 Higher order Monge-Ampère equations

The property of complete exceptionality has been used by Boillat[26] to determine
higher order Monge-Ampère equations for the unknown u(t, x).

By considering an equation of order N > 2, we need to consider the Hankel matrix

H =




X0 X1 X2 . . . XM−1 XM

X1 X2 X3 . . . XM XM+1

. . . . . . . . . . . . . . . . . .
XM−1 XM XM+1 . . . X2M−2 X2M−1

XM XM+1 XM+2 . . . X2M−1 X2M




,

where Xi =
∂Nu

∂ti∂xN−i
.

9 Theorem (Boillat, 1992). The most general nonlinear completely exceptional equa-
tion is given, if N = 2M , by a linear combination of all minors, including the determi-
nant, of the Hankel matrix, whereas in the case where N = 2M −1, we have to consider
the linear combination of all minors extracted from the Hankel matrix where the last
row has been removed.

In both cases the coefficients of the linear combination are functions of t, x, u and
its derivatives up to the order N − 1. Let us limit ourselves to the case where these
coefficients are constant.

Consider the 3rd order Monge-Ampère equation

κ̃1(uttxuxxx − u2
txx) + κ̃2(utttuxxx − uttxutxx) + κ̃3(utttutxx − u2

ttx)

+κ̃4uttt + κ̃5uttx + κ̃6utxx + κ̃7uxxx + κ̃8 = 0.

The substitution

u → u + α1t
3 + α2t

2x + α3tx
2 + α4x

3

provides the equation

κ1(uttxuxxx − u2
txx) + κ2(utttuxxx − uttxutxx) + κ3(utttutxx − u2

ttx) = κ. (6)

Equation (6) describes an 11–dimensional submanifold of J3(R3, 2) (which is a 12–
dimensional manifold); since the Lie algebra of its point symmetries is 10–dimensional,
it can not be in general Lie remarkable.

Nevertheless, the following theorem may be proved.

10 Theorem. The equation

(uttxuxxx − u2
txx) + λ(utttuxxx − uttxutxx) + λ2(utttutxx − u2

ttx) = µ,

where
λ =

κ3

κ2

, µ =
κκ3

κ2
2

,

obtained from (6) by choosing κ1 =
κ2

2

κ3

, is weakly Lie remarkable.
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Proof. In fact, the Lie algebra of point symmetries admitted is spanned by

Ξ1 = ∂
∂t

, Ξ2 = ∂
∂x

, Ξ3 = ∂
∂u

,
Ξ4 = (2t − 3λx) ∂

∂t
− x ∂

∂x
, Ξ5 = λ2x ∂

∂t
+ (2t − λx) ∂

∂x
,

Ξ6 = λx ∂
∂t

+ x ∂
∂x

+ 2u ∂
∂u

, Ξ7 = t ∂
∂u

, Ξ8 = x ∂
∂u

,
Ξ9 = t2 ∂

∂u
, Ξ10 = tx ∂

∂u
, Ξ11 = x2 ∂

∂u
,

Ξ12 = F (t − λx) ∂
∂u

,

where F is an arbitrary function of (t−λx), and their 3rd order prolongations give rise,
provided F ′′′ 6= 0, to a distribution of rank 11, provided that we exclude some singular
subsets.

11 Remark. It may be verified that the unique third order differential invariant is

I = (uttxuxxx − u2
txx) + λ(utttuxxx − uttxutxx) + λ2(utttutxx − u2

ttx),

whereupon if follows that the operators characterize the equation

∆(I) = 0 ⇒ I = µ.

12 Theorem. The fourth order Monge-Ampère equation

utttt(uttxxuxxxx − u2
txxx) + 2utttxuttxxutxxx − u3

ttxx − u2
tttxuxxxx = 0

is weakly Lie remarkable.

Proof. 1. The previous equation describes a 16–dimensional submanifold of J4(R3, 2),
which is a 17–dimensional manifold;

2. The Lie algebra of point symmetries is 19–dimensional;

3. The rank of 4th order prolongations give rise to a distribution of rank 16 provided
we exclude a singular subset.

3.4 Equation of minimal surface in R
m+2

13 Theorem. The equation of minimal surface in R
m+2

(1 + |uy|
2)uxx − 2|ux| · |uy|uxy + (1 + |ux|

2)uyy = 0, u ∈ R
m, (7)

is nor strongly neither weakly Lie remarkable when m = 2 or m = 3, whereas is weakly
Lie remarkable when m = 1 or m = 4 .

Proof. If m = 2 or m = 3, the theorem follows immediately by dimensional reasons in
view of theorem 2.

Then let us discuss the case m = 1.
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In this case, equation (7) admits the following Lie algebra of point symmetries
(which is formed by isometries and scaling):

Ξ1 = ∂
∂x

, Ξ2 = ∂
∂y

, Ξ3 = ∂
∂u

,

Ξ4 = y ∂
∂x

− x ∂
∂y

, Ξ5 = u ∂
∂x

− x ∂
∂u

, Ξ6 = u ∂
∂y

− y ∂
∂u

,

Ξ7 = x ∂
∂x

+ y ∂
∂y

+ u ∂
∂u

,

(8)

The 2nd order prolongations of (8) give rise to a distribution of rank 7 on the
equation, provided we exclude the differential equation of planes. Since equation (7)
describes a 7–dimensional submanifold in J2(R3, 2) (which is an 8–dimensional mani-
fold), from theorem 3 the result follows.

The case m = 4 is analogous to the case m = 1, then we omit computations.

14 Remark. The unique 2nd order differential invariant of (8) is:

I =

(
(1 + u2

y)uxx − 2uxuyuxy + (1 + u2
x)u

2
yy

)2

(1 + u2
x + u2

y)(uxxuyy − u2
xy)

=
4H2

G
, (9)

where H is the scalar mean curvature and G the Gaussian curvature.

Then most general equation admitting the point symmetries of minimal surface
equation in R

3 is given by

∆(I) = 0, ⇒ I = κ, κ constant.

It is worth of noticing (see Ref. [27]) that the equation

H2

G
= 1

is a strongly Lie remarkable equation characterized by the conformal algebra of R
3.
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