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Abstract

In this paper we review our results on the quantization of a rigid

body. The fact that the configuration space is not simply connected

yields two inequivalent quantizations. One of the quantizations allows

us to recover classically double-valued wave functions as single val-

ued sections of a non-trivial complex line bundle. This reopens the

problem of a physical interpretation of these wave functions.

1 Introduction

The idea of writing quantum mechanics in a coordinate-free way circulated
among physicists and mathematicians as a natural consequence of the gen-
eral relativity principle. One of the main features of quantum mechanics
is that it must contain, according to Dirac’s ideas, a correspondence with
classical mechanics. Having symplectic mechanics at hand, it was natural to
formulate a correspondence principle between classical symplectic mechanics
and quantum mechanics that associates a self adjoint operator on a Hilbert
space with every quantizable classical observable [13, 21]. This is the heart
of what has been called the Geometric Quantization (GQ for short).

The above theory proved to be useful in some physically simple situations,
but showed to have a number of drawbacks, discussed in detail in Section 2.

The aim of this paper is to discuss some features of a recent geometric
approach to quantum theory, the Covariant Quantum Mechanics (CQM for
short). The CQM (introduced by Jadczyk and Modugno [10] and further
developed in [1, 11, 12, 15, 16, 17, 19, 23, 25]) has two distinguished features
with respect to GQ: on one hand, it is simpler, because it deals only with
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quantum particles in a given gravitational and electromagnetic field, so loos-
ing the generality of GQ; on the other hand, it is more complete, because it
naturally incorporates time in a covariant way.

In Section 3 we describe the main features of CQM. In particular we will
see that its greater conceptual simplicity implies weaker existence conditions
than those of GQ [25]. Moreover, the algebra of quantizable observables is
naturally selected from the geometric structures of the theory itself [10, 15,
19]. Finally, it can be proved [11] that the energy operator is characterized
as the unique second order covariant operator on the appropriate space. This
implies that all possible non-linear modifications of the Schrödinger equation
are not invariant with respect to time-dependent changes of coordinates.

In Section 4 we will focus on the quantum theory of a rigid body in the
framework of CQM. We remark that the main application of this theory
is quantum mechanics of moleculae [9]. Indeed, moleculae also have vibra-
tional motions, but they hold at a much higher energy than rotational and
translational motions, and can be dealt with separately.

We show that there are two possible choices for the quantum structure.
For one of them wave functions are sections of a trivial bundle, whereas for
the other one they are sections of a non-trivial bundle. Accordingly, there
are two energy operators, each of which operates on sections of one of the two
bundles. We recall that the spectrum of the energy operator represents the
physically allowed values of the corresponding quantum observable (see [4],
for example). We computed the spectrum of the energy operator in several
situations (zero electromagnetic field (free rigid body), magnetic monopole,
constant electric field (Stark effect)), obtaining two families of eigenfunctions
and eigenvalues. One of them corresponds to the non-trivial bundle, and is
parametrized by half-integers.

The above solutions were discovered in the very beginning of the devel-
opment of quantum mechanics (see e.g. [3]), but were classically discarded
due to ‘lack of continuity’ (see, e.g., [4, 14]). Indeed, using Euler angles
as coordinates on the rotational part of the rigid body configuration space,
these solutions turn out to be double-valued functions. However this is not
fully true, because sections of non-trivial bundles are indeed continuous and
single-valued.

In a sense, our results show that those sections exist due to a geometric
phase effect in quantum mechanics of rigid bodies which is analogous to the
Aharonov-Bohm effect. Although experiments seem to show no evidence of
these solutions in nature, other reasons than continuity should be found in
order to justify the fact that they do not play any role.
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2 Geometric Quantization

In this section we will briefly recall the GQ setting.
The classical setting in GQ is based on a symplectic manifold (M,ω) with

Hamiltonian H. The manifold M models the classical phase space, and the
classical observables are real functions on M .

The quantum setting in GQ is based on a Hilbert space H of quantum
states. The quantization is a linear map

Q : O ⊂ C∞(M) → Herm(H)

fulfilling

[Q(f),Q(g)] = −i~Q({f, g}), Q(1) = IdH .

Here, Herm(H) is the set of Hermitian operators on H. Note that quanti-
zation is always defined on a subspace O ⊂ C∞(M). This is due to some
physical restrictions. For instance, if M = T ∗P and P is the configuration
space of a particle, then quantizing all of C∞(T ∗P ) would imply the possi-
bility of localizing any observable around a point with arbitrary precision,
which is forbidden by Heisenberg’s uncertainty principle. Another problem is
the irreducibility of the representation map Q, which is sometimes broken by
the full set of observables C∞(M) (Groenewold–Van Hove’s no-go theorem,
[7]).

The problem of constructing a quantum theory from the classical setting
is solved as follows. First of all we require the existence of pre-quantization
structures, i.e.

• a complex Hermitian line bundle L → M , whose sections ψ : M → L
are interpreted as wave functions;

• A Hermitian connection ∇ on L → M such that its curvature R[∇]
fulfills the equation R[∇] = i 1

~
ω ⊗ IdL.

The existence of such structures implies that M and ω have to satisfy
certain topological conditions (Kostant–Souriau theorem), namely:

[1

h
ω
]

∈ i(H2(M,Z)) ⊂ H2(M,R),

where i is the map induced in cohomology by the inclusion i : Z →֒ R. If the
above condition is fulfilled then

• i−1([ω]) ⊂ H2(M,Z) parametrizes line bundles;
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• H1(E,R)
/

H1(E,Z) parametrizes connections which satisfy the above
condition on the curvature.

Summarizing, by a well–known theorem of algebraic topology, pre-quantization
structures are parametrized by H1(M,U(1)).

The Hilbert space of quantum states is then defined as the L2-completion
of the space of compactly supported wave functions. For f ∈ O ⊂ C∞(M)
the Hamiltonian vector field Xf : M → TM is lifted to a ∇-horizontal vector
field X̃f : L → TL. The pre-quantization maps any observable f ∈ C∞(M)
to the operator Q(f) defined by

Q(f)(ψ) := i~X̃f · ψ.

It remains to define the subset O. This is usually accomplished by choos-
ing a polarization in M , i.e. a Lagrangian subbundle P ⊂ TM with further
hypotheses (like Frobenius integrability, see [26] for example). Then, the
elements of O are functions which are constant along the leaves of the polar-
ization, and the corresponding Hilbert space is constructed from compactly
supported wave functions ψ : M → L which are covariantly constant along
the polarization P :

∇|Pψ = 0.

The fact that not all symplectic manifolds admit polarizations amounts to
imposing stronger topological conditions on M and P . See [20, 26] for more
details.

It may happen that H 6∈ O. In such a case a problem for quantizing
the energy arises; this is usually solved by means of the Blattner-Kostant-
Sternberg method [20]. This is equivalent to defining a (trivial) bundle of
Hilbert spaces H × R → R and considering the flow of the Hamiltonian
vector field XH as a time-dependent family of bundle automorphism. The
quantization ofH is then achieved as the time derivative at t = 0 of the above
family of operators. It has been recently shown [6] that the flow of XH can
also be interpreted as the parallel transport of a connection on the Hilbert
bundle. Hence deriving the flow of XH produces the covariant derivative
associated with the connection.

3 Covariant Quantum Mechanics

In CQM “covariance” is regarded as explicit independence of fundamental
laws with respect not only to observers and coordinates but also to units of
measurement as well.
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The classical framework for one particle of mass m 6= 0 and charge q is
represented by a fibred manifold t : E → T , where T is a one-dimensional
affine space modelling time, and E is an n+1-dimensional manifold modelling
spacetime. A motion is a section s : T → E. The classical phase space is
the first jet space J1E. An observer is a section o : E → J1E. We use local
coordinates (x0) on T , (x0, xi) on E and the induced coordinates (x0, xi, xi

0)
on J1E.

We postulate the following geometric structures:

• a spacelike Riemannian metric g on E, i.e., a Riemannian metric on
the fibres of spacetime;

• a connection Γ on TE → E, representing the gravitational field, which
is compatible with the fibring t and the metric g;

• a closed two-form F on E, representing the electromagnetic field.

Thus, Γ is determined by g only partially, due to the degeneracy of the
metric along “horizontal” directions.

The above structures can be naturally encoded into a 2-form Ω on J1E

(1) Ω ≡ Ω(g,Γ, F ) = Ω(g,Γ) +
q

2m
F,

where Ω(g,Γ) is induced by g, Γ and the contact structure of J1E via an
algebraic operation. Its coordinate expression is

(2) Ω(g,Γ) = gij(dx
i
0 − (Γi

λhx
h
0 + Γi

λ0)dx
λ) ∧ (dxi

0 − xi
0dx

0)

(the index λ runs from 0 to n). Conservation laws of classical mechanics
require that Ω be closed; indeed, later this property is also a necessary con-
sistency condition for the quantum theory. The closure of Ω turns out to be
equivalent to a certain symmetry property of the curvature tensor of Γ. It
can be proved that dt ∧ Ω ∧ Ω ∧ Ω 6= 0. Thus, (Ω, dt, J1E) is a cosymplectic
manifold 1 (see e.g. [2] for more details).

Note that the cosymplectic form Ω encodes all dynamical structures. This
is an important difference between CQM and GQ. In particular, it can be
proved (see, e.g., [19]) that Ω admits “horizontal” potentials Θ, i.e. potentials
valued in T ∗E . Thus, by choosing an observer o, we can write a potential Θ
of Ω as

(3) Θ = −H + P = −
(1

2
mgijx

i
0x

j
0 − A0

)

dx0 + (mgijx
j
0 + Ai)dx

i,

1This definition is due to A. Lichnerowicz.



6 Quantization of a rigid body

where H is the observed Hamiltonian, P is the observed momentum and
A0dx

0 + Aidx
i is the observed potential of both the gravitational and the

electromagnetic fields.
In this framework we can develop a Hamiltonian stuff including non stan-

dard results. In particular, the phase functions f : J1E → R can be lifted to
phase vector fields Xf : J1E → TJ1E. Even more, these vector fields Xf are
projectable to vector fields of spacetime if and only if the phase functions f
are second order polynomials in the velocities whose leading coefficients are
proportional to g through a real function f 0 of spacetime, i.e. if and only if
their coordinate expression is of the type

(4) f = f 0gijx
i
0x

j
0 + f igijx

j
0 + f̆ , with f 0, f i, f̆ : E → R.

Indeed, these “special quadratic phase functions” constitute a Lie algebra,
which is different from the Poisson Lie algebra [12]. This Lie algebra in-
cludes energy, momentum and position functions and treats them on the
same footing.

Quantum structures are postulated in a way which is partially similar to
that of GQ.

The starting assumption of CQM is a quantum bundle defined as a com-
plex line bundle L → E. Then, CQM postulates a Hermitian connection ∇
on the pullback L1 of the quantum bundle over the phase space J1E, with
fulfills two conditions:

- the curvature of ∇ is proportional to Ω according to the equality

R[∇] = i
m

~
Ω ⊗ IdL1 ,

- the covariant differential of a quantum section ψ is “horizontal”, i.e.
valued in T ∗E. This property of ∇ is allowed by the property of Ω to admit
horizontal potentials. Indeed, the quantum connection C can be regarded
as a distinguished family of Hermitian connections of the quantum bundle
parametrized by the observers o : E → J1E.

Thus, there are two main differences of the postulates of CQM with re-
spect to GQ. In CQM the line bundle is assumed to be based on spacetime E
and not on the phase space J1E. On the other hand, CQM needs to assume
the quantum connection ∇ on the bundle L1 in order to link ∇ with Ω, which
lives on the phase space J1E. Clearly, in CQM the topological conditions of
Konstant-Souriau’s theorem have to be fulfilled on E.

In CQM all further geometric quantum structures and the quantum dy-
namics are derived from the quantum connection by means of a covariant pro-
cedure. The requirement of covariance leads us to a method of projectability
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in order to get rid of observers (which are encoded in the quantum connec-
tion); in a sense, this method replaces successfully the search for polarizations
of GQ.

The Schrödinger operator S can be derived from the quantum connection
∇ by several geometric methods implementing the criterion of projectability
and even more it is uniquely determined by the requirement of covariance
[11]. In coordinates we obtain

(5) S(ψ) =
( ∂

∂x0
− iA0 +

1

2
√

|g|

∂
√

|g|

∂x0
− i

k

2
r

− i
~

2m
ghk

(

(
∂

∂xh
− iAh)(

∂

∂xk
− iAk) + Γl

hk(
∂

∂xl
− iAl)

)

)

ψ,

where r is the scalar curvature of Γ and k is a constant. We stress that if we
release the hypothesis of invariance with respect to units of measurement (for
instance, by assuming a distinguished length), then further terms are allowed
in the expression of the Schrödinger operator; for instance terms proportional
to |ψ|2 may appear, so yielding well known non-linear generalizations of the
Schrödinger operator.

Also the quantizable observables and the corresponding quantum opera-
tors can be achieved by means of the projectability criterion. One starts by
classifying the projectable Hermitian vector fields of the quantum bundle.
It can be proved that these vector fields constitute a Lie algebra which is
naturally isomorphic to the Lie algebra of special quadratic phase functions,
according to the formula [12]

f 7→ X̃f = f 0 ∂0 − f i ∂i + i(f 0A0 − f iAi + f̆) ⊗ IdL

Then, we obtain an injective Lie algebra morphism between the Lie al-
gebra of special quadratic phase functions and the Lie algebra of operators
acting on the quantum sections, according to the equality

Q(f)(ψ) := i~X̃f · ψ.

Indeed, the above results can be applied to energy, momentum and po-
sition functions on the same footing. We stress that they are obtained with
no further topological conditions on E and that they naturally include the
so-called metaplectic correction [20, 26].

Next, the Hilbert bundle H → T over time is defined as the L2-completion
of the space of quantum sections ψ : E → L with spacelike compact support.
Each section ψ̂ : T → H can be regarded as a section ψ : E → L of the
quantum bundle. The quantum states are described by the sections ψ̂ of the
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Hilbert bundle. Moreover, the Schrödinger operator can be regarded as a
connection of this infinite dimensional bundle.

Eventually, we can associate a symmetric operator f̂ acting on the sec-
tions ψ̂ of the Hilbert bundle with each special quadratic phase function f
by means of the equality

f̂(ψ) = (Q(f) − if 0S)(ψ) .

This is the quantization procedure of CQM, which deals with all quanti-
zable functions (including energy) on the same footing.

4 Rigid body

Following [5, 17, 18], we treat the classical mechanics of a system of n par-
ticles by representing this system as a single particle moving in a higher
dimensional spacetime which fulfill the same properties postulated for the
standard spacetime. Then we define the rigidity constraint and study its
main properties. For this purpose we postulate a flat spacetime.

More precisely, we require E to be an affine 4-dimensional space, t : E →
T to be an affine surjective map and g to be a Euclidean metric on S =
KerDt. Note that V E is naturally isomorphic to E × S. We choose Γ to be
the natural flat connection on E, and we can consider different examples of
electromagnetic field F on E.

The configuration space for a system of n particles is then

En = E ×
T
· · · ×

T
E → T.

This is endowed with the natural flat connection Γn induced by Γ and by
the product electromagnetic field F × · · · × F (n times). Analogously, we
introduce the vector space Sn = S × · · · × S. If the n particles have masses
m1,. . . ,mn, then we define the metric on Sn, or inertia tensor, as

I = µ1g + · · · + µng,

where µi = mi/m and m = Σimi. The above data fulfill the classical axioms
of CQM, hence produce a cosymplectic form Ωn which turns out to be exact,
due to the topological triviality of E.

The constraint of rigidity is then defined by

R = {(e1, . . . , en) ∈ En; ‖ei − ej‖ = lij, i 6= j},

where lij are positive numbers fulfilling lij = lji and lij ≤ lik + lkj.
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It can be proved [5, 17, 18] that R is diffeomorphic either to E × O(3),
E × SO(3) or E × S2. In all three cases E is the space of center of mass
configurations, and the second factor is the space of relative configurations.
Intuitively, relative configurations can be thought of as if particles either ‘fill’
the space, lie in a plane, or are aligned. From now on we only consider the
case where R is diffeomorphic either to E×O(3) or to E×SO(3). Moreover,
the former case can be reduced to the latter because any of the two connected
components of E×O(3) is diffeomorphic to E×SO(3), and motions starting
in one of the two connected components remain there forever.

The natural inclusion R →֒ En allows us to define, by pullback, a connec-
tion Γr and an “electromagnetic field” Fr on R. It can be proved that these
constrained data fulfill the classical axioms of CQM. Moreover, the induced
form Ωr turns out to be exact, hence the quantum structure postulated by
CQM exists.

Both the configuration space En and the rigidity constraint fulfill the
same axioms as the classical one-particle theory. For this reason the CQM
machinery can be applied, and a quantum theory for the rigid body can be
formulated.

Let us compute all possible inequivalent quantum structures on R. Ob-
serve that H1(SO(3), U(1)) = Z2. Then we have the following theorem [24];
see also [22, 17].

1 Theorem. There are two inequivalent quantum structures:

L+ = R× C → R, L− 6≃ R× C → R

Both L+ and L− admit a unique flat Hermitian connection, that can be nat-
urally deformed with dynamical terms in order to obtain the quantum con-
nections ∇+ and ∇−:

It is interesting to observe that the above line bundles (as well as their
flat connections) are obtained as vector bundles which are associated with
the Z2-principal bundle SU(2) → SO(3) by means of the two representations
of Z2 into C.

We stress that the above two quantum structures give rise to two different
energy operators with two different spectra. We computed spectra in several
examples in [17, 22]; here we will only sketch some results in simple cases.

It is worth to remark that we only compute rotational spectra. This
means that we only consider rotations of a rigid body around its center of
mass, dropping the center-of-mass component of the energy operator. This
idea is physically justified by remembering that the most important appli-
cation of our model is to the study of quantum dynamics of moleculae. In
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that case rotational and translational phenomena are located on very dif-
ferent energy sectors, and the translational spectrum of moleculae yields a
neglectible continuum infrared component [9]. In mathematical terms, we
will only compute spectra on the subspace of sections of L+, L− which are
constant on the center of mass space.

Moreover, we distinguish between three types of rigid body. In fact SO(3)
is a Lie group endowed with the left-invariant metric I and the standard bi-
invariant Killing metric k. Hence, I can be diagonalized with respect to
k. The rigid body is said to be spherical if all the three eigenvalues are
equal, symmetric, or a top, if two eigenvalues are equal, asymmetric if all the
eigenvalues are different. All cases exist in molecular dynamics, e.g. CH4 is
a spherical molecula, NH3 is a symmetric molecula, . . .

We have the energy operators Ĥ+, Ĥ− acting respectively on sections of
L+ → R and L− → R:

(6) Ĥ+(ψ+) =
1

2
(∆+ + A0 + kr)(ψ+), Ĥ−(ψ−) =

1

2
(∆− + A0 + kr)(ψ−),

where ∆± is Bochner Laplacian of ∇±.

2 Theorem ([22]; see also [17]). In the free ( i.e. F = 0) spherical case the
spectrum of S± is the set

E±

j =
~

2

2I
j(j + 1) + k

3~
2

4I

where

• E+

j is parametrized by j ∈ Z;

• E−

j is parametrized by j + 1/2 ∈ Z

(in other words, j is half integer in the latter case).

Note that SO(3) has constant scalar curvature. This implies that scalar
curvature contributes to the spectrum through an overall shift.

Now, choose a splitting E ≃ T × P , where P is a 3-dimensional affine
space, and let o ∈ P . A magnetic monopole field is a closed 2-form B on P
which is invariant with respect to rotations about o. This means that B is
proportional to the volume form on the unit sphere with scaling factor given
by the magnetic charge . A magnetic monopole B induces a left-invariant
2-form B on SO(3). Let q =

∑

i qiri/‖ri‖ be the center of charge of the rigid
body.
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3 Theorem ([22]). In the spherical case, if F = B, then the the spectrum of
S± is the set

E±

j,l =
~

2

2I
j(j + 1) − ~ν

‖q‖

I
l + ν2

‖q‖2

2I
+ k

3~
2

4I

where ν is the magnetic charge of the monopole and

• E+

j,l is parametrized by j, l ∈ Z, −j ≤ l ≤ j;

• E−

j,l is parametrized by j + 1/2, l + 1/2 ∈ Z, −j ≤ l ≤ j.

Note that the existence conditions of quantum structures imply that the
magnetic charge ν is quantized.

Other examples of spectral computations have been considered so far.

• Energy spectra for the top and the asymmetric rigid body have been
computed in [22] both with F = 0 and with a magnetic monopole field.
The case of a linear rotor, i.e. R ≃ E × S2, has also been computed
(just as an example, CO2 is a linear molecula).

• We have considered the Stark effect in [17]. Assume a constant (space-

like) electric field ~E. The component of F along SO(3) has potential

A0 = 1

m
~E · µ, where µ =

∑

i qiri is the dipole momentum. The spec-
trum of the energy operator can be computed with the same techniques
as in [8], yielding another family of solutions on the non-trivial bundle
that are parametrized by half integers.

References

[1] Canarutto, D., Jadczyk, A., Modugno, M.: Quantum mechanics of a
spin particle in a curved spacetime with absolute time. Rep. Math.
Phys. 36(1), 95–140 (1995)

[2] Cantrijn, F., de León, M., Lacomba, E.: Gradient vector fields on cosym-
plectic manifolds 25, 175–188 (1992)

[3] Casimir, H.: Rotation of a Rigid Body in Quantum Mechanics. Ph.D.
thesis, Groningen, Wolters, Den Haag (1931)

[4] Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum mechanics. Inter-
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