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Abstract

We discuss intrinsic aspects of Krupka’s approach to finite–order variational
sequences. We recover in an intrinsic way the second–order variational calculus
for affine Lagrangians by means of a natural generalisation of first–order theories.
Moreover, we find an intrinsic expression for the Helmholtz morphism using a
technique introduced by Kolář that we have adapted to our context.
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Introduction

The theory of variational bicomplexes was established at the end of the seventies by
several authors [AnDu80], [OlSh78], [Tak79], [Tul77], [Vin77]. In these works there is
the idea that one can give a geometric formulation of the calculus of variations without
using integrals. But, except of [AnDu80], in these works the variational bicomplex is
built over the space of infinite jets of a fibred manifold. This procedure is suggested by
the relatively simple structure of such spaces.

In this paper, we start from Krupka’s setting of variational sequences on finite–
order jet spaces [Kru90]. A finite–order bicomplex is produced when one quotients the
de Rham sequence on a finite–order jet space by means of an intrinsically defined subse-
quence. This finite–order approach has been fruitfully applied to a concrete relativistic

1This paper is in final form and no version of it will be submitted for publication elsewhere.
2This work is partially supported by MURST (by national and local funds) and GNFM of Consiglio

Nazionale delle Ricerche.
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2 Variational sequences in mechanics

theory in [MoVi95]; the idea of a study of the variational bicomplex by means of intrinsic
techniques has its origin in this work.

Here, we restrict ourselves to the case of the first–order variational bicomplex on
a fibred manifold whose base is one–dimensional. We give isomorphisms of the quo-
tient sheaves of the bicomplex with subsheaves of the sheaves of forms on a jet space
of suitable order. This order is always found as the minimal among all possible can-
didates; this aspect is not present in the infinite jet formalism. As a by–product, we
find that the first–order variational bicomplex allows to deal with second–order affine
Lagrangians and the related Euler–Lagrange morphism, rather than first–order ones.
And it is worth to point out that most of second–order horizontal Lagrangians known
in physics are affine. It is also seen that the sheaves that we find contain the sheaves
of the standard objects of the variational calculus as proper subsheaves. Finally, we
give a characterisation of the Helmholtz morphism, showing that the well–known local
coordinate expression (see [GiMa90], [Kru90]) is intrinsic.

Throughout the paper, we will use as a fundamental tool the structure form on
jet spaces, developed in [MaMo83]. Moreover, we make use of intrinsic techniques that
are developed by means of the language of [Cos94], and which were first introduced in
[Kol83].

We end the introduction with some mathematical conventions. In this paper, man-
ifolds are connected and C∞, and maps between manifolds are C∞. All morphisms of
fibred manifolds (and hence bundles) will be morphisms over the identity of the base
manifold, unless otherwise specified. As for sheaves, we will use the definitions and the
main results given in [Wel80]. In particular, we will be concerned only with sheaves of
IR–vector spaces.

Acknowledgements. I am deeply indebted with Prof. Demeter Krupka for having
kindly invited me at the University of Opava. Special thanks are also due to Prof.
Ivan Kolář for several helpful suggestions. Finally, I would like to thank Prof. Marco
Modugno, Dr. Raffaella Paoletti and Prof. Jaroslav Štefanek for stimulating discussions.

1 Jet spaces

The variational sequence in mechanics is built in a natural way (i.e. , by functorial
techniques) starting from the following assumption.

Assumption We assume that a fibred manifold π : Y → X is given, with
dim X = 1 and dim Y = m + 1.

In coordinate expressions indices i, j, . . . will run from 1 to m and will label fibre
coordinates, and the index 0 will label the coordinate on X. A coordinate system on Y

adapted to the fibring will be denoted by (x0, yi). We will denote by (∂0, ∂i) and (d0, di)
the local bases of vector fields and one–forms on Y induced by an adapted chart.

The fibred manifold Y → X yields in a natural way the jet manifolds JrY . A
detailed account of the theory of jets can be found in [MaMo83], [Sau89]; here we just
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fix necessary notation. Let us set J0Y := Y , and r, s ∈ N, r ≥ s. We have the fibrings
πr

s : JrY → JsY and πr : JrY → X.
One–dimensional multi–indexes will be denoted by underlined latin letters p ∈ N, q ∈

N, . . . . We have the adapted charts (x0, yi
p) on JrY , with p ≤ r (we have set yi

0 := yi).

Accordingly, we have the local bases (∂0, ∂
p

i ) and (d0, di
p) of vector fields and one–forms

on JrY . When r = 1, 2, 3 we will write yi, yi
0, yi

00, yi
000.

We have the natural complementary fibred morphisms (see [MaMo83])

Dr : JrY → T ∗
X ⊗

Jr−1Y

TJr−1Y ,

ϑr : JrY → T ∗Jr−1Y ⊗
Jr−1Y

V Jr−1Y ;

whose coordinate expressions are

Dr = d0
⊗Dr0 = d0

⊗(∂0 + yj
p+1∂

p

j ) , 0 ≤ |p| ≤ r − 1 ,

ϑr = ϑj
p ⊗ ∂

p

j = (dj
p − yj

p+1d
0) ⊗ ∂

p

j , 0 ≤ |p| ≤ r − 1 .

The fibred morphism ϑ∗
r : JrY ×

Jr−1Y

V ∗Jr−1Y → JrY ×
Jr−1Y

T ∗Jr−1Y yields the

splitting

JrY ×
Jr−1Y

T ∗Jr−1Y =

(

JrY ×
Jr−1Y

T ∗
X

)

⊕ imϑ∗
r .(1)

Let us denote by
k

Λr the sheaf of k–forms on JrY . The fibring π and the form ϑs

yield natural subsheaves of
k

Λr. Let k > 0, and s ≤ r. We denote by
k

C(r,s) the sheaf of

fibred morphisms JrY →
k
∧

imϑ∗
s over JrY → JsY , which are interpreted as k–forms

on JrY . We set also
k

Cr :=
k

C(r,r) and
0

C(r,s) :=
0

Λr. We denote by
1

Hr the sheaf of fibred
morphisms JrY → T ∗

X over Jr−1Y → X, which are interpreted as 1–forms on JrY .

We denote by
1

C
A

(r,s) ⊂
1

C(r,s) the sheaf of fibred morphisms α : JrY → imϑ∗
s over πr

s

which factorise as α = ϑ∗
s◦α̃, where α̃ : JrY → JsY ×

Js−1Y

V ∗Js−1Y is an affine fibred

morphism over πr
s . In a similar way, we can define the subsheaf

k

C
A

(r,s) ⊂
k

C(r,s). Also, we

denote by
1

H
A

r ⊂
1

Hr the sheaf of fibred morphisms α : JrY → T ∗
X that are affine

fibred morphisms over πr−1 : Jr−1Y → X. The subsheaves with the superscript A are
characterised by the fact that the components of their coordinate expressions are affine
functions.

The splitting (1) provides the surjective sheaf morphisms

h :
k

Λr−1 →
k−1

C
A

r ∧
1

Hr−1 v :
k

Λr−1 →
k

C
A

r
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where h + v = πr
r−1

∗, and
k−1

C
A

r ∧
1

Hr−1 is done by means of the natural inclusion
1

Hr−1 ⊂
1

Hr. We have h = ik−1
v ih and v = 1/k! ikv .

The morphisms Dr and ϑr induce two derivations along πr
r−1 of degree 1 (see [Sau89],

[Cos94]), the horizontal and vertical differential dh and dv

dh := ih◦d − d◦ih : Λr−1 → Λr ,

dv := iv◦d − d◦iv : Λr−1 → Λr ,

where ih and iv are defined to be, respectively, contractions with Dr and ϑr. It can be
proved (see [Sau89]) that dh and dv fulfill the property dh + dv = (πr

r−1)
∗◦d. One can

find coordinate expressions of dh and dv in [Cos94], [Sau89]. Also, one can easily check
that

dh

(

k

Cr−1

)

⊂
k

Cr ∧
1

Hr , dv

(

k

Cr−1

)

⊂
k+1

C r .

2 The first–order variational sequence

We consider a short form of the first–order variational sequence of Krupka [Kru90]. Let

us set
0

Θr := {0},
1

Θr :=
1

Cr,
k

Θr :=
k

Cr + d
k−1

C r for all k ≥ 2. The following diagram is an
exact bicomplex [Kru90]

0 0 0 0 0

0 - 0
?

- 0
?

-

1

Θ1

?

d
-

2

Θ1

?

d
- d

2

Θ1

?

- 0

0 - IR
?

-

0

Λ1

?

d
-

1

Λ1

?

d
-

2

Λ1

?

d
- d

2

Λ1

?

- 0

0 - IR
?

-

0

Λ1

?

E0
-

1

Λ1/
1

Θ1

?

E1
-

2

Λ1/
2

Θ1

?

E2
- E2

(

2

Λ1/
2

Θ1

)

?

- 0

0
?

0
?

0
?

0
?

0
?

We say the bottom row of the above bicomplex to be the short variational sequence. Our
main task is to find sheaves of fibred morphisms which are isomorphic to the quotient
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sheaves of the variational sequence. It is possible to introduce a first simplification of
the quotient sheaves; namely, the projection h induces the sheaf isomorphism

(

k

Λ1/
k

Θ1

)

→

(

k−1

C
A

2 ∧
1

H1

)

/dh

k−1

C 1 : [α] 7→ [h(α)] .

We notice that the natural inclusion
k

Λ1/
k

Θ1 ⊂
k

Λ2/
k

Θ2 induces the natural inclusion

(

k−1

C
A

2 ∧
1

H1

)

/dh

k−1

C 1 →

(

1

C
A

r ∧
1

Hr−1

)

/dh

k−1

C r−1 , r ≥ 3(2)

Proposition 2.1. We have the natural sheaf isomorphism

I1 :

(

1

Λ1/
1

Θ1

)

→
1

H
A

2 : [α] 7→ h(α) .

If α ∈
1

Λ1 has the coordinate expression α = α0d
0 + αid

i + α0
i d

i
0, then we have the

coordinate expression

h(α) = (α0 + αiy
i
0 + α0

i y
i
00)d

0 .

Let us set
1

V1 :=
1

H
A

2 . We say a section L ∈
1

V1 to be a first–order generalised La-
grangian. It is worth to note that the sheaf of the first–order Lagrangians of the standard

literature is
1

H1, and that
1

H1 ⊂
1

H
A

2 .

The following Lemma generalises the standard momentum (or Legendre transform)
of a Lagrangian (see [Cos94]).

Lemma 2.1. There exists a natural surjective morphism

p :
1

C2 ∧
1

H2 →
1

C(2,1) .

If, in coordinates, α = αiϑ
i
∧ d0 + α0

i ϑ
i
0 ∧ d0 (with αi, α

0
i ∈

0

Λ2), then p(α) = α0
i ϑ

i.

Theorem 2.1. We have the injective sheaf morphism

I2 :

(

1

C
A

2 ∧
1

H1

)

/dh

1

C1 →
2

Λ3 : [α] 7→ π3
2
∗
α + dhp(α) ,

whose image is the sheaf

2

V1 :=

((

1

C
A

2 ∧
1

H1

)

+ dh

1

C2

)

∩

(

1

C(3,1) ∧
1

H3

)

.



6 Variational sequences in mechanics

Proof. One can test in a simple way that the morphism is well–defined via the

property p(dhq) = −q fulfilled for any q ∈
1

C1. The injectivity follows from (2). Let

α ∈
1

C2 ∧
1

H2. Then one can prove that the form p(α) is the unique section of the

sheaf
1

C2 such that α + dhp(α) ∈

(

1

C(3,1) ∧
1

H3

)

(see [Kol83] for the proof of a similar

statement). This yields the desired characterisation of the image of I2.

Let α ∈
1

V1, and let the coordinate expression of α be α = (α0 +αiy
i
00)d

0. Then, the
identity E1((α0+αiy

i
00)d

0) = I2([h◦dβ]), where β = α0d
0+αid

i
0, yields E1(α) = Eiϑ

i
∧ d0,

where

Ei = ∂i(α0 + yj
00αj) + D30(∂0αi + yj

0∂jαi + yj
00∂

0
j αi − ∂0

i α0 − yj
00∂

0
i αj)

We say E1 to be the first–order generalised Euler–Lagrange operator. Also, we say

a section E ∈
2

V1 to be a first–order generalised Euler–Lagrange morphism.

Remark 2.1. It is of fundamental importance to note that the standard higher–
order Euler–Lagrange operator (see [Kol83], [Sau89]), when applied to a second–order

Lagrangian α ∈
1

H
A

2 , produces exactly the same result as E1(α).

Also, it is easy to verify that, when restricting E1 to the sheaf
1

H1 of the Lagrangians
of the standard literature, we obtain the standard Euler–Lagrange operator.

Now, we devote ourselves to a description of the sheaf E2

(

2

V1

)

≃

(

d
2

Λ1/d
2

Θ1

)

.

Using (2) we find the natural injection
(

d
2

Λ1/d
2

Θ1

)

→

(

2

C
A

4 ∧
1

H3

)

/dh

2

C3 : [dα] 7→ [dE1(α)] .

We recall that to each α ∈
1

Λr ∧
1

Hr there is a unique Eα ∈
1

C(2r,1) ∧
1

H2r and a unique

pα ∈
1

C(2r−1,r) such that π2r
r

∗
α = Eα − dhpα (higher–order Euler–Lagrange morphism

[Kol83]).
From now on, in this subsection we will suppose that p is a multiindex such that

|p| ≥ 1. We introduce a notation in order to deal with repeated derivatives of functions
by means of the fields Dr0,Dr+10, . . . in a coordinate open subset. Namely, if U ⊂ Y

is a coordinate open subset and f ∈

(

0

Λr

)

U

, then we set

Jpf := Dr+|p|0
. . .Dr+10 .

Let u : Y → V Y be a vertical vector field with coordinate expression u = ui∂i.
Then, the coordinate expression of the prolongation ur : JrY → V JrY (see [MaMo83])
is ur = Jpu

i∂
p

i .
The following Lemma is due to Krupka [Kru90].
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Lemma 2.2. Let U ⊂ Y be a coordinate open subset, and β ∈
(

1

Λ3 ∧
1

C(3,1) ∧
1

H3

)

U

with coordinate expression

β = βijϑ
i
∧ ϑj

∧ d0 + 2β
p

ijϑ
i
p ∧ ϑj

∧ d0 , p = 1, 2, 3.

Then there exist

H̃β[U ] ∈

(

(

1

C(6,4) ∧
1

C(6,1)

)A

∧
1

H5

)

U

, qβ[U ] ∈

(

1

C(5,3) ∧
1

C(5,2)

)A

U

,

such that

π6
3
∗
β = H̃β[U ] − dhqβ[U ]

Proof. We proceed by splitting the coefficients of π6
3
∗
β into symmetric and anti-

symmetric parts, as in [Kru90]. We obtain

H̃β[U ] = (βij − J0β
0
ij + J00β

00
ij − J000β

000
ij )ϑi

∧ϑj
∧ d0

+(β0
ij + β0

ji − 2J0β
00
ji + 3J00β

000
ji )ϑi

0 ∧ ϑj
∧ d0

+(β00
ij − β00

ji + 3J0β
000
ji )ϑi

00 ∧ ϑj
∧ d0 + (β000

ij + β000
ji )ϑi

000 ∧ϑj
∧ d0

qβ[U ] = (−β0
ij + J0β

00
ij − J00β

000
ij )ϑi

∧ ϑj

−(β00
ij + β00

ji − J0β
000
ij − 2J0β

000
ji )ϑi

0 ∧ϑj

+β000
ij ϑi

0 ∧ ϑj
0 − (β000

ij − β000
ji )ϑi

00 ∧ ϑj .

Theorem 2.2. For every β ∈
1

Λ3 ∧
1

C(3,1) ∧
1

H3 there is a unique

Hβ ∈

(

1

C(6,4) ∧
1

C(6,1)

)A

∧
1

H5

such that

1. with respect to (2) we have [β] = [Hβ];

2. ∀ u : Y → V Y , Eiu3
β = 0 ⇔ Hβ = 0.

Proof. On each coordinate domain U , the form H̃β[U ] fulfills the second require-
ment. In fact, due to the arbitrariness of u, the condition Eiu3

β = 0 gives rise to a set of
local conditions whose symmetric and antisymmetric parts are precisely the same local
conditions that arise from H̃β[U ] = 0 (see [GiMa90] for a local expression of Eiu3

β).
Let U and U

′ be two coordinate domains with non–empty intersection. Then, being
Eiu3

β = 0 an intrinsic condition, we obtain

H̃β[U ]|U∩U
′ = 0 ⇔ H̃β[U ′]|U∩U

′ = 0 .
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But the above formula is clearly equivalent to H̃β[U ]|U∩U
′ = H̃β[U ′]|U∩U

′ . The result
comes by setting Hβ|U := H̃β[U ] on each coordinate domain U ⊂ Y .

As a consequence, we obtain an intrinsic, 3–form dhqβ. Hence, due to the fact that
dim X = 1, we obtain an intrinsic 2–form qβ (see [Kol83]). Moreover, the following
corollary holds.

Corollary 2.1. E2

(

2

V1

)

is isomorphic to the image of the injective morphism

I3 :

(

d
2

Λ1/d
2

Θ1

)

→

(

1

C5 ∧
1

C(5,1)

)A

∧
1

H4 : [dα] 7→ Hd(E1([α])) .

We can express E2 by the above morphism: if E ∈
2

V1, then we have E2(E) = HdE.
So, it is easy to find the coordinate expression of E2. We say E2 to be the generalised
Helmholtz operator.

We can summarise the results of this section in the following theorem.

Theorem 2.3. The first–order short variational sequence is isomorphic to the exact
sequence

0 - IR -

0

Λ1
E0

-

1

V1
E1

-

2

V1
E2

- E2

(

2

V1

)

- 0 .

Corollary 2.2. (Global inverse problem; see [Kru90]). Let E ∈
2

V1 be a global section
such that E2(E) = 0. Suppose, moreover, that

H2
de Rham

Y = 0 .

Then, there exists a global section L ∈

(

1

V1

)

Y

such that E1(L) = E.

Remark 2.2. We have obtained an intrinsic Helmholtz fibred morphism that is
associated to each first–order generalised Euler–Lagrange morphism via the sheaf mor-
phism E2. The vanishing of the Helmholtz morphism is completely equivalent to the
standard local Helmholtz conditions (see, for example, [GiMa90]).

As a by–product, to each first–order generalised Euler–Lagrange morphism E ∈
2

V1

we find a unique intrinsic two–form qdE ∈

(

1

C(4,3) ∧
1

C(4,2)

)A

⊂
2

C
A

4 .
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