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Introduction

The present paper is aimed at analysing some aspects of the general relativistic classical
and quantum mechanics on a curved spacetime with absolute time, in terms of recent
formulations of a finite order Lagrangian bicomplex [Kru90, Kru95] and of a covariant
approach to classical and quantum mechanics [JaMo93a, JaMo93b].

There is a large literature on geometric formulations of Lagrangian theories on jets.
The approaches based on infinite jets (see, for example, [AnDu80, Bau82, DeTu80,
Tak79, Tul77, Tul80, Vin77, Vin78, Vin84]) are attractive for their formal elegance
arising from a natural splitting of the sheaves involved. However, the finite order
Lagrangian theory based on a bicomplex according to [Kru90] seems to be more appro-
priate to our present aims, because we are involved with a strictly first order setting
and, even more, are interested in restrictions of sheaves. More specifically, we use the
formalism developed in [Vit95, Vit96]. In a few words, the differential structure and
the fibring of the manifold produce naturally a bicomplex whose vertices and arrows
recover the main objects of Lagrangian theory and organise them in a rational scheme.

On the other hand, there are several covariant formulations of classical and quan-
tum mechanics on a curved spacetime with absolute time (see, for example, [DBKP85,
DuKü84, Kuc80, Kün84, Tra63, Tra66, Tra96, Tul85]). In this paper, we refer to the
formulation of Galilei classical and quantum mechanics based on jets, connections and
cosymplectic forms according to [JaMo93a, JaMo93b, CJM95]. This approach presents
important analogies with geometric quantisation but novelties as well. In a few words,
spacetime is a fibred manifold equipped with a vertical metric, a gravitational connec-
tion and an electromagnetic field; these structures produce naturally a cosymplectic
form. On the other hand, quantum mechanics is formulated on a line bundle over
spacetime equipped with a connection whose curvature is proportional to the above
form.

The goal of the present paper is twofold.
Firstly, we formulate the Lagrangian approach to Galilei classical mechanics in terms

of the above bicomplex. Namely, we show that the geometric structure of spacetime
exhibits naturally the global cosymplectic form and places it in a certain vertex of the
bicomplex associated with spacetime fibring. Then, we derive further objects such as,
the global Euler–Lagrange operator and the local Poincaré–Cartan form, Lagrangian,
momentum, etc. and place them in the appropriate location of the bicomplex. We stress
that the primitive object of our theory is the cosymplectic form and not the Lagran-
gian. This inverse approach affects essentially the perspective of Lagrangian theory. For
instance, the problem of definition, uniqueness and globality of the Poincaré–Cartan
form changes essentially with respect to the standard direct approach. Actually, we
claim that a covariant formulation of classical mechanics on a curved spacetime with
absolute time cannot be achieved starting directly from a global distinguished Lagran-
gian. On the other hand we show that the local and gauge dependent Lagrangian,
Poincaré–Cartan form and momentum are observer independent.

Secondly, we show that the search for the quantum connection is locally equivalent
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to the search for a Poincaré–Cartan form. Moreover, the problem of global existence of
a quantum connection is solved by a theorem of Kostant–Souriau type (see, for instance,
[Kos70, AbMa78]), which states a topological necessary and sufficient condition on the
spacetime and the cosymplectic form. Our analysis of Poincaré–Cartan forms plays a
key role in the proof of the theorem.

We end the introduction with some mathematical conventions. In this paper, all
manifolds and maps between manifolds are C∞.

As for sheaves, we shall use the definitions and the main results given in [Wel80].
Finally, we recall some basic facts on unit spaces. This theory has been developed

in [JaMo93a, JaMo93b] in order to make the independence of classical and quantum
mechanics from scales explicit.

A semi–vector space, is defined to be a set U endowed with an abelian semi–group
structure and by an outer multiplication by IR+ that fulfill properties analogous to
those of vector spaces. A semi–vector space is said to be positive if the multiplication
cannot be extended to IR or IR+ ∪ {0}.

Several algebraic constructions of vector spaces can be repeated for semi–vector
spaces. In particular, it can be shown that the tensor product (over IR+) of a semi–
vector space and a vector space has a natural vector space structure.

A unit space is defined to be a one–dimensional positive semi–vector space (over
IR+), or a one–dimensional vector space (over IR).

Due to the one–dimensional nature of our unit spaces, we will use the following
notational conventions. Let U and V be unit spaces; if u ∈ U, v ∈ V, then we write
uv := u ⊗ v, and if 0 6= z ∈ U, then we write 1

z
:= z∗.

Unit spaces will allow us to take into account at each step of the theory the scales
involved; in fact, the basic objects of our theory (metric, electromagnetic field, etc.) are
valued into vector bundles multiplied tensorially with such spaces. We will say these
tensor fields to be scaled .

It is important to remark that the operators like contraction, Lie derivative, exterior
derivative, covariant derivative and so on, can be easily extended to scaled tensors.

Acknowledgements. We would like to thank Pedro Luis Garćıa Pérez, Ivan Kolář,
Demeter Krupka, Antonio Lopez Almorox, Luigi Mangiarotti, Jaroslav Štefánek Carlos
Tejero Prieto for stimulating discussions.

Thanks are due to Giorgio Ferrarese for splendid hospitality during the meeting.
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1 Lagrangian bicomplex in mechanics

In this section, we sketch the theory of first order Lagrangian bicomplex due
to Krupka [Kru90, Kru95], in terms of an intrinsic formalism developed in [Vit95].
The Lagrangian bicomplex arises by a natural geometric construction just from
the de Rham sequence and the contact structure of the jet prolongation of the
starting fibred manifold.

Thus, our framework is constituted by a fibred manifold

t : E → T ,

with dim T = 1 and dim E = m + 1.

We deal with the tangent bundle TE → E of E, the tangent prolongation Tt :
TE → TT of t : E → T and the vertical bundle V E → E.

Moreover, for 0 ≤ r, we are concerned with the r–jet space JrE; in particular, we set
J0E ≡ E. We recall the natural fibrings trs : JrE → JsE, tr : JrE → T and the affine
bundle trr−1 : JrE → Jr−1E associated with the vector bundle ⊙rT ∗T⊗V E, for 0 ≤ s ≤
r. A detailed account of the theory of jets can be found in [MaMo83a, Kup80, Sau89].

Charts on E adapted to the fibring are denoted by (x0, yi). Latin indices i, j, . . .
run from 1 to m and label fibre coordinates, the index 0 labels the coordinate on T ;
Greek indices λ, µ, . . . run from 0 to m. We denote by (∂0, ∂i) and (d0, di), respectively,
the local bases of vector fields and 1–forms on E induced by an adapted chart. The
check (ˇ ) denotes vertical restrictions. As an example, (ďi) denotes the local base of
sections of V ∗E → E.

We denote multi–indices of dimension n by underlined latin letters such as l =
(l1, . . . , ln), with 0 ≤ l1, . . . , ln, by identifying the index i with a multi–index according
to

i ≃ (l1, . . . , li, . . . , ln) ≡ (0, . . . , 1, . . . , 0) ,

we can write

l + i = (l1, . . . , li + 1, . . . , ln) .

In this paper we are concerned just with multi–indices of dimension n = 1. Clearly, in
this case we can write l ∈ N , |l| = l , l + 1 = (l + 1); however, it is still useful to keep
the multi–index notation and to distinguish indices and multi–indices.

The charts induced on JrE are denoted by (x0, yi
l), with 0 ≤ |l| ≤ r; in particular,

we set yi
l0 ≡ yi. For small degrees, r = 1, 2, 3, we write indices explicitly, according to:

yi
l1 = yi

0, yi
l2 = yi

00, yi
l3 = yi

000. The local vector fields and forms of JrE associated with

the adapted chart are denoted by (∂
l
i) and (di

l), 0 ≤ |l| ≤ r, 1 ≤ i ≤ m, respectively.
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1.1 Contact structure

We start with a brief recall of the contact structure of jets.

Contact maps

A fundamental role will be played in our theory by the “contact maps” on jet spaces
(see [MaMo83a]). Namely, for 1 ≤ r, we consider the natural injective fibred morphism
over JrE → Jr−1E

dr : JrE ×
T

TT → TJr−1E ,

and the complementary surjective fibred morphism

θr : JrE ×
Jr−1E

TJr−1E → V Jr−1E ,

whose coordinate expression are

dr = d0 ⊗ dr0 = d0 ⊗ (∂0 + yj
l+1∂

l
j) , 0 ≤ |l| ≤ r − 1,

θr = θj
l ⊗ ∂

l
j = (dj

l − yj
l+1d

0) ⊗ ∂
l
j , 0 ≤ |l| ≤ r − 1 .

The transpose of the map θr is the injective fibred morphism over JrE → Jr−1E

θ∗r : JrE ×
Jr−1E

V ∗Jr−1E → T ∗JrE .

Distinguished sheaves of forms

We are concerned with some distinguished sheaves of forms on jet spaces. Let 0 ≤ k.

For 0 ≤ r, we consider the standard sheaf of local k–forms on JrE

k

Λr := {α : JrE →
k
∧T ∗JrE} .

1.1 Remark. For 0 ≤ s ≤ r, we define the sheaves of horizontal forms to be the
sheaves of local fibred morphisms over JsE and T

k

H(r,s) := {α : JrE →
k
∧T ∗JsE} ,

k

Hr := {β : JrE →
k
∧T ∗T } ,

respectively.

Thus, α ∈
k

H(r,s) and β ∈
1

Hr if and only if their coordinate expressions are of the
type

α = α
l
1
...lk−1

i1...ik−10 di1
l
1
∧ . . . ∧ d

ik−1

lk−1
∧ d0 + α

l
1
...lk

i1...ik
di1

l
1
∧ . . . ∧ dik

lk
,

β = β0 d0
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where 0 ≤ |lj| ≤ s, and α’s, β0 ∈
0

Λr.

Clearly,
k

H(r,r) =
k

Λr and, for k > 1,
k

Hr = 0.
We have the natural injective linear sheaf morphisms, for 0 ≤ s ≤ r, r ≤ r′, s ≤ s′,

k

Λs →֒
k

H(r,s) →֒
k

Λr ,
k

H(r,s) →֒
k

H(r′,s′) ,

which will be currently exploited (even without any explicit mention).

1.2 Remark. For 0 ≤ s ≤ r, we define the sheaf of vertical forms to be the sheaf
of fibred morphisms over JsE

k

V(r,s) := {α : JrE → V ∗JsE} .

Thus, α ∈
k

V(r,s) if and only if its coordinate expression is of the type

α = α
l
1
...lk

i1...ik
ďi1

l
1
∧ . . . ∧ ďik

lk
, 0 ≤ |lj| ≤ s ,

with α
l
1
...lk

i1...ik
∈

0

Λr.
We have the natural linear sheaf morphisms, for 0 ≤ s ≤ r, r ≤ r′, s ≤ s′,

k

H(r,s) →
k

V(r,s) ,
k

V (r,s) →֒
k

V(r′,s′) ,

which will be currently exploited (even without any explicit mention).
For 0 ≤ s < r, the map θr induces an injective linear sheaf morphism

k
∧θ∗s+1 :

k

V(r,s) →֒
k

H(r,s) ,

with coordinate expression

k
∧θ∗r(α

l
1
...lk

i1...ik
ďi1

l
1
∧ . . . ∧ ďik

lk
) = α

l
1
...lk

i1...ik
θi1

l
1
∧ . . . ∧ θik

lk
.

1.3 Remark. For 0 ≤ s < r, we define the sheaf of contact forms to be the subsheaf

k

C(r,s) :=
k
∧θ∗s+1(

k

V(r,s)) ⊂
k

H(r,s) ,

i.e. the subsheaf of local fibred morphisms over JsE

k

C(r,s) := {α : JrE →
k
∧(im θ∗s+1) ⊂

k
∧T ∗JsE} ⊂

k

H(r,s) .

Hence, we have the natural linear sheaf isomorphism

k
∧θ∗s+1 :

k

V(r,s) →֒
k

C(r,s) .
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In other words, the sheaf
k

C(r,s) turns out to be the subsheaf of local fibred morphisms

α ∈
k

H(r,s) which factorise as

α =
k
∧θ∗s+1 ◦ α̃ ,

through the composition

JrE
α̃

−−−→ Js+1E ×
JsE

k
∧V ∗JsE

k
∧θ∗s+1

−−−→
k
∧T ∗JsE ,

where α̃ : JrE →
k
∧T ∗JsE is a local fibred morphism over JsE.

Thus, α ∈
k

C(r,s) if and only if its coordinate expression is of the type

α = α
l
1
...lk

i1...ik
θi1

l
1
∧ . . . ∧ θik

lk
, 0 ≤ |lj| ≤ s ,

with α
l
1
...lk

i1...ik
∈

0

Λr.

1.4 Remark. For 1 ≤ r, we define the sheaf of affine horizontal forms to be the
subsheaf

1

HA
r ⊂

1

Hr

of local fibred morphisms β ∈
1

Hr, which are affine fibred morphisms over Jr−1E → T .

Thus, in coordinates, β ∈
1

HA
r if and only if β0 : JrE → IR is an affine map with

respect to the coordinates yi
l , with |l| = r.

1.5 Remark. For 0 ≤ s < r, we define the sheaf of affine contact forms to be the
subsheaf

k

CA
(r,s) ⊂

k

C(r,s)

of local fibred morphisms α ∈
k

C(r,s) such that α̃ is an affine fibred morphism over
Jr−1E → JsE.

Thus, in coordinates, α ∈
k

CA
(r,s) if and only if the components α′s ∈

0

Λr are affine

maps with respect to the coordinates yi
l , with |l| = r.

We have the following important isomorphisms.

1.6 Remark. For 0 ≤ s < r, we have the natural linear sheaf isomorphisms

k

V(r,s) ⊗
1

Hr →
k

C(r,s) ⊗
1

Hr →
k

C(r,s) ∧
1

Hr ,

with coordinate expression

α
l
1
...lk

i1...ik0 ďi1
l
1
∧ . . . ∧ ďik

lk
⊗ d0 7→ α

l
1
...lk

i1...ik0 θi1
l
1
∧ . . . ∧ θik

lk
⊗ d0

7→ α
l
1
...lk

i1...ik0 θi1
l
1
∧ . . . ∧ θik

lk
∧ d0 .

We shall currently exploit these isomorphisms (even without explicit mention).
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1.7 Remark. Let us recall the natural linear fibred epimorphism over J1E

V ∗J1E → V ∗
EJ1E ≃ J1E ×

E
(V ∗E ⊗

T
TT ) .

The natural linear fibred morphism over J1E, given by the composition

V ∗J1E ⊗
J1E

T ∗T →֒ J1E ×
E

(V ∗E ⊗
T

TT ⊗
T

T ∗T )
〈,〉
→ J1E ×

E
V ∗E

θ1→ J1E ×
E

T ∗E ,

yields the linear sheaf morphism

P :
1

V(r,1) ⊗
1

Hr →
1

C(r,0) ,

with coordinate expression

P (αi0θ
i + α0

i 0θ
i
0) ⊗ d0 = α0

i 0θ
i .

Main splitting

The contact maps yield a natural linear splitting of the tangent and cotangent exact
sequences of the fibring JrE → T , by pullback over Jr+1E, for 0 ≤ r.

1.8 Proposition. For 0 ≤ r, we have a natural sheaf splitting

k

H(r+1,r) =

(
k−1

C (r+1,r) ∧
1

Hr+1

)

⊕
k

C(r+1,r) ,

whose first and second projections are respectively denoted by

h :
k

H(r+1,r) →
k−1

C (r+1,r) ∧
1

Hr+1 , v :
k

H(r+1,r) →
k

C(r+1,r) .

and have coordinate expressions, for α ∈
k

H(r+1,r),

h(α) =
(
α

l
1
...lk−1

i1...ik−10 θi1
l
1
∧ . . . ∧ θ

ik−1

lk−1
+

(−1)k−j yj
lj

α
l
1
...lj ...lk

i1...j...ik
θi1

l
1
∧ . . . ∧ θ̂j

lj
∧ . . . ∧ θik

lk

)
∧ d0 ,

v(α) = α
l
1
...lk

i1...ik
θi1

l
1
∧ . . . ∧ θik

lk
.

Proof. It follows from the linear splitting over Jr+1E

tr+1
r

∗
(T ∗JrE) = tr+1∗(T ∗T ) ⊕ im θ∗r+1 ,

with coordinate expression

α0d
0 + α

l
id

i
l = (α0 + yi

l+1α
l
i)d

0 + α
l
iθ

i
l .



10 Quantum connection and P.–C. form

Horizontal and vertical differential

The contact maps dr and θr induce important derivations of the sheaf of graded
algebras Λ (see [Sau89, Cos94]).

1.9 Remark. First of all, we have the two derivations of degree 0

ih :
k

Λr →
k

Λr+1 : α 7→ ihα := i(dr+1)α ,

iv :
k

Λr →
k

Λr+1 : α 7→ ivα := i(θr+1)α .

Then, we obtain the further two derivations of degree 1, namely, the horizontal and
vertical differential

dh := ih ◦ d − d ◦ ih :
k

Λr →
k

Λr+1 ,

dv := iv ◦ d − d ◦ iv :
k

Λr →
k

Λr+1 ,

which fulfill

d2
h = 0 d2

v = 0 , dh + dv = tr+1
r

∗
◦ d .

1.10 Remark. We have

dh

1

Hr = 0 , dh

k

C(r,r−1) ⊂
k

CA
(r+1,r) ∧

1

Hr ,

dv

k

C(r,r−1) ⊂
k+1

C A
(r+1,r) , dv

1

Hr =
1

CA
(r+1,r) ∧

1

Hr .

1.2 Lagrangian bicomplex

Next, following Krupka [Kru90, Kru95], we consider the de Rham sequence on
the first–order jet space and quotient it by means of a natural subsequence arising
from the contact structure. In this way we obtain a diagram whose vertices and
arrows describe and organise the main items of Lagrangian calculus.

So, we define, by induction on k, the sheaves

0

Θ1 := {0} ,
1

Θ1 :=
1

C(1,0) , . . . ,
k

Θ1 :=
k

C(1,0) + d
k−1

C (1,0) .
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1.11 Theorem. We obtain the commutative diagram (see [Kru90])

0 0 0 0 0

0 - 0
?

- 0
?

-
1

Θ1

?
d -

2

Θ1

?
d -

3

Θ1

?
d - . . .

0 - IR
?

-
0

Λ1

?
d -

1

Λ1

?
d -

2

Λ1

?
d -

3

Λ1

?
d - . . .

0 - IR
?

-
0

Λ1

?
E0 -

1

Λ1/
1

Θ1

?
E1-

2

Λ1/
2

Θ1

?
E2-

3

Λ1/
3

Θ1

?
E3- . . .

0
?

0
?

0
?

0
?

0
?

in which rows and columns are exact.

1.12 Proposition. [Kru90] The cohomology of the cochain complex of global sec-
tions associated with the Lagrangian sequence is naturally isomorphic to the de Rham
cohomology of E.

We call the above diagram the first–order Lagrangian bicomplex associated with the
fibred manifold E → T . Moreover, we call the bottom row the Lagrangian sequence,
the column of 1–forms the kinematical column, the column of 2–forms the dynamical
column and the column of 3–forms the integrability column. In fact, we shall see that
this bicomplex provides a very useful logical scheme for organising the main objects of
Lagrangian formalism and their differential relations. In particular, we shall obtain a
table which displays the Lagrangian λ, the momentum π, the Poincaré-Cartan form
τ , the dynamical form ω, the Euler-Lagrange form ǫ, the Helmholtz formη, the Euler-
Lagrange operator E1 and the Helmholtz operator E2, according to the following scheme

π ∈
1

Θ1
d -

2

Θ1
d -

3

Θ1

τ ∈
1

Λ1

?
d - ω ∈

2

Λ1

?
d -

3

Λ1

?

λ ∈
1

Λ1/
1

Θ1

?
E1 - ǫ ∈

2

Λ1/
2

Θ1

?
E2 - η ∈

3

Λ1/
3

Θ1

?

1.3 Kinematical column

Let us examine the kinematical column.

We can interpret the quotient projection in terms of h.
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1.13 Proposition. The map given by the composition

1

Λ1 →֒
1

H(2,1)
h

−−−→
1

H2

passes to the quotient
1

Λ1/
1

Θ1 yielding the linear sheaf isomorphism

[h] :
1

Λ1/
1

Θ1 →
1

HA
2 : [α] 7→ h(α) .

For τ ∈
1

Λ1, we have the coordinate expression

[h] : [α0d
0 + αiθ

i + α0
i d

i
0] 7→ (α0 + α0

i y
i
00)d

0 .

Next, we analyse the possible splittings of the column of 1–forms.
For this purpose we need a reversed arrow. Indeed, the following result shows an

important arrow in the opposite direction.

1.14 Definition. We define the generalised momentum map as the linear sheaf
morphism

Π :
2

Λ1 →
1

C(2,0)

given by the composition

2

Λ1
h

−−−→
1

C(2,1) ∧
1

H2 −−−→
1

V(2,1) ⊗
1

H2
P

−−−→
1

C(2,0) ,

and the generalised Poincaré–Cartan map as the linear sheaf morphism

Ξ :
1

Λ1 →
1

Λ2 : α 7→ α + Π(dα) .

1.15 Remark. We have the following coordinate expressions

Π(α) =
(
(∂0

i α0 − ∂0α
0
i ) + (∂0

i αj − ∂jα
0
i )y

j
0+

(∂0
i α

0
j − ∂0

j α
0
i )y

j
00

)
θi

and

Ξ(α) =(α0 + αiy
i
0)d

0+
(
αi + (∂0

i α0 − ∂0α
0
i ) + (∂0

i αj − ∂jα
0
i )y

j
0+

(∂0
i α

0
j − ∂0

j α
0
i )y

j
00

)
θi + α0

i d
i
0 .

1.16 Lemma. Let α ∈
1

Λ1. Then, the following conditions are equivalent:

Π(dα) = −α ;(1)

α ∈
1

C(1,0) .(2)



M. Modugno, R. Vitolo 13

1.17 Proposition. The sheaf morphism Ξ passes to the quotient
1

Λ1/
1

Θ1, yielding
the injective linear sheaf morphism

[Ξ] :
1

Λ1/
1

Θ1 →
1

Λ2 : [α] 7→ α + Π(dα) .

Proof. [Ξ] passes to the quotient because, for each c ∈
1

Θ1, we have

c + Π(dc) = c − c = 0 .

Moreover, [Ξ] is injective because, for each α ∈
1

Λ1,

α + Π(dα) = 0 ⇒ α ∈
1

Θ1 .

Let us consider the exact sequence

0 →
1

Θ1 →
1

Λ1 →
1

HA
2 → 0 .

We might hope to split this sequence by means of the maps [Ξ] and v. However, their
domains and codomains are too large; on the other hand, we can achieve our goal by a
suitable restriction of the sequence.

1.18 Theorem. The subsequence

0 →
1

Θ1 →
1

H(1,0) →
1

H1 → 0

of

0 →
1

Θ1 →
1

Λ1 →
1

HA
2 → 0

is the maximal subsequence which splits through v according to

0 →
1

H1 −−−→
1

H(1,0)
v

−−−→
1

Θ1 → 0

and is the maximal subsequence which splits through Ξ according to

0 →
1

H1
Ξ

−−−→
1

H(1,0) −−−→
1

Θ1 → 0 .

1.19 Remark. We define the subsheaf

P := Ξ(
1

H1) ⊂
1

H(1,0) .

The maps

h : P →
1

H1 , Ξ :
1

H1 → P

are mutually inverse sheaf isomorphisms.
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1.4 Dynamical column

Let us examine the dynamical column.

We can interpret the quotient projection in terms of h, by means of the following
results.

1.20 Remark. The map given by the composition

2

Λ1 →֒
2

H(2,1)
h

−−−→
1

C(2,1) ∧
1

H2

does not pass to the quotient
2

Λ1/
2

Θ1 because
2

Θ1 6=
2

C1.

Therefore, it is interesting to find the maximal subsheaf of
2

Λ1 such that the restric-
tion of h passes to the quotient.

1.21 Theorem. The maximal subsheaf D ⊂
2

Λ1, such that the map given by the
composition

D →֒
2

Λ1 →֒
2

H(2,1)
h

−−−→
1

C(2,1) ∧
1

H2

passes to the quotient
2

Λ1/
2

Θ1, is

D = ker Π .

The coordinate expression of ω ∈ D is of the type

ω = 2(ωi0 + ω0
i jy

j
00)θ

i ∧ d0 + ωijθ
i ∧ θj + 2ω0

i jθ
i
0 ∧ θj ,

where ωi0, ω
0
i j, ωij ∈

0

Λ1.

Proof. Let ω, ω′ ∈
2

Λ1; then, [ω] = [ω′] if and only if ω′ = ω + c + dc′, with

c ∈
2

C(1,0), c
′ ∈

1

C(1,0).
- Let us prove that ker Π ⊂ D. Let Π(ω) = Π(ω′) = 0 and [ω′] = [ω]. Then,

Π(dc′) = 0, hence c′ = 0, hence h(ω′) = h(ω).
- Let us prove that D ⊂ ker Π. Let ω ∈ ker Π, [ω′] = [ω] and h(ω′) = h(ω). Then,

h(dc′) = 0, hence Π(dc′) = 0, hence Π(ω′) = 0.

1.22 Corollary. The map given by the composition

D →֒
2

Λ1 →֒
2

H(2,1)
h

−−−→
1

C(2,1) ∧
1

H1

yields the linear sheaf isomorphism

[h] : D/
2

Θ1 →
1

CA
(2,0) ∧

1

H1 : [ω] 7→ h(ω) .

For ω ∈ D, we have the coordinate expression

[h] : [ω] 7→ 2(ωi0 + ω0
i jy

j
00) θi ∧ d0 .



M. Modugno, R. Vitolo 15

1.5 Kinematical and dynamical columns

The sheaf D fulfills the following important property.

1.23 Theorem. Let ω ∈ D be closed and let τ ∈
1

Λ1 be a local potential of ω. If

τ ∈
1

H(1,0), then

τ ∈ P ⊂
1

H(1,0) .

On the other hand,

d(P) ⊂ D .

Proof. Let us prove the first assertion. We have τ = h(τ) + v(τ), and Π(dτ) = 0.

Hence, Π
(
d(h(τ)+v(τ))

)
= 0. But, for a property of Π, Π(d(v(τ))) = −v(τ). Moreover,

h(d(h(τ))) = d(h(τ)) because of dim T = 1. Hence, we obtain v(τ) = Π
(
d(h(τ))

)
.

Hence,

τ = h(τ) + Π(d(h(τ))) ∈ P .

Let us prove the second assertion. We have, for λ ∈
1

H1,

Π (d (λ + Π(dλ)))) = 0 ,

because Π(Π(dλ)) = −Π(dλ).

1.24 Corollary. The following diagrams commute

P
d - D P

d - D

1

H1

h
?

E1

-
1

CA
(2,0) ∧

1

H1

h
?

1

H1

Ξ
6

E1

-
1

CA
(2,0) ∧

1

H1

h
?

1.25 Corollary. The coordinate expression of E1 :
1

H1 →
1

CA
(2,0) ∧

1

H1 is

E1(λ0d
0) = (∂iλ0 − (d2)0.∂

0
i λ0)θ

i ∧ d0 .

The following important result emphasises the interest of the above subdiagrams of
the Lagrangian bicomplex.

1.26 Theorem. [AnDu80] The sequence

1

H1
E1−−−→

1

CA
(2,0) ∧

1

H1
E2−−−→

3

Λ3/
3

Θ3

is exact in
1

CA
(2,0) ∧

1

H1.
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1.6 Interpretation of the Lagrangian bicomplex

Let us consider the natural linear sheaf isomorphism (arising from the contact
structure), for 1 ≤ r,

1
C(r,0) ∧

1
H1 →

1
V(r,0) ⊗

1
H1 .

Let λ : J1E → T ∗T be a standard first order Lagrangian of the variational calculus.
We can easily verify that the standard second order Euler–Lagrange morphism ǫ(λ) :
J2E → V ∗E ⊗E T ∗T associated with this Lagrangian turns out to be just the form

E1(λ). Therefore, we are led to interpret
1

H1 as the sheaf of first order Lagrangians,
1

CA
(2,0) ∧

1

H1 as the sheaf of Euler–Lagrange forms , E1 as the Euler–Lagrange operator .
Analogously, one could interpret E2 in terms of the standard third order Helmholtz
operator of variational calculus.

Therefore, we are in the position to interpret the other objects arising in the La-
grangian bicomplex.

According to this interpretation, given a Lagrangian λ ∈
1

H1, we say that Π(dλ) ∈
1

Θ1

is the momentum form of the Lagrangian and Ξ(λ) ∈ P is the Poincaré–Cartan form
of the Lagrangian.

In the direct approach to Lagrangian formalism one starts with a Lagrangian λ ∈
1

H1

and fill in the further vertices of the bicomplex (in the direction bottom-up, left-right)
by means of the maps Ξ, d, h.

In the inverse approach to Lagrangian formalism one starts with a Euler–Lagrange

type morphism ǫ ∈
1

V(2,0) ⊗
1

H1, which fulfills the Helmholtz closure condition, and finds
a local Lagrangian, which is defined up to the horizontal differential of a function on
E. Clearly, this form yields the filling in procedure as in the direct case; but, now, all
objects are defined up to a gauge.

In particular, we do not know any natural sheaf morphism
1

CA
(2,0) ∧

1

H1 → D, anal-
ogous to Ξ, which enables us to move up univocally in the column of 2–forms. In the
literature (see, for instance, [Sau89, MaPa94]) such a map can be found under additional
hypotheses on the structure of the underlying fibred manifold.

Actually, we shall be involved with the Lagrangian formalism associated with our
model of Galilei spacetime. Namely, a metric, a connection and a spacetime 2–form will

yield directly a global dynamical 2–form ω ∈ D and a global ǫ ∈
1

CA
(2,0) ∧

1

H1. Indeed, we
shall prove that the subsheaves consisting of the above ω and ǫ are naturally isomorphic.
Thus, we shall be able to fill in the Lagrangian bicomplex starting equivalently with ω
or ǫ. Therefore, the objects recovered on left (Lagrangian, Poincaré–Cartan form and
momentum) will be defined only locally and up to a gauge.

By the way, we have illustrated the variational interpretation of the first order

Lagrangian bicomplex in the case of standard first order horizontal Lagrangians λ ∈
1

H1.
On the other hand, one could develop a first order variational calculus also starting with
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a non horizontal first order Lagrangian in µ ∈
1

Λ1/
1

Θ1 ≃
1

HA
2 ; Krupka has pointed out

that E1(µ) is just the standard third order Euler–Lagrange form associated with the

affine second order Lagrangian µ ∈
1

HA
2 .

2 Galilei general relativistic bicomplex

So far, we have analysed the Lagrangian bicomplex associated with a fibred
manifold with the only assumption that the base space is one dimensional. Now,
we add the hypothesis that the base space is affine and we consider additional
structures on the fibred manifold according to the model of general relativistic
spacetime developed in [JaMo93b, JaMo93a]. In this richer framework we can
develop further results and interpret the general relativistic Galileian Lagrangian
mechanics in terms of the bicomplex.

2.1 Spacetime structures

Galilei spacetime

We start with a simple hypothesis on the base space of our fibred manifold and
sketch its physical interpretation.

Now on, we assume the base space T to be an affine space associated with an
oriented vector space T.

The total space E is said to be the Galilei spacetime, T the absolute time and t the
time function.

A time unit of measurement is defined to be an oriented basis of T or its dual

u0 ∈ T , u0 ∈ T∗ .

One might choose a time unit of measurement and make the correspondent identi-
fication T ≃ IR. However, we do not want to make such a choice for physical reasons,
in order to make the theory manifestly invariant with respect to units of measurement.

We will use fibred charts (x0, yi) on E adapted to a time unit of measurement u0,
according to Tt ◦ ∂0 = u0.

We obtain the scaled form

dt : E → T ⊗ T ∗E ,

with coordinate expression

dt = u0 ⊗ d0 .

A motion is defined as a section s : T → E and its velocity as the jet prolongation
j1s : T → J1E.



18 Quantum connection and P.–C. form

An observer is defined to be a section

o : E → J1E ⊂ T∗ ⊗ TE .

The coordinate expression of an observer is o = u0 ⊗ (∂0 + oi
0 ∂i).

A fibred chart (x0, yi) is said to be adapted to an observer o if oi
0 = 0. For each

observer, many adapted charts exist locally; conversely, each fibred chart determines
locally an observer.

An observer o can be regarded as a connection on the fibred manifold E → T .
Accordingly, we define the translation fibred isomorphism ∇[o] associated with o

∇[o] : J1E → T∗ ⊗ V E : σ 7→ ∇[o](σ) := σ − o(t01(σ)) .

Then, the velocity of a motion s observed by the observer o is defined as

∇[o]s := ∇[o] ◦ j1s = j1s − o ◦ s : T → T∗ ⊗ V E .

Its coordinate expression is

∇[o]s = (∂0s
i − oi

0 ◦ s)u0 ⊗ ∂i .

Spacetime connection

Next, we consider an additional structure on our fibred manifold given by special
type of connections.

2.1 Definition. We introduce the following three notions.
A spacetime connection is defined to be a torsion free linear connection on TE → E

K : TE → T ∗E ⊗
TE

TTE ,

such that

∇dt = 0 .

A phase connection is defined to be a torsion free (with respect to θ1, see [JaMo93a])
affine connection on J1E → E

Γ : J1E → T ∗E ⊗
J1E

TJ1E .

A dynamical connection is defined to be a connection on J1E → T

γ : J1E → T∗ ⊗ TJ1E ,

which projects over

d1 : J1E → T∗ ⊗ TE

and is ‘homogeneous’ in the sense of [KoMo90].
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A dynamical connection can be regarded as a section

γ : J1E → J2E .

2.2 Remark. The coordinate expressions of spacetime connections,
phase connections and dynamical connections are, respectively, of the type

K = dλ ⊗ (∂λ + Kλ
i∂̇i) , Kλ

i := Kλ
i
0ẋ

0 + Kλ
i
j ẏ

j ,

Γ = dλ ⊗ (∂λ + Γλ
i∂0

i ) , Γλ
i := Γλ

i
0 + Γλ

i
jy

j
0 ,

γ = u0 ⊗ (∂0 + yi
0∂i + γi∂0

i ) , γi := γh
i
ky

h
0yk

0 + 2γh
i
0y

h + γ0
i
0 ,

with

Kλ
i
µ ∈ C∞(E) , Γλ

i
µ ∈ C∞(E) , γα

i
β ∈ C∞(E) .

2.3 Remark. A spacetime connection K, a phase connection Γ and a dynamical
connection γ are characterised, respectively, by the sections

ν[K] : TE → T ∗TE ⊗
TE

V E ,

ν[Γ] : J1E → T∗ ⊗ T ∗J1E ⊗
J1E

V E ,

∇[γ] : J2E → T∗2 ⊗ V E ,

with coordinate expressions

ν[K] = (ḋi − Kλ
idλ) ⊗ ∂i ,

ν[Γ] = u0 ⊗ (di
0 − Γλ

idλ) ⊗ ∂i ,

∇[γ] = u0 ⊗ u0(yi
00 − γi ◦ t21)∂i .

2.4 Theorem. [JaMo93a, JanMo95] The maps

ν[K] 7→ ν[Γ] := θ1 ◦ ν[K] ◦ Td1 , Γ 7→ γ := d y Γ

yield a natural bijection

K 7→ Γ 7→ γ

between spacetime, phase and dynamical connections with coordinate expression

Γλ
i
µ = Kλ

i
µ , γλ

i
µ = Γλ

i
µ .

Spacelike metric

Eventually, we consider an additional metric structure on our fibred manifold.

A space–like metric is defined to be scaled vertical Riemannian metric

g : E → L2 ⊗ (V ∗E ⊗
E

V ∗E) ,
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where L is a positive 1–dimensional ‘semi–vector space’ over IR+, called the space of
lengths .

The coordinate expression of a space–like metric is of the type

g = gij ď
i ⊗ ďj , gij ∈ C∞(E, L2 ⊗ IR) .

A space–like metric g yields the linear isomorphisms

g♭ : V E → L2 ⊗ V ∗E , g♯ : V ∗E → L∗2 ⊗ V E .

One might choose the scale factor of the metric and write g : E → V ∗E ⊗E V ∗E.
However, we do not want to make such a choice for physical reasons, in order to make
the theory manifestly invariant with respect to units of measurement.

On the other hand the forthcoming geometric constructions will lead to a disturbing
scale factor in the objects which are candidate to filling in the bicomplex. In order to
remove this factor and allow the physical interpretation, we introduce a further scale
space and constants.

So, we consider a mass m ∈ M, where M is a positive 1–dimensional ‘semi–vector
space’ over IR+, called the space of masses and the Planck constant , i.e. a positively
oriented element ~ ∈ T∗ ⊗ L2 ⊗ M.

We rescale g, by setting

G := m/~ g : E → T ⊗ (V ∗E ⊗
E

V ∗E) .

Spacetime structure

2.5 Definition. A pair (K, g) constituted by a spacetime connection and a spacelike
metric is said to be a spacetime structure.

We say a spacetime structure (K, g) to be integrable if

∇[K ′]g = 0 , R[K]iλ
h

µ = R[K]hµ
i
λ ,

where K ′ is the restriction of K to the subbundle V E ⊂ TE and R[K] is the curvature
of K.

We stress that the metric cannot determine the connection fully, because of its
degeneracy. On the other hand, we have the following results.

2.6 Remark. Let o : E → J1E be an observer and set

σ[o] := S(∇[Γ]) : E →
2
⊙T ∗E ,

φ[o] := A(∇[Γ]) : E →
2
∧T ∗E ,

where S and A are the symmetrization and antisymmetrisation operators associated
with G.
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We have the coordinate expressions in any chart adapted to o

σ[o]0j = φ[o]0j = −m/~ Γ0j0 ,

σ[o]ij = −m/~ (Γij0 + Γji0) , φ[o]ij = −m/~ (Γij0 − Γji0) .

Also, the connection K is characterised by the triplet (Ǩ, σ̌[o], φ[o]), where Ǩ is the
linear connection induced on the fibres of t : E → T and σ̌[o] is the vertical restriction
of σ[o].

2.7 Theorem. [JaMo93b] Let o : E → J1E be an observer. Then the space time
structure (K, g) is integrable if and only if

∇[K ′]g = 0 , σ̌[o] = G♭ ◦ Loḡ , d(φ[o]) = 0 ,

where ḡ is the contravariant metric.

In other words, the spacetime structure is integrable if and only if the connection
induced on the fibres by K is the Riemannian connection associated with g, the sym-
metric component of K (with respect to o) is the Lie derivative of the metric with
respect to o and the antisymmetric component of K (with respect to o) is closed.

2.2 Spacetime structures and Lagrangian bicomplex

Next, we exhibit distinguished objects of the bicomplex arising from spacetime
structures.

Dynamical column

We start with objects, arising from spacetime structures, belonging to the dynamical
column of the bicomplex. These objects turn out to be global and gauge and observer
independent.

2.8 Proposition. A spacetime structure (K, g) yields the 2–form, called the asso-
ciated dynamical form,

ω := νΓ∧̄θ : J1E →
2
∧T ∗J1E ,

(the contracted wedge product ∧̄ is taken with respect to G) with coordinate expression

ω = Giju
0 ⊗ (di

0 − Γλ
idλ) ∧ θj

= Giju
0 ⊗ (di

0 − γid0 − Γh
iθh) ∧ θj .

2.9 Remark. The horizontal and vertical projections

h(ω) ∈
1

CA
(2,0) ∧

1

H0 v(ω) ∈
2

CA
2

have coordinate expressions

h(ω) = Giju
0 ⊗ (yi

00 − γi)θi ∧ d0

v(ω) = Giju
0 ⊗ (θi

0 − Γh
iθh) ∧ θj .
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2.10 Remark. The dynamical form is non–degenerate, in the sense that

dt ∧ ω ∧ ω ∧ ω : J1E → T ⊗
7
∧T ∗J1E

is a scaled volume form of J1E.

2.11 Remark. We have

φ[o] = 2o∗ω .

It can be proved that ω is the unique non trivial two–form on J1E induced naturally
by (K, g) (see [Jan93]).

The dynamical form associated with (K, g) turns out to be a distinguished global
element

ω ∈ D .

The local dynamical forms associated with all spacetime structures constitute a
distinguished nonlinear subsheaf

F ⊂ D ,

on which we will draw our attention.

2.12 Proposition. A spacetime structure (K, g) yields the fibred morphism, called
the associated Euler–Lagrange morphism,

ǫ := G♭ ◦ ∇[γ] : J2E → V ∗E ⊗ T∗ ,

which can be naturally identified with the form, called the associated Euler–Lagrange
form,

ǫ := G♭ ◦ ∇[γ] : J2E → T ∗E ∧ T∗ ,

with coordinate expression

ǫ = Giju
0(yi

00 − γi)ďj ⊗ d0 ≃ Giju
0(yi

00 − γi)dj ∧ d0 .

The Euler–Lagrange form associated with (K, g) turns out to be a distinguished
global element

ǫ ∈
1

CA
(2,0) ∧

1

H1 .

The local Euler–Lagrange forms associated with all spacetime structures constitute
a distinguished nonlinear subsheaf

E ⊂
1

CA
(2,0) ∧

1

H1 ,

on which we will draw our attention.
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2.13 Proposition. Let us refer to a spacetime structure (K, g). Then, γ is the
unique second order connection such that

γ y ω = 0 .

Thus, we have a natural nonlinear sheaf isomorphism

F → E .

We can summarise the natural bijections obtained so far as follows
ω

K - Γ -

-

γ
?

ǫ

6

Kinematical column

Next, we proceed with objects, arising from integrable spacetime structures, be-
longing to the kinematical column of the bicomplex. These objects are local and gauge
dependent, but observer independent.

First of all, we relate the integrability of spacetime structure with the closure of the
induced objects in the dynamical column.

2.14 Theorem. [JaMo93b] Let us consider a spacetime structure (K, g) and the
associated dynamical form ω and Euler-Lagrange form ǫ. Then, the following conditions
are equivalent.

i) The spacetime structure (K, g) is integrable.
ii) The dynamical form ω is d–closed

dω = 0 .

iii) The Euler–Lagrange form is E2–closed

E2ǫ = 0 .

Proof. The equivalence i) ⇐⇒ ii) has been proved in [JaMo93b].
The equivalence ii) ⇐⇒ iii) follows from the above equivalence and the commuta-

tivity of the Lagrangian bicomplex.

Thus, in case of integrable spacetime structure, the dynamical form ω turns out to
be a cosymplectic form.

So, given an integrable spacetime structure (K, g), we have to analyse the potentials
of ω and ǫ.

First of all we introduce the following objects.
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2.15 Definition. Let g be a spacelike metric and o an observer. We define the
associated kinetic energy , kinetic momentum and kinetic momentum form, respectively,
to be the maps

k[o] := 1/2 G ◦ (∇[o],∇[o]) ∈
1

H1 ⊂
1

H(1,0) ,

p̌[o] := G♭ ◦ ∇[o] ∈
1

V(1,0) ,

p[o] := θ∗ y p̌[o] ∈
1

H(1,0) .

We have the coordinate expressions

k[o] = 1/2 u0Gijy
i
0y

j
0 d0 ,

p̌[o] = u0Gijy
j
0 ďi ,

p[o] = u0(−Gijy
i
0y

j
0 d0 + Gijy

j
0 di) .

Of course, we obtain

o∗k[o] = 0 , o∗p[o] = 0 .

2.16 Remark. Let (K, g) be a spacetime structure and o an observer. We denote
the local potentials of φ[o] by

α[o] : E → T ∗E .

The local potentials are defined up to a gauge of the type df , with f ∈ C∞(E, IR).

2.17 Definition. We define the sheaf of spacetime Lagrangians to be the nonlinear
subsheaf

L ⊂
1

H1

constituted by local forms λ ∈
1

H1, which are polynomials of degree 2, with respect to
the affine structure of J1E → E, and whose second fibre derivative is

G : E → T ⊗ (V ∗E ⊗
E

V ∗E) ,

where g := ~/m G is a spacelike metric and α ∈
1

Λ0.

2.18 Remark. The sheaf of spacetime Lagrangians is constituted by forms of
1

H1

that, for each observer o and chart (x0, yi), can be written as

λ = k[o] + ihα , i.e. λ = (1/2 u0Gijy
i
0y

j
0 + αiy

i
0 + α0)d

0 ,

where g := ~/m G is a spacelike metric and α ∈
1

Λ0.
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2.19 Definition. The sheaf of spacetime Poincaré–Cartan forms is defined to be
the nonlinear subsheaf

M ⊂
1

H(1,0)

constituted by local forms τ ∈
1

H(1,0), which are affine, with respect to the affine struc-
ture of J1E → E, and whose fibre derivative is

θ1 yG♭ : J1E → T ⊗ (T ∗E ⊗
E

T ∗E) ,

where g := ~/m G is a spacelike metric and α ∈
1

Λ0.

2.20 Remark. The sheaf of spacetime Poincaré–Cartan forms is constituted by

forms of
1

H(1,0) that, for each observer o and chart (x0, yi), can be written as

τ = k[o] + p[o] + α ,

i.e.

τ = −1/2 u0Gijy
i
0y

j
0d

0 + u0Gijy
j
0dyi + αλd

λ ,

where g := ~/m G is a spacelike metric and α ∈
1

Λ0.
Moreover, we have

Ξ(k[o] + ihα) = k[o] + p[o] + α ,

h(k[o] + p[o] + α) = k[o] + ihα .

Then, we can write

M = Ξ(L) ⊂ P ,

and the maps Ξ and h are mutually inverse nonlinear sheaf isomorphisms

Ξ : L → M , h : M → L .

Now, we are in a position to integrate locally ǫ and ω.

2.21 Theorem. The subsequence

M
d

−−−→ F
d

−−−→
3

Λ1 of
1

Λ1
d

−−−→
2

Λ1
d

−−−→
3

Λ1

is exact.
More precisely, we have the following results.
Let ω ∈ F be the dynamical form associated with an integrable spacetime structure.
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i) If o is an observer and α[o] ∈
1

Λ0 a local potential of φ[o], according to 2dα[o] =
φ[o], then the local section

τ := k[o] + p[o] + α[o] ∈ M

turns out to be a local potential of ω, according to 2dτ = ω.
ii) If ω admits a local potential of the type

τ ∈
1

H(1,0) ⊂
1

Λ1 ,

according to 2dτ = ω, then

τ ∈ M

and, for each observer o, we can write

τ = k[o] + p[o] + α[o] ,

where

α[o] = o∗τ ∈
1

Λ0 , dα[o] = o∗ω .

Proof. i) We have

2d(τ) =

= Gijd
i
0 ∧ θj − ((Γ0hj + Γ0jh)y

h
0 + Γjhky

h
0yk

0)d
0 ∧ dj+

(Γhkj + Γhjk)y
k
0d

h ∧ dj + ∂µaλd
µ ∧ dλ + ∂0

i aλd
i
0 ∧ dλ

= ω + ∂µaλd
µ ∧ dλ + ∂0

i aλd
i
0 ∧ dλ+

Gij(Γ0
i
0d

0 ∧ dj + Γk
i
0d

k ∧ d0)

= ω .

ii) Without losing in generality, we can write locally

τ = −1/2 u0Gijy
i
0y

j
0d

0 + u0Gijy
i
0d

j + αλd
λ ,

where α ∈
1

H(1,0).
Then, a computation in coordinates shows that the condition 2dτ = ω is equivalent

to the system

∂0
i aλ = 0 , 2dα = φ .

Later, we shall realise that this result accounts essentially for the search of a quantum
connection.
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2.22 Corollary. Let τ1, τ2 ∈
1

H(1,0) be two local potentials of ω with the same
domain of definition. Then, we have

τ1 = τ2 + c ,

where

c ∈
1

Λ0 ⊂
1

H(1,0) , dc = 0 .

Proof. Let us set c := τ1 − τ2 ∈
1

H(1,0). For any observer o we can write

2τ1 = k[o] + p[o] + α1 , 2τ2 = k[o] + p[o] + α2 ,

where α1, α2 ∈
1

Λ0. Hence, we obtain

c = α1 − α2 ∈
1

Λ0 .

2.23 Corollary. The subsequence

L
E1−−−→ E

E2−−−→
3

Λ1/
3

Θ1 of
1

Λ1/
1

Θ1
E1−−−→

2

Λ1/
2

Θ1
E2−−−→

3

Λ1/
3

Θ1

is exact.
More precisely, we have the following results.
Let ǫ ∈ E be the Euler–Lagrange form associated with an integrable spacetime

structure.

i) If o is an observer and α[o] ∈
1

Λ0 a local potential of φ[o], according to 2dα[o] = φ[o]
then, the local section

λ := k[o] + ihα[o] ∈
1

H ,

turns out to be a local potential of ǫ, according to E1λ = ǫ.
ii) If ǫ admits a local potential of the type

λ ∈
1

H1 ⊂
1

HA
2 ,

then

λ ∈ L

and, for each observer o, we can write

λ = k[o] + ihα[o] ,

where

α[o] = o∗Ξ[λ] ∈
1

Λ0 , dα[o] = o∗ω .
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Proof. It follows from the above theorem and the commutativity of the Lagrangian
bicomplex.

Each potential τ and λ of the dynamical form ω and of the Euler-Lagrange form ǫ,
associated with an integrable spacetime structure (K, g), are said to be the correspond-
ing spacetime Poincaré–Cartan form and spacetime Lagrangian, respectively.

Hence, given ω and ǫ, the corresponding Poincaré–Cartan form τ and Lagrangian
λ are defined up to a gauge of the type df , with f ∈ C∞(E, IR). But, we stress that τ
and λ have been defined independently of observers.

2.24 Remark. In the standard direct approach to Lagrangian mechanics one starts
with a Lagrangian and derives from it the momentum, the Poincaré–Cartan form, the
dynamical form and the Euler–Lagrange morphism.

On the other hand, in our model based on the general Lagrangian bicomplex and on
integrable spacetime structures, we follow a different approach. In fact, the distinguished
and global objects provided by the structure are only the objects of the dynamical
column. So, the objects of the kinematical column are obtained only locally and up to
a gauge.

In particular, in this context, the most natural viewpoint for the Poincaré –Cartan
form is to regard it as a (gauge dependent) potential of the global dynamical form
(instead as an object derived from the gauge dependent and local Lagrangian).

Eventually, we consider the momentum.

2.25 Remark. Let us consider an integrable spacetime structure (K, g) and the
associated dynamical form ω.

We define the momentum, associated with the potential τ ∈ M of ω, as the contact
form (see [Gar74, MaMo83b])

π = v(τ) ∈
1

Θ1 ,

with coordinate expression

π = (u0Gijy
i
0 + αj)θ

j .

We obtain

π = Π
(
d(h(τ))

)
.

Moreover, for each observer o, we can write

π = p[o] + v(α[o]) ,

where

α[o] = o∗τ , dα[o] = o∗ω .

Hence, given ω, the momentum π is defined up to a gauge of the type ďf , with
f ∈ C∞(E, IR).
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2.3 Galilei structure and Lagrangian bicomplex

So far, we have discussed the general bicomplex associated with a fibred mani-
fold whose base space has dimension 1 and have analysed the objects arising from
additional spacetime structures.

Now, we present our model of Galilei spacetime structure, relate it to the
spacetime bicomplex and give the physical interpretation.

We assume the following objects:
- a spacelike metric

g : E → L2 ⊗ V ∗E ⊗
E

V ∗E ,

- a spacetime connection, called the gravitational connection,

K♮ : TE → T ∗E ⊗
TE

TTE ,

- a scaled 2–form, called the electromagnetic field ,

F : E → (L1/2 ⊗ M1/2) ⊗
2
∧T ∗E ,

- a pair

(m, q) ∈ M × Q ,

where the oriented 1–dimensional vector space Q := T∗⊗L3/2⊗M1/2 is called the space
of charges .

Moreover, we suppose that
- the spacetime structure (K, g) is integrable,
- the form F is closed.

Next, we couple the gravitational and electromagnetic fields by incorporating them
together into the geometric structure of spacetime. So, we obtain total objects, which
allow us to treat the gravitational and electromagnetic fields as a unique field.

It is convenient to start with ω, because this coupling is immediate.
We define the total dynamical form ω as

ω := ω♮ + q/2m F .

2.26 Proposition. [JaMo93b, JanMo95] The bijections between dynamical forms
and dynamical connections and between dynamical connections and phase connections
yield the total dynamical connection and the total phase connection, respectively,

Γ = Γ♮ + Γe , γ = γ♮ + γe ,

where

γe = −q/m g♯2 ◦ h(F ) , Γe = −q/2m g♯2 ◦
(
F + h(F )

)
,
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(here g♯2 denotes the metric isomorphism on the second component after vertical re-
striction), with coordinate coordinate expressions

γe = −q/m (F0
i + Fh

ixh
0)u

0 ⊗ ∂0
i ,

Γe = −q/2m u0
(
(Fh

ixh
0 + 2F0

i)d0 + Fj
idj
)
⊗ ∂0

i .

The section γe turns out to be just the Lorentz force.
Of course, the total phase connection yields the total spacetime connection, as well

(see [JaMo93b]).
Thus, the gravitational and electromagnetic structures have produced an integrable

spacetime structure. Then, we can apply the general machinery and produce distin-
guished objects of the bicomplex.

In particular, the equation

∇[γ]j1s := j2s − γ ◦ j1s = 0 ,

associated with the total dynamical connection is said to be the generalised Newton law
of particle motion.

In coordinates we have

∂2
00s

i − (Γh
i
k ◦ s)∂0s

h∂0s
k−2(Γ0

i
h ◦ s)∂0s

h − (Γ0
i
0 ◦ s) =

= q/m (F i
0 ◦ s + F i

h ◦ s∂0s
h) .

3 Quantum mechanics of a scalar particle

Now we analyse the existence problem for the covariant quantisation of a
charged scalar particle according to the scheme presented in [JaMo93a, JaMo93b].
We show the role of the Poincaré–Cartan form in this context.

3.1 Quantum bundle and quantum connection

We start with a brief recall of the covariant quantisation scheme, as formulated
in [JaMo93a, JaMo93b].

We refer to a spacetime equipped with an integrable spacetime structure as-
sociated with a given gravitational and electromagnetic field and to a charged
particle with given mass and charge. In particular, we are concerned with the
total cosymplectic form ω introduced in the previous section.

3.1 Definition. We define the quantum bundle to be a complex line–bundle Q → E

endowed with a Hermitian fibre metric h.

Quantum histories are represented by sections of Q → E.
A local trivialisation (t10)

−1(U) → U × C, which maps i and h into the analogous
canonical elements of C and such that H2

de Rham(U ) = 0, is said to be normal . Normal
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trivialisations exist locally. We shall always refer to normal trivialisations and to fibred
charts adapted to normal trivialisations. A normal trivialisation is called also a quantum
gauge.

We denote the Liouville vector field by

I : Q → V Q ≃ Q ×
E

Q : q 7→ (q, q) .

3.2 Definition. A quantum connection is defined to be a connection q on the
bundle

Q↑ := J1E ×
E

Q → J1E

fulfilling the properties

1. q is linear Hermitian,

2. q is universal in the sense of [MaMo83a, MaMo83b],

3. the curvature of q fulfills the equation

R[q] = i ω ⊗ I : Q↑ →
2
∧T ∗J1E ⊗

J1E
Q↑ .

The requirement of universality of q is equivalent to the statement that q can be
seen as a system of connections on Q → E

ξ[q] : J1E ×
E

Q → T ∗E ⊗
E

Q

i.e. as a family of connections on Q → E parametrised by observers.
The universality condition for q is quite important. In fact, it allows us to skip the

problems related to polarisations [JaMo93b].

3.3 Lemma. Let q be a connection on the bundle Q↑. Then, the following condi-
tions are equivalent:

1. q is Hermitian and universal;

2. in the domain of each normal splitting we have the splitting

q = q
q + i τ ⊗ I , τ ∈

1

H(1,0) ,

where q
q is the flat connection induced by the normal trivialisation;

3. in the domain of each normal trivialisation we have the coordinate expression

q = dλ ⊗ ∂λ + di
0 ⊗ ∂0

i + iqλd
λ ⊗ I , qλ ∈

0

Λ1 .
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Proof. In fact, Hermitianity is equivalent to qλ,q
0
i ∈ i

0

Λ1 and universality is equiv-
alent to the condition q

0
i = 0 (see [JaMo93b]).

We stress that the condition q
0
i = 0 is intrinsic.

The search for a quantum connection is locally equivalent to the choice of a Poincaré–
Cartan form τ associated with ω.

3.4 Theorem. [JaMo93b] Let q be a connection on the bundle Q↑. Then, the fol-
lowing conditions are equivalent:

1. q is a quantum connection;

2. in the domain of each normal splitting we have the splitting

q = q
q + i τ ⊗ I

where q
q is the flat connection induced by the trivialisation and τ is a distinguished

local Poincaré–Cartan form associated with ω (whose choice is determined just by
q and the quantum gauge);

3. in the domain of each normal trivialisation we have the coordinate expression

q = dλ ⊗ ∂λ + di
0 ⊗ ∂0

i +

+ i (−1/2 Gijy
i
0y

j
0d

0 + Gijy
i
0d

j + α[o]λd
λ) ⊗ I ,

where α[o] ∈
1

Λ0 is a distinguished potential of φ[o] (whose choice is determined
just by q and the quantum gauge), and o is the observer associated with the chart.

Proof. The proof is essentially that of Theorem 2.21.

3.5 Corollary. The composition of the dynamical connection γ with the quantum
connection q yields the connection

γ yq : Q↑ → T∗ ⊗ TQ↑

on the fibred manifold Q↑ → T .
In the domain of each normal splitting we have the splitting

γ yq = γ yq
q + i λ ⊗ I ,

where q
q is the flat connection induced by the trivialisation and λ := h(τ) is a distin-

guished local Lagrangian associated with ω (whose choice is determined just by q and
the quantum gauge).

In the domain of each normal trivialisation we have the coordinate expression

γ yq =u0 ⊗ (∂0 + yi
0∂i + γi∂0

i )+

+ i (1/2 u0Gijy
i
0y

j
0 + αiy

i
0 + α0)d

0 ⊗ I .
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3.6 Remark. We stress that the form τ does not depend on the observer, but only
on the normal trivialisation.

On the other hand, the potential induced locally by the quantum connection depends
on the quantum gauge and on the observer in the following way.

If b, b′ are local bases of the quantum bundle associated with two normal trivialisa-
tions and o is an observer, then we have

α′[o] = α[o] − dϑ ,

where exp(iϑ) := b′/b ∈
0

Λ0.
If o, o′ are two observers and o′ = o + v, then we have

α[o′] = α[o] − 1/2 G ◦ (v, v) + ν[o] y(G♭ ◦ v) ,

where v := o′ − o and ν[o] : E → T ∗E ⊗E V E is the vertical valued form associated
with o (here regarded as a connection on the fibred manifold E → T ).

Quantising a classical mechanical system means requiring the existence of a quantum
bundle and a quantum connection.

Then, a Lagrangian density on J1Q can be obtained by means of the given metric
structures and the covariant derivative of sections. The corresponding Euler–Lagrange
equation turns out to be a generalised Schroedinger equation for a scalar quantum
particle in the given classical gravitational and electromagnetic fields.

Moreover, we can exhibit a natural isomorphism between a certain algebra of func-
tions on J1E and a a distinguished algebra of vector fields on Q. Such vector fields yield
quantum operators. In this way, we obtain a covariant implementation of the correspon-
dence principle in a curved spacetime with absolute time (see [JaMo93a, JaMo93b] for
details).

3.2 Quantisation and Poincaré–Cartan form

In this subsection we give a result on the existence of a quantisation of a classi-
cal mechanical systems. More precisely, we give necessary and sufficient conditions
to the existence of a quantum bundle and a quantum connection.

This result is a generalisation of the Theorem by Kostant–Soriau to the case
of a general relativistic classical mechanical theory on a spacetime with absolute
time (see, for example, [Kos70, Gar79]). As one could expect, we will recover a
similar result, but involving the topology of spacetime, rather than the topology
of the space–like configuration space.

Lets us start with a few cohomological remarks. Let us consider a manifold M .
We recall that M admits a covering {U i}i∈I , called good cover , such that each finite

intersection of the open subsets of the covering is contractible [BoTu82]. Moreover, we
have a natural isomorphism

H∗
Čech(M ,S) ≃ H∗

Čech({U i}i∈I ,S) ,
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for each sheaf S of abelian groups.
We observe that the natural inclusion i : Z → IR induces a natural morphism

i : H2
Čech(M , Z) → H2

Čech(M , IR) ,

which is (in general) not injective because of torsion [BoTu82].
We observe that if two line bundles over M are isomorphic then they are isometric

(it can be proved easily by taking into account that the base space is 1–dimensional).
We recall that there is a natural bijection between classes of isomorphic hermitian

line bundles and cocycles

cij : U i ∩ U j → U(1) .

We shall be concerned with the natural isomorphism between the de Rham and
Čech cohomologies of E [BoTu82, Wel80]

H2
de Rham(E) ≃ H2

Čech(E, IR) .

We recall that the de Rham cohomology of J1E is isomorphic (but not naturally
isomorphic) to the de Rham cohomology of E.

Now we refer to a Galilei spacetime t : E → T equipped with an integrable gravita-
tional field and a closed electromagnetic field. We shall be concerned with the induced

total closed dynamical form ω ∈ F ⊂
2

Λ1.
Clearly, ω induces a cohomology class on J1E. Even more, we can state the following

result, which depends on a property of the Poincaré–Cartan form (see Corollary 2.22).

3.7 Lemma. The closed form ω yields naturally a Čech cohomology class of E

[ω] ∈ H2
Čech(E, IR) .

Proof. Let us consider a good cover {U i}i∈I of E.
On each tube (t10)

−1(U i) we choose a Poincaré–Cartan form τi. In virtue of Corollary
2.22, if U i ∩ U j 6= ∅, then τi − τj is a closed form on U i ∩ U j.

Hence, to each pair (i, j) such that U i ∩ U j 6= ∅, there exists a function

fij : U i ∩ U j → IR ,

such that τi − τj = dfij.
It is easy to see that, for each triplet (i, j, k) such that U i ∩ U j ∩ U k 6= ∅, we have

d(fij + fjk − fik) = 0

hence, the function fij + fjk − fik is constant.
This yields the Čech 2-cocycle

c := {fij + fjk − fik : U i ∩ U j ∩ U k → IR} ,
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hence the Čech cohomology class

[ω] := [c] .

We can prove that the above class [ω] does not depend on the chosen gauges of τi

and fij.

3.8 Theorem. The following two conditions are equivalent.

1. There exist a quantum bundle Q → E and a quantum connection q.

2. The closed form ω yields a cohomology class in the subgroup

[ω] ∈ i(H2(E, Z)) ⊂ H2(E, IR) .

Proof. Let us consider a good cover {U i}i∈I of E.
- Suppose that the second condition of the statement holds. Then, for all i, j, k ∈ I

such that Ui ∩ Uj ∩ Uk 6= ∅, there exist functions fij, fjk, fik as in the above Lemma,
such that (fij + fjk − fik) ∈ Z. Then, the functions

cij : U i ∩ U j → U(1) : x 7→ exp i2πfij

fulfill cijcjk = cik, hence yield a Hermitian line bundle cocycle on E. Moreover, we
obtain

τi − τj = dfij =
1

i2π

dcij

cij

,

hence the forms iτi ⊗ I yield a global quantum connection.
- Suppose that the first condition of the statement holds. On each tube (t10)

−1(U i)
refer to the splitting (see Theorem 3.4)

q = q
q + i τi ⊗ I .

Then, the constant function fij +fjk−fik as in the above Lemma turns out to be valued
into Z.
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[dLRo85] M. de Léon, P. Rodriguez: Generalized classical mechanics and field theory,
North-Holland, Amsterdam, 1985.

[DoHo64] H. D. Dombrowski, K. Horneffer: Die differentialgeometrie des Galileischen
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