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Abstract

In this work we formulate quantum structures on an Einstein general rela-
tivistic background and present an existence and classification theorem. This
approach follows the scheme of the Galilei general relativistic quantum mechan-
ics, as formulated by Jadczyk and Modugno. The existence and classification
result is analogous to that of geometric quantisation.

Introduction

One of the most important subjects of theoretical physics is the covariant formulation
of quantum mechanics.

Several authors2,9,12,13 have fruitfully investigated a covariant approach to classical
and quantum mechanics in a curved Galilei background, i.e. on a curved spacetime
with absolute time.

Recently, it has been presented a formulation of Galilei classical and quantum
mechanics based on jets, connections and cosymplectic forms1,4,5. This formulation
has the advantage of being manifestly covariant, due to the use of intrinsic techniques
on manifolds. This approach recovers all examples of standard quantum mechanics
in the flat case. In particular, the standard examples of geometric quantisation (i.e.
harmonic oscillator and hydrogen atom) are recovered in an easier way.

The above formulation can be rephrased in Einstein’s general relativity6,7. In this
paper, after recalling quantum structures in Galilei’s case, we introduce the Einstein’s
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general relativistic quantum structures. Moreover, we give a theorem of Kostant–
Souriau type8, which states a topological necessary and sufficient existence condition
on the spacetime and the cosymplectic form. Also, we give a classification theorem
for quantum structures.

We assume manifolds and maps to be C∞. Moreover, we assume c to be the light

velocity and ~ to be the Planck’s constant . Finally, we assume a particle mass m and
charge q For a rigorous mathematical treatment of units of measurement, see Jadczyk
and Modugno5.

1 Galilei theory

Here, we present a summary of the classical theory and quantum structures1,4,5,
together with the existence and classification results for quantum structures10.

The spacetime is assumed to be a fibred manifold t : E → T , where E is an
orientable 4–dimensional manifold and T is a 1–dimensional oriented affine space
associated with the real line IR. We assume a vertical Riemannian metric on E,
g : E → V ∗E⊗EV ∗E. The first jet bundle J1E → E is said to be the phase space.

Spacetime connections are defined to be dt-preserving linear connections on E. A
spacetime connection K and the metric g induce naturally a 2–form1 Ω[K] on J1E for
the coordinate expression. We assume E to be endowed with a spacetime connection
K♮ (the gravitational field) such that dΩ[K♮] = 0, and a closed 2–form F on E (the
electromagnetic field). We couple K♮ and F by considering the sum Ω := Ω[K♮]+ q

2m
F ,

so dΩ = 0. This implies that K♮ is metric, but it is not completely determined by g.

We say the quantum bundle to be a complex line–bundle Q → E endowed with a
Hermitian fibre metric h. Moreover, we assume on the bundle J1E×EQ → J1E a con-
nection Q, called the quantum connection1, which is Hermitian, universal5 (roughly,
it is trivial with respect to the fibring J1E → E), and such that its curvature ful-
fills R[Q] = im

~
Ω. The pair (Q,Q) is said to be a quantum structure. Two quantum

structures are said to be equivalent if there exists an isomorphism of the underlying
complex Hermitian line bundles on E which maps one quantum connection into the
other.

A covariant formulation1 of quantum mechanics of a scalar particle in a spacetime
with absolute time is made by the choice of a quantum structure. An implementa-
tion of the correspondence principle in a covariant formulation involving a curved
spacetime is then achieved.

Denote by H the Čech cohomology functor. The abelian group inclusion i : Z → IR
yields an abelian group morphism i : H2(E, Z) → H2(E, IR). It can be proved10 that
the closed form Ω determines a class in H2(E, IR). Moreover, it can be proved10 that
there exists a quantum structure (Q,Q) if and only if Ω determines a cohomology
class in the subgroup [Ω] ∈ i(H2(E, Z)) ⊂ H2(E, IR). In this case, there exists
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a bijection between the set of equivalence classes of quantum structures and the
cohomology group H1(E, U(1)). Hence, if E is simply connected, then H1(E, U(1)) =
{0}, so there exists a unique equivalence class of quantum structures14.

2 Einstein spacetime

In this section, we show that the geometric constructions of classical and quantum
Galilei theory can be recovered in Einstein’s case6.

We assume the spacetime to be a manifold M , with dim M = 4, endowed with a
scaled Lorentz metric g whose signature is (+−−−). Moreover, we assume M to be
oriented and time–oriented. We will use charts (xϕ), 0 ≤ ϕ ≤ 3) on M such that ∂0

is time–like and time–oriented, and ∂i (1 ≤ i ≤ 3) are space–like. We deal with the
first–order jet U1M of time–like 1–dimensional submanifolds of M 6; U1M is said to
be the phase space. We have a natural fibring U1M → M ; a typical chart (x0, xi)
on M induces an adapted chart (x0, xi; xi

0) on U1M . Moreover, the metric g induces
naturally a 1–form τ on U1M

6 whose coordinate expression is τ ♮ = α/c (g0λ+giλx
i
0)d

λ,

where α =
(

√

g00 + 2g0jx
j
0 + gijxi

0x
j
0

)

−1
.

The Levi–Civita connection K♮ and the metric g induce naturally a 2–form Ω[K♮]
on U1M . We have the coordinate expression

Ω♮ = cα(giµ − τ ♮
i τ

♮
µ)(di

0 − Γφ
i
0d

φ) ∧ dµ ,(1)

where Γφ
i
0 = Kφ

i
jx

j
0 + Kφ

i
0 − xi

0(Kϕ
0
jx

j
0 + Kϕ

0
0). We can prove that c2dτ = Ω[K♮],

hence dΩ[K♮] = 0.
We assume M to be endowed with a closed 2–form F (the electromagnetic field).

We couple K♮ and F by considering the sum Ω := Ω[K♮] + q
2mc

F . We have dΩ = 0.

Now, we develop the geometric structures for the quantisation of the mechanics of
one scalar particle in an Einstein general relativistic background. We say the quantum

bundle to be a complex line–bundle Q → M endowed with a Hermitian fibre metric
h. Moreover, we assume on the bundle U1M ×M Q → U1M a connection Q, called
the quantum connection, which is Hermitian, universal, and such that its curvature
fulfills R[Q] = im

~
Ω. The coordinate expression of Q turns out to be

Q = dλ⊗∂λ + di
0⊗∂0

i + i
m

~

(

τλ +
q

mc
Aλ

)

dλ ,(2)

where Aλd
λ is a local potential of the electromagnetic field F . The equivalence of

quantum structures (Q,Q) is defined analogously to the Galilei case.
We could proceed by defining an algebra of quantisable functions7, a quantum

Lagrangian and an algebra of quantum operators. This programme will be completed
in a future work.
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As for the existence and the classification of quantum structures, we can state re-
sults analogous to the Galilei case. We note that, in the Einstein case, the cohomology
class of Ω depends only on the cohomology class of F .

Theorem. There exists a quantum structure (Q,Q) if and only if F determines

a cohomology class in the subgroup [F ] ∈ i(H2(M , Z)) ⊂ H2(M , IR). In this case,

there exists a bijection between the set of equivalence classes of quantum structures

and the cohomology group H1(M , U(1)).

Hence, as in the Galilei case, if M is simply connected, then there exists a unique
equivalence class of quantum structures.

From a physical viewpoint, it is very interesting to study concrete exact solutions.
The following examples are a starting point for an analysis of the classification of
quantum structures in exact solutions in Einstein’s general relativity.

1. Minkowski spacetime is topologically trivial, hence there exists a unique equiv-
alence class of quantum structures, namely the trivial one.

2. Schwartzschild spacetime has the topology of IR× (IR3 \{0}), hence it is simply
connected. Being F = 0, there exists only the equivalence class of the trivial
quantum structure.

3. Dirac’s monopole. We consider the family of magnetic fields Fq parametrised
by q ∈ IR introduced by Dirac16; Fq fulfill the integrality condition if and
only if q/(~c) ∈ Z (Dirac’s charge quantisation condition). So, by topological
arguments, to any q/(~c) ∈ Z there exists one equivalence class of quantum
structures, but, in general, this is not the trivial one.

4. The Aharonov–Bohm effect15 can be modeled on a Minkowski spacetime with
a fixed inertial observer and a solenoidal magnetic field. In this case, spacetime
without the origin of the magnetic field is no longer simply connected, and there
exist infinitely many inequivalent quantum structures.
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16. M. Göckeler, T. Schücker: Differential geometry, gauge theories and gravity,
Cambridge Univ. Press, Cambridge, 1987.


	Galilei theory
	Einstein spacetime

