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Superpotentials in Variational Sequences

M. Francaviglia, M. Palese1 and R. Vitolo

Abstract

In the Lagrangian approach to conservation laws of field theories one defines
a suitable vector density which generates the conserved Noether currents. As it
is known, in natural (and gauge–natural) field theories, along any section this
density is the divergence of a skew–symmetric tensor density, which is called a
superpotential for the conserved quantity.

Making use of some abstract results due to Horák and Kolář, in this pa-
per we give a geometrical interpretation of superpotentials in the framework of
variational sequences according to Krupka. We refer to our previous results on
variational Lie derivatives concerning abstract versions of Noether’s theorems,
which are here interpreted in terms of conserved currents.
Key words: Fibered manifold, jet space, variational sequence, symmetries, con-
servation laws, superpotentials.
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1 Introduction

As it is well known, the addition of a total divergence to the Lagrangian of any given
Lagrangian field theory does not change the relevant field equations, however, in general,
this will induce some change in the physical interpretation of the theory. In fact, by
Stokes’ theorem, the added divergence will contribute by an additional boundary term
into the action, which in particular modifies the notion of energy.

As far as conservation laws are concerned, we refer here to the approach based on the
Lagrangian formulation of natural field theories (see [2] and references quoted therein).
This formulation amounts to define, in the variational framework, a suitable vector
density which generates the conserved current; this density is the divergence of a skew–
symmetric tensor density, which is called a superpotential for the conserved quantity.
We stress that the energetic content of a geometric field theory along its critical sections
is generated by its superpotentials.

We consider the recent geometrical formulation of the Calculus of Variations on
fibered manifolds developed by Krupka [10], which is stated on finite order jets of the
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2 Superpotentials in Variational Sequences

fibering. As it is well known, in this formulation the variational sequence is defined
as a quotient of the de Rham sequence on a finite order jet space with respect to an
intrinsically defined subsequence, whose choice is inspired by the Calculus of Variations
itself.

In this paper we provide a geometrical interpretation of superpotentials in the vari-
ational sequence. We make use of the representation of the quotient sheaves of the
variational sequence as concrete sheaves of forms given in [14], as well as of our pre-
vious results concerning variational Lie derivatives [3]. Furthermore, we refer to some
abstract results due to Horák and Kolář concerning decomposition formulae of mor-
phisms, involved with the integration by parts procedure [6, 8, 9].

Manifolds and maps between manifolds are C∞. All morphisms of fibered manifolds
(and hence bundles) will be morphisms over the identity of the base manifold, unless
otherwise specified. As for sheaves, we will use the definitions and the main results given
in [15].

Acknowledgments. Thanks are due to L. Fatibene, M. Ferraris and I. Kolář for
useful comments. This work has been performed in the framework of Nat. Res. Proj.
MURST 40% “Met. Geom. e Prob. in Fisica Matematica”.

2 Jet spaces and variational sequences

In this Section we recall some basic facts about jet spaces [1, 12, 13] and finite order
variational sequences [3, 10, 14].

2.1 Jet spaces

Our framework is a fibered manifold π : Y → X, with dim X = n and dim Y = n+m.
For r ≥ 0 we are concerned with the r–jet space JrY ; in particular, we set J0Y ≡ Y .

We recall the natural fiberings πr
s : JrY → JsY , r ≥ s, πr : JrY → X, and, among

these, the affine fiberings πr
r−1. We denote with V Y the vector subbundle of the tangent

bundle TY of vector fields on Y which are vertical with respect to the fibering π.
Charts on Y adapted to π are denoted by (xλ, yi). Greek indices λ, µ, . . . run from

1 to n and they label base coordinates, while Latin indices i, j, . . . run from 1 to m and
label fibre coordinates, unless otherwise specified. We denote by (∂λ, ∂i) and (dλ, di) the
local bases of vector fields and 1–forms on Y induced by an adapted chart, respectively.

We denote multi–indices of dimension n by boldface Greek letters such as α =
(α1, . . . , αn), with 0 ≤ αµ, µ = 1, . . . , n; by an abuse of notation, we denote with λ the
multi–index such that αµ = 0, if µ 6= λ, αµ = 1, if µ = λ. We also set |α| := α1 + · · ·+αn

and α! := α1! . . . αn! The summation convention will be adopted also for multi–indices.
The charts induced on JrY are denoted by (xλ, yi

α), with 0 ≤ |α| ≤ r; in particular,
we set yi

0
≡ yi. The local vector fields and forms of JrY induced by the above coordinates

are denoted by (∂α
i ) and (di

α), respectively.
In the theory of variational sequences a fundamental role is played by the contact

maps on jet spaces (see [1, 10, 11, 12]). Namely, for r ≥ 1, we consider the natural
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complementary fibered morphisms over JrY → Jr−1Y

D : JrY ×
X

TX → TJr−1Y , ϑ : JrY ×
Jr−1Y

TJr−1Y → V Jr−1Y ,

with coordinate expressions, for 0 ≤ |α| ≤ r − 1, given by

D = dλ⊗Dλ = dλ⊗(∂λ + yj
α+λ∂

α
j ) , ϑ = ϑj

α⊗∂α
j = (dj

α − yj
α+λd

λ)⊗∂α
j .

Let us denote
∗

Cr−1[Y ] := im ϑ∗
r, where ϑ∗

r : JrY ×
Jr−1Y

V ∗Jr−1Y → JrY ×
Jr−1Y

T ∗Jr−1Y

and im ϑ∗
r ⊂ JrY ×

Jr−1Y
T ∗Jr−1Y ⊂ T ∗JrY . We have

JrY ×
Jr−1Y

T ∗Jr−1Y =

(

JrY ×
Jr−1Y

T ∗X

)

⊕
∗

Cr−1[Y ] .(1)

We have the isomorphism
∗

Cr−1[Y ] ≃ JrY ×
Jr−1Y

V ∗Jr−1Y .

If f : JrY → IR is a function, then we set Dλf :=(D)λf , Dα+λf := DλDαf , where
we have set Dαf ◦jr+|α|σ = ∂α(f ◦jrσ) for any section σ. The operator Dλ is called
the formal derivative. A Leibniz’s rule holds for Dα (see [13]). Given a vector field
Z : JrY → TJrY , the splitting (1) yields Z◦πr+1

r = ZH+ZV where, if Z = Zγ∂γ+Zi
α∂α

i ,
then we have ZH = ZγDγ and ZV = (Zi

α − yi
α+γZ

γ)∂α
i .

The splitting (1) induces also a decomposition of the exterior differential on Y ,
(πr+1

r )∗◦d = dH + dV , where we define the horizontal and vertical differential to be the
sheaf morphisms:

dH :=d d − dd :
p

Λr →
p

Λr+1 , dV := ϑ d − d ϑ :
p

Λr →
p

Λr+1 ,

and is the interior product (see [13]). The action of dH and dV on functions and
1–forms on JrY uniquely characterizes dH and dV (see, e.g., [14] for more details).
A projectable vector field on Y is defined to be a pair (Ξ, ξ) where:

i. Ξ : Y → TY and ξ : X → TX are vector fields;
ii. Ξ : Y → TY is a fibered morphism over ξ : X → TX.

See [3] for coordinate expressions of (Ξ, ξ) and its jet prolongation (jrΞ, ξ).

2.2 Variational sequences

We shall be here concerned with some distinguished sheaves of forms on jet spaces
[1, 10, 11, 13, 14].

i. For r ≥ 0, we consider the standard sheaves
p

Λr of p–forms on JrY .

ii. For 0 ≤ s ≤ r, we consider the sheaves
p

H(r,s) and
p

Hr of horizontal forms ,

i.e. of local fibered morphisms over πr
s and πr of the type α : JrY →

p

∧T ∗JsY and

β : JrY →
p

∧T ∗X, respectively.
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iii. For 0 ≤ s < r, we consider the subsheaf
p

C(r,s) ⊂
p

H(r,s) of contact forms , i.e.

of sections α ∈
p

H(r,s) with values into
p

∧(im ϑ∗
s+1). We have the distinguished subsheaf

p

Cr ⊂
p

C(r+1,r) of local fibered morphisms α ∈
p

C(r+1,r) such that α =
p

∧ϑ∗
r+1◦α̃, where α̃ is

a section of the fibration Jr+1Y ×
JrY

p

∧V ∗JrY → Jr+1Y which projects down onto JrY .

The fibered splitting (1) yields the sheaf splitting
p

H(r+1,r) =
⊕p

t=0

p−t

C (r+1,r) ∧
t

Hr+1,

which restricts to the inclusion
p

Λr ⊂
⊕p

t=0

p−t

C r∧
t

Hh
r+1, where

p

Hh
r+1 := h(

p

Λr) for 0 < p ≤

n and h is defined to be the restriction to
p

Λr of the projection of the above splitting onto
the non–trivial summand with the highest value of t. We define also the map v := id−h.

We recall now the theory of variational sequences on finite order jet spaces, as it
was developed by Krupka in [10].

By an abuse of notation, let us denote by d ker h the sheaf generated by the presheaf

d ker h (see [15]). We set
∗

Θr := ker h + d ker h; we have the following natural ‘contact’
subsequence of the de Rham sequence on JrY :

0 -

1

Θr

d
-

2

Θr

d
- . . .

d
-

I

Θr
- 0

where, in general, the highest integer I depends on the dimension of the fibers of
JrY → X. The above sequence is exact [10].

Standard arguments of homological algebra prove that the following diagram is
commutative and that its rows and columns are exact:

0 0 0 0 0 0

0 - 0
?

- 0
?

-

1

Θr

?

d
-

2

Θr

?

d
- . . .

d
-

I

Θr

?

d
- 0

?

- . . . - 0

0 - IR
?

-

0

Λr

?

d
-

1

Λr

?

d
-

2

Λr

?

d
- . . .

d
-

I

Λr

?

d
-

I+1

Λ r

?

d
- . . .

d
- 0

0 - IR
?

-

0

Λr

?

E0
-

1

Λr/
1

Θr

?

E1
-

2

Λr/
2

Θr

?

E2
- . . .

EI−1
-

I

Λr/
I

Θr

?

EI
-

I+1

Λ r

?

d
- . . .

d
- 0

0
?

0
?

0
?

0
?

0
?

0
?

Definition 2.1 The bottom row of the above diagram, obtained as the quotient of
the de Rham sequence on JrY with respect to the ‘contact’ subsequence, is said to be
the r–th order variational sequence associated with the fibered manifold Y → X [10].
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We can consider the ‘short’ variational sequence [14]:

0 - IR -

0

Vr

E0
-

1

Vr

E1
- . . .

En
-

n+1

V r

En+1
-

n+2

V r

En+2
- 0 .

where
0

Vr =
0

Λr,
p

Vr =
p

Hh
r , for 0 < p ≤ n,

n+1

V r is the sheaf generated by the presheaf
(

1

Cr ∧
n

Hh
r+1 + dH(

1

C(2r,r−1) ∧
n−1

H 2r)

)

∩

(

1

C(2r+1,0) ∧
n

H2r+1

)

, and
n+2

V r is isomorphic to

En+1

(

(
p−n

C r ∧
n

Hh
r+1)

/

h(d ker h)

)

.

Remark 2.2 A section λ ∈
n

Vr is just a Lagrangian of order (r +1) of the standard
literature.

Let α ∈
n+1

Λ r, i.e. h(α) ∈
1

Cr ∧
n

Hh
r+1. We say Eh(α) ∈

n+1

V r to be an Euler–Lagrange

type morphism. En(λ) ∈
n+1

V r coincides with the standard higher order Euler–Lagrange
morphism associated with λ.

Let η ∈
n+1

V r be an Euler–Lagrange morphism and σ : X → Y be a section. We
recall that σ is said to be critical with respect to η if (j2r+1σ)∗η = 0.

3 Natural Lagrangian theories

We recall that in natural physical theories fields may be Lie–dragged along the flow
of any tangent vector field in space–time. This happens only if the fields are fields
of geometric objects, i.e. if changes of coordinates in space–time define uniquely the
transformation laws of the object themselves (see e.g. [2, 4, 5, 7]). This is the nat-
ural framework for defining and investigating the physically fundamental concept of
conserved quantity.

3.1 Natural lift

Denote by TX and TY the sheaf of vector fields on X and Y respectively. From now on,
we assume a functorial mapping is defined which lifts any local diffeomorphism φX of
the basis X into a unique local automorphism φY = N̂ (φX) (over φX) of the bundle Y .
This lifting depends on derivatives of φX of order k. Its infinitesimal version associate
to ξ ∈ TX a unique projectable vector field Ξξ :=N (ξ) in the following way:

N : Y ×
X

JkTX → TY : (y, jkξ) 7→ Ξξ(y) ,(2)

where, for any y ∈ Y , one sets: Ξξ(y) = d
dt

[(φt)Y (y)]t=0, and (φt)X denotes the (local)
flow in X generated by ξ, while (φt)Y is its natural lift.

Remark 3.1 The natural lift fulfills the following properties:
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1. N is linear over idY ;

2. we have Tπ ◦ N = idTX ◦ π̄k
0 , where π̄k

0 is the projection Y ×
X

JkTX → TX;

3. for any pair (η, ξ) of vector fields on X, we have

N ([η, ξ]) = [N (η),N (ξ)] ;

4. we have the coordinate expression of N :

N = dλ⊗∂λ + dλ
α⊗(Z iα

λ ∂i) ,

where |α| = k and Ziα
λ ∈ C∞(Y ) are suitable functions which depend on the

bundle.

Definition 3.2 The map N̂ is called the natural lifting functor. The vector field
N (ξ) is called the natural lift of ξ to the bundle Y .

Remark 3.3 We recall that (Y ,X, π) provided with a natural lifting functor can
be considered as a bundle of geometric objects of finite order k, i.e. associated to the
bundle Lk(X) of k–frames in X (see [4] for the definition).

Let γ be a (local) section of Y and ξ ∈ TX. We define a (local) section £ξγ : X →
V Y , by setting: £ξγ = Tγ ◦ ξ − Ξ ◦ γ.

Definition 3.4 The (local) section £ξγ is called the Lie derivative of γ along the
vector field ξ (see [7]).

Remark 3.5 This section is a vertical prolongation of γ, i.e. it satisfies the property:
νY ◦ £ξγ = γ, where νY is the projection νY : V Y → Y . Its coordinate expression is

given by £ξγ = ξλDλγ
i −Z iβ

λ (γj)ξλ
β.

Furthermore, we can write £ : JrY ×
X

JkTX → V Y .

Remark 3.6 The Lie derivative £ξγ satisfies the following properties:

1. for any vector field ξ over X, the mapping γ 7→ £ξγ is a first–order quasilinear
differential operator;

2. for any local section γ of Y , the mapping ξ 7→ £ξγ is a linear differential operator
of order k;

3. by using the canonical isomorphism between V JrY and JrV Y , we have £ξ[jrγ] =
jr[£ξγ], for any (local) section γ of Y and for any (local) vector field ξ over X.
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3.2 Natural Lagrangians and their symmetries

We consider now a projectable vector field (Ξ, ξ) on Y and take into account the Lie
derivative with respect to the prolongation jrΞ of Ξ. Such a prolonged vector field
preserves the fiberings πs

r , πr; hence it preserves the splitting (1).
It is known [3] that the standard Lie derivative operator with respect the r-th pro-

longation jrΞ of a projectable vector field (Ξ, ξ) on Y passes on the quotient spaces
p

Λr/
p

Θr and that it can be represented by an operator (the variational Lie derivative) on
the sheaves of the short variational sequence. In the case p = n, by using a pull–back
from JrY to J2rY we have

LjrΞ :
n

Vr →
n

V2r+1 : λ 7→ ΞV E(λ) + dH(j2rΞV pdV λ + ξ λ) ,(3)

where pdV λ is a momentum associated to λ (see [1, 3, 14]).
Variational Lie derivatives allow us to compute ‘variationally relevant’ infinitesimal

symmetries of Lagrangians in the variational sequence.

Definition 3.7 Let (Ξ, ξ) be a projectable vector field on Y . Let λ ∈
n

Vr be a
Lagrangian. We say Ξ to be a symmetry of λ if Ljr+1Ξ λ = 0.

Let λ ∈
n

Vr be a Lagrangian. We say λ to be a natural Lagrangian if the lift N (ξ)
of any vector field ξ on X is a symmetry for λ, i.e. if Ljr+1ξ λ = 0. In this case the
projectable vector field (N (ξ), ξ) is called a natural symmetry of λ.

Remark 3.8 We can regard £ξ : JrY → V Y as a morphism over the basis X.
In this case it is meaningful to consider the (standard) prolongation of £ξ, denoted by
jr£ξ : J2rY → V JrY , where we made use of the isomorphism (iii) recalled in Remark
3.6.

Symmetries of a Lagrangian λ are calculated by means of Noether’s Theorem, which
takes a particularly interesting form in the case of natural Lagrangians.

Theorem 3.9 (Noether’s Theorem for natural Lagrangians) Let λ ∈
n

Vr be a natural
Lagrangian and (Ξ, ξ) a natural symmetry of λ. Then by (3) we have

0 = −£ξ E(λ) + dH(−j2r£ξ pdV λ + ξ λ) .(4)

Suppose that the section σ : X → Y fulfills the criticality condition

(j2r+1σ)∗(−£ξ E(λ)) = 0 .(5)

Then, the (n − 1)–form ǫ = −j2r£ξ pdV λ + ξ λ fulfills the equation d((j2rσ)∗(ǫ)) = 0.

Remark 3.10 If σ is a critical section for E(λ) the above equation admits a physical
interpretation as a weak conservation law for the density associated with ǫ.
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Definition 3.11 Let λ ∈
n

Vr be a natural Lagrangian and ξ ∈ TX. Then the sheaf
morphism ǫ is said to be a natural conserved current .

Remark 3.12 In general, this conserved current is not uniquely defined. In fact,
it depends on the choice of pdV λ, which is not unique (see [14] and references quoted

therein). Moreover, we could add to the conserved current any form β ∈
n−1

V 2r which is
variationally closed, i.e. such that En−1(β) = 0 holds. The form β is locally of the type

β = dHγ, where γ ∈
n−2

V 2r+1.

Lemma 3.13 (Fundamental Lemma) Let α : Jk(Y ×
X

TX) →
p

∧T ∗X be linear with

respect to the fibering JkY ×
X

JkTX → JkY and let DH be the horizontal differential

on Y ×
X

TX. We can uniquely write α as

α : JkY →
∗

Ck[TX] ∧
p

∧T ∗X ,

then

DHα = DHα .

Proof. This is a naturality property of DH which follows from linearity of DHα
with respect to the fibering Jk+1Y ×

X
Jk+1TX → Jk+1Y , the isomorphism JkTX ×

X

(JkTX)∗ ≃ V ∗JkTX and the isomorphism
∗

Ck+1[TX] ∧
p+1
∧ T ∗X ≡ V ∗Jk+1TX ⊗

p+1
∧ T ∗X. QED

Let ǫ : J2rY ×
X

JkTX →
n−1
∧ T ∗X be a conserved current. We can regard ǫ as the

equivalent morphism ǫ : J2rY →
∗

Ck[TX] ∧
n−1
∧ T ∗X.

Lemma 3.14 We have

dH(jkξ ǫ) = jk+1ξ DHǫ .

Proof. We used standard formulae which define the horizontal differentials DH

and dH given in Section 2.1. QED

4 Superpotentials

As it is well known [5, 2], performing a covariant integration by parts enables us to
decompose the current ǫ into the sum of the so–called reduced current and the formal
divergence of a skew–symmetric tensor density called superpotential (which is defined
modulo a divergence). It is also well known that all conservation laws which occur in
natural theories are strong laws, i.e. they hold along any section of the bundle. Along
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critical sections the reduced current vanishes so that the current ǫ is not only closed,
but it is also exact ‘on shell’. We stress that the whole energetic content of a geometric
(free) field theory along its critical sections is generated by its superpotentials, a fact
which has important applications in Mathematical Physics (see, e.g., [2]).

Remark 4.1 Let λ be a natural Lagrangian. By the linearity of £ with respect to
the vector bundle structure JkTX → X we have

µ ≡ µ(λ) = £ E(λ) : J2rY →
∗

Ck[TX] ∧
n
∧T ∗X .

In the following we shall give the main result which enables us to describe superpo-
tentials in the short variational sequence. We shall apply to the ‘total’ space Y ×

X
TX

a standard result concerning the integration by parts procedure involved in variational
formulae (see e.g. [3, 14]).

The following Lemma is an application of an abstract result due to Kolář and Horák
[6, 9] concerning a decomposition formula for vertical morphisms.

Lemma 4.2 Let µ : J2rY →
∗

Ck[TX] ∧
p

∧T ∗X, with 0 ≤ p ≤ n and let DHµ = 0.

We regard µ as the extended morphism µ̂ : J2r(Y ×
X

TX) →
∗

Ck[Y ×
X

TX] ∧
p

∧T ∗X.

Then we have

µ̂ = Eµ̂ + Fµ̂ ,

where

Eµ̂ : J2r+k(Y ×
X

TX) →
∗

C0[Y ×
X

TX] ∧
p

∧T ∗X ,

locally, Fµ̂ = DHMµ̂, with

Mµ̂ : J2r+k−1(Y ×
X

TX) →
∗

Ck−1[Y ×
X

TX] ∧
p−1
∧ T ∗X .

Proof. We evaluate Eµ̂ and DHMµ̂ by means of a backwards procedure. (see e.g.
[1, 8]). QED

Remark 4.3 In general there is no uniquely determined Mµ̂. In fact it can be proved
that a linear symmetric connection on X yields a distinguished choice of Mµ̂ in analogy
to [8], Prop. 1, see also [1, 5].

Theorem 4.4 Let µ̂ is of the type µ : J2rY →
∗

Ck[TX]∧
n
∧T ∗X, then the following

decomposition formula holds

µ = µ̃ + DHφµ ,(6)
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where

µ̃ := Eµ : J2r+k(Y ) →
∗

Ck[TX] ∧
n
∧T ∗X ,

and

φµ := Mµ : J2r+k−1(Y ) →
∗

Ck−1[TX] ∧
n−1
∧ T ∗X .

Proof. We take into account that DHµ is obviously vanishing, then the result is
a straightforward consequence of Lemma 4.2 with p = n. QED

Remark 4.5 If the coordinate expression of µ is given by

µ = µα
i ϑi

α ∧ ω ,

where ϑi
α are contact forms on JkTX coordinate expressions of Eµ and Mµ are given

by

Eµ = Eiϑ
i ∧ ω ,

Mµ = Mα+λ
i ϑi

α ∧ ωλ ,

being ϑi contact forms on Y . We have, in particular

Eµ = (−1)|β|Dβµβ
i ϑi ∧ ω ,

with 0 ≤ |β| ≤ k.

Corollary 4.6 We have

µ = DHφµ .

Proof. For any ξ, µ̃ ≡ E(µ(ξ)) is identically vanishing being the Euler–Lagrange
morphism of a contraction with another Euler–Lagrange morphism. We stress that these
are just the generalized Bianchi identities. QED

Definition 4.7 The form φµ is said to be a reduced current.

It can be proved that a linear symmetric connection on X yields a distinguished
choice of φµ in analogy to [8], Prop. 1, see also [5].

Corollary 4.8 Let λ ∈
n

Vr be a natural Lagrangian and (Ξ, ξ) a natural symmetry
of λ. Then, being µ = DHǫ, the following holds:

DH(ǫ − φµ) = 0 .(7)

Eq. (7) is referred as a ‘strong conservation law’ for the density ǫ − φµ.
We can now reformulate the main result about the existence of superpotentials in

the framework of variational sequences.
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Theorem 4.9 Let λ ∈
n

Vr be a natural Lagrangian and (Ξ, ξ) a natural symmetry

of λ. Then there exists a (global) sheaf morphism U ∈

(

n−2

V 2r−1

)

Y ×
X

TX

such that

DHU = ǫ − φµ .

Proof.

1. (local existence) By applying Lemma 3.13, we can consider

ǫ − φµ : J2r+k−1Y ×
X

Jr+k−2TX →
n−1
∧ T ∗X ,

then we take eq. (7) into account and we integrate over the variational sequence
associated with Y ×

X
TX.

2. (global existence) Eq. (7) assures us that the hypotheses of Lemma 4.2 are satis-
fied, so we have

ǫ − φµ = ǫ − φµ + DHU ,

where ǫ − φµ is vanishing because of an uniqueness argument. Globality follows
from Lemma 4.2. QED

Definition 4.10 We define the sheaf morphism U to be a superpotential of λ.

Remark 4.11 As a consequence of Remarks 3.12 and 4.3, superpotentials are not
defined uniquely. In fact generally the choice of linear symmetric connections over X

yields distinguished superpotentials.

Remark 4.12 We stress that the current ǫ is conserved along critical sections of
Y , while the quantity ǫ−φµ is conserved along any section of Y . As usual, we say that
ǫ is weakly conserved, while ǫ − φµ is strongly conserved.

5 Conclusions

In this paper we have given a suitable geometric description of the natural lift of vec-
tor fields on bundles of geometric objects. Applying to natural Lagrangians previous
results of ours about the variational Lie derivative and the symmetries in variational
sequences, we have provided a geometrical setting for the description of superpotentials
in variational sequences. We stress that given a linear symmetric connection on X we
are able to determine ǫ, φµ and U . We call this connection the background connection.
The extension of this setting in the gauge–natural theories case and explicit examples
of applications to physical theories will be considered elsewhere.
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