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Abstract

This paper concerns the quantisation of a rigid body in the framework of the
“covariant quantisation” on a curved spacetime with absolute time proposed by
A. Jadczyk and M. Modugno.

We start with a spacetime for a pattern one–body mechanics, which is con-
stituted by a 4–dimensional affine space fibred over time and equipped with a
vertical Euclidean metric and an electromagnetic field. Then, we obtain the
multi–spacetime for n–body mechanics by taking the n–fold fibred product of the
above structure. Eventually, we obtain the spacetime for a rigid body by consid-
ering the fibred subbundle of the multi–spacetime defined by a rigid constraint.

We show that the general scheme of the “covariant quantisation” can be easily
applied to the rigid body. In particular, we are concerned with the existence and
classification of the inequivalent quantum structures.
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Introduction

A covariant formulation of classical and quantum mechanics on a curved spacetime
with absolute time based on fibred manifolds, jets, non linear connections, cosymplectic
forms and Frölicher smooth spaces has been proposed by A. Jadczyk and M. Modugno
[6, 7] and further developed in [1, 5, 10, 14, 15] and references therein. We shall
briefly call this approach “covariant quantisation”. It presents analogies with geometric
quantisation ([3, 4, 8, 13, 12, 16] and references therein), but important novelties as
well. In fact, it overcomes typical difficulties of geometric quantisation such as the
problem of polarisations; moreover, in the flat case it reproduces the standard quantum
mechanics (hence all standard examples).

1This paper is in final form and no version of it will be submitted elsewhere
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2 Quantising a rigid body

Then, it would be interesting to treat new physically relevant examples. Here, we
discuss an original geometric formulation of classical and quantum mechanics for a rigid
body according to the general scheme of “covariant quantisation”. The present analysis
is more geometrical than physical, and has to be considered as a preliminar research,
especially for what concerns the quantum theory. But we hope that this geometric
setting could help understanding concrete physical objects (for examples, moleculae).

We start the paper with a sketch of the essential features of the general “covariant
quantisation” following [5, 7, 10, 14, 15]. The classical theory is based on a fibred
manifold (“spacetime”) over time equipped with a vertical Riemannian metric (“space–
like metric”), a time preserving linear connection (“gravitational connection”) and a
2–form (“electromagnetic field”). The above objects yield a 2–form on the first jet
space of spacetime (“phase space”), which is assumed to be closed. This form controls
the classical dynamics. The quantum theory is based on a line bundle over spacetime
equipped with a Hermitian and universal connection, whose curvature is proportional
the above classical 2–form. This quantum structure yields in a natural way a Lagrangian
(hence the dynamics) and quantum operators.

In view of the formulation of classical and quantum mechanics of the rigid body
in the framework of the above theory, we proceed in three steps ([11]). Namely, we
start with a flat spacetime for a pattern one–body mechanics. Then, we consider
an n–fold fibred product of the pattern structure as multi–spacetime for the n–body
mechanics. Eventually, we consider the subbundle of the multi–spacetime induced by
a rigid constraint as spacetime for the rigid body mechanics. Clearly, this spacetime
fits the requirements of the “covariant quantisation”; hence, the general machinery for
classical and quantum mechanics can be easily applied to the rigid body. In particular,
we discuss the existence and classification of the inequivalent quantum structures. In
forthcoming work we shall pursue the physical analysis.

We assume manifolds and maps to be C∞.

Acknowledgments. We would like to thank D. Canarutto, J. Marsden, M. Mod-
ugno and C. Tejero Prieto for useful discussions.

This work has been partially supported by MURST, GNFM of CNR and the Uni-
versities of Florence and Lecce.

1 Covariant quantisation

We start with a brief sketch of the the covariant formulation of classical and quantum
mechanics on a curved spacetime with absolute time proposed by A. Jadczyk and M.
Modugno [6, 7] and further developed in [1, 5, 10, 14, 15] and in several other papers.
We shall briefly call this approach covariant quantisation. For further details and
discussions the reader will refer to the above literature and references therein.

In order to make the independence of classical and quantum mechanics from scales
explicit, we introduce the “spaces of units of measurement” [7]. Roughly speaking, a
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unit space has the algebraic structure of IR+ but has no distinguished ‘basis’. The basic
objects of our theory (metric, electromagnetic field, etc.) will be valued into scaled
vector bundles, that is into vector bundles multiplied tensorially with unit spaces. In
this way, each tensor field carries explicit information on its physical dimensions.

Actually, we assume the following basic unit spaces:
– T, the space of time intervals ;
– L, the space of lengths;
– M, the space of masses.
We set T

−1 := T
∗. We shall use rational tensor powers of unit spaces. We assume

the Planck’s constant ~ ∈ T
−1⊗L

2⊗M. Moreover, a particle will be assumed to have
a mass m ∈ M and a charge q ∈ T

−1⊗L
3/2⊗M

1/2.

1.1 Covariant classical mechanics

Assumption G.1. [5, 7] We assume an oriented manifold E of dimension 1 + n
equipped with

- a fibring t : E → T over an oriented 1-dimensional affine space T (associated with
the vector space T⊗IR),

- a scaled vertical Riemannian metric g : E → L
2⊗S2V ∗E,

- a dt–preserving linear connection K♮ : TE → T ∗E⊗ETTE,
- a scaled 2–form f : E → (L1/2⊗M

1/2)⊗Λ2T ∗E.

We interpret E as spacetime, t as absolute time map, T as absolute time, g as
spacelike metric, K♮ as gravitational field and f as electromagnetic field .

With reference to a given particle with mass m ∈ M and charge q ∈ T
−1⊗L

3/2⊗M
1/2,

it is convenient to normalise the metric and electromagnetic fields by setting G := m
~
g :

E → T⊗S2V ∗E and F := q
~
f : E → Λ2T ∗E.

We shall refer to fibred chart (x0, xi) on E adapted to a time scale u0 ∈ T. Latin
indices i, j, . . . and Greek indices λ, µ, . . . will denote space–like and spacetime coordi-
nates, respectively. For short, we shall denote the induced dual bases of vector fields
and forms by ∂λ and dλ. The vertical restriction will be denoted by the Check .̌

We have the coordinate expression G = Giju0⊗ ďi⊗ ďj. The fact that K♮ is dt–
preserving reads in coordinates as K♮

λ
0
µ = 0.

A section s : T → E is said to be a motion.
We assume [5, 7] as phase space for classical mechanics the first jet space [9] of

motions J1E; the first jet prolongation of a motion s is said to be its velocity . We
denote by (xλ, xi

0) the chart induced on J1E. We shall be involved with the natural
complemetary maps d : J1E × T → TE and θ : J1E ×E TE → VE, with expressions
d = u0⊗(∂0 + xi

0∂i) and θ = (di − xi
0d

0)⊗∂i. We set θi ≡ di − xi
0d

0.
An observer is defined to be a section o : E → J1E. Let o be an observer. Then,

we obtain the map ∇[o] : J1E → T
−1⊗E : je − o(e). If s is a motion, then we define

the observed velocity to be the section ∇[o] ◦ j1s. We define observed kinetic energy
and momentum, respectively, as the maps K[o] := 1

2
G(∇[o],∇[o]) : J1E → T ∗E and
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Q[o] := θ∗◦G♭(∇[o]) : J1E → T ∗E, with coordinate expressions K[o] = 1
2
Gijx

i
0x

j
0 d

0 and

Q[o] = Gijx
j
0 θ

i.

The linear connection K♮ yields [5, 7] an affine connection Γ♮ on the affine bundle
J1E → E, with coordinate expressions Γ♮

λ
i
0
0
µ = K♮

λ
i
µ, and the non linear connection

γ♮ :=d y Γ♮ : J1E → T
∗⊗TJ1E on the fibred manifold J1E → T , with coordinate

expression γ♮ = u0⊗(∂0 + xi
0∂i + γ0

i
0∂

0
i ), where γ0

i
0 :=K♮

h
i
hx

h
0x

k
0 + 2K♮

h
i
0x

h
0 + K♮

0
i
0.

Moreover, Γ♮ yields [5, 7] the 2–form Ω♮ := ν[Γ♮]∧̄θ : J1E → Λ2T ∗J1E, where ν[Γ♮] is
the vertical projection complementary to Γ♮ and ∧̄ is the wedge product followed by a
contraction with G. We have the coordinate expression Ω♮ = Gij (di

0−γ0
i
0d

0 +Γh
i
0
0
hθ

h)∧
θj. The 2–form Ω is non degenerate as dt∧Ω∧ . . .∧Ω is a scaled volume form of J1E.

There is a natural geometric way [5, 7] to couple the gravitational and electromag-
netic objects into global objects, in such a way that all mutual relations holding for
gravitational objects are preserved for total objects. Later on we shall refer to such
total objects and we can forget about the two component fields. In particular, we deal
with the total 2–form Ω := Ω♮ + 1

2
F and the total connection γ = γ♮ + γe, where γe

turns out to be the Lorentz force γe = −G♯ ˇ(d yF ).

Assumption G.2. We assume dΩ♮ = 0 and dF = 0.

The first equation has several important consequences [5, 7]. In particular, it yields
∇g = 0. The second equation is the first Maxwell equation.

The closed form Ω controls the classical dynamics [5, 10, 10]. It admits local po-
tentials, called Poincaré–Cartan forms, of the type Θ : J1E → T ∗E, with coordinate
expression Θ = −(1

2
Gijx

i
0x

j
0 +Aix

i
0)d

0 + (Gijx
j
0 +Ai)d

i, where A : E → T ∗E is a local
potential of the closed 2–form 2o∗Ω : E → Λ2T ∗E and the pullback is taken with re-
spect to the observer o associated with the chosen chart. We define the local Lagrangian
associated with a Poincaré–Cartan form Θ to be the form L :=d y Θ : J1E → T ∗E,
with coordinate expression L = (1

2
Gijx

i
0x

j
0 + Aix

i
0 + A0)u

0. The Euler–Lagrange equa-
tion, in the unknown motion s, associated with this Lagrangian turns out to be the
global equation ∇[γ]j1s = 0, that is ∇[γ♮]j1s = −γe ◦ j1s. This equation is just
the generalised Newton equation of motion for a charged particle in a given gravi-
tational and electromagnetic field; we assume it to be our classical equation of mo-
tion. Moreover, given an observer o, we define the Hamiltonian and the momentum
as the maps H[o] :=−o y Θ : J1E → T ∗E and P [o] :=−ν[o]∗ ◦VEL : J1E → T ∗E

(where ν[o] is the induced projection ν[o] : TE → VE), with coordinate expressions
H[o] = (1

2
Gij x

i
0x

j
0 − A0)d

0 and P [o] = (Gijx
j
0 + Ai)d

i.

1.2 Covariant quantum mechanics

A quantum bundle (over spacetime) is defined [5, 7] to be a complex line bundle Q → E,
equipped with a Hermitian metric h with values in C⊗Λ3V ∗E. The choice of such a
Hermitian metric allows us to avoid half–densities. A quantum section Ψ : E → Q

describes a quantum particle.
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Let η denote the vertical volume form induced by g. A local section b : R → L
3/2⊗Q,

such that h(b, b) = η, is a local base, said to be normal . We denote the local complex
dual base of b by z : Q → L

−3/2⊗C. If Ψ is a quantum section, then we write locally
Ψ = ψb.

The Liouville vector field is the vector field i : Q → VQ : q 7→ (q, q), with
coordinate expression i = z∂z.

A family of Hermitian connections on Q → E parametrised by sections of J1E → E

determines a Hermitian connection on Q↑ := J1E ×E Q → J1E, called universal .
We define [5, 7] a quantum connection to be a connection q on Q↑ → J1E, which

is Hermitian, universal, and whose curvature is given by R[q] = iΩ⊗i.
We remark that the equation dΩ = 0 turns out to be just the Bianchi identity for a

quantum connection q.
A pair (Q,q) is said to be a quantum structure.
Two complex line bundles Q1, Q2 on E are said to be equivalent if there exists

an isomorphism of Hermitian line bundles f : Q1 → Q2 on E (the existence of such
an f is equivalent to the existence of an isomorphism of line bundles). Two quantum
structures (Q1,q1), (Q2,q2), are said to be equivalent if there exists an equivalence
f : Q1 → Q2 which maps q1 into q2.

A quantum bundle is said to be admissible if it admits a quantum connection.
Actually, the following theorem holds.

Let us consider the Čech cohomology H∗(E, X) with values in X = IR or X = Z,
the inclusion morphism i : Z → IR and the induced group morphism i∗ : H∗(E,Z) →
H∗(E, IR).

Proposition 1.1. [14, 15] The following conditions are equivalent:
i. there exists a quantum structure on E,
ii. the class [Ω] ∈ H2(E, IR) lies in the subgroup i2 (H2(E,Z)) ⊂ H2(E, IR).
Moreover, inequivalent quantum structures are in bijection with the set

(i2)−1([Ω]) × H1(R, IR)
/
H1(R,Z) .

More precisely, the first factor parametrises admissible quantum bundles and the second
factor parametrises quantum connections.

The quantum theory is based on the only assumption of a quantum structure, sup-
posing that the background spacetime admits one.

Assumption G.3. [5, 7] We assume a quantum bundle Q equipped with a quantum
connection q to be given.

The quantum connection q can be locally expressed [5, 7] as q = q
‖+iΘ⊗i, where q

‖

is the flat connection induced by a local trivialisation of Q↑ and Θ is a Poincaré–Cartan
form.

All further quantum objects will be derived from the above quantum structure by
natural procedures [5, 7].
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We have been forced to assume q on the pullback bundle Q↑ because of the required
link with the 2–form Ω. On the other hand, we wish to derive from q new quantum
objects, which are observer independent, hence living on the quantum bundle. For this
purpose we follow a successful projectability criterion.

So, by means of a projectability criterion we can exibit [5, 7] a natural Lagrangian
on Q, which yields, by a standard procedure, the momentum, the Euler–Lagrange
equation (generalised Schrödinger equation) and a conserved form (probability current).
The coordinate expression of the Schrödinger equation is

i
(
(∂0 − iA0 +

∂0

√
|G|

√
|G|

) +
1

2

o

∆0

)
ψ = 0 ,

where
o

∆0 :=Ghk(∂h − iAh)(∂k − iAk) +
∂h(Ghk

√
|G|)√

|G|
(∂k − iAk).

Next, we sketch the formulation of quantum operators.

By means of a projectability criterion we can exhibit [5, 7] on the classical phase
space a distinguished Lie algebra Q(J1E) ⊂ C∞(J1E) of functions (observables), which
are polynomial of second degree with respect to the affine fibring J1E → E and whose
second fibre derivative is proportional to the metric G. Functions of the above type are
said to be quantisable and have coordinate expression of the type f = 1

2
f 0Gij x

i
0x

j
0 +

fi x
i
0 + f0, where f 0, fi, f0 are functions of E. The bracket of this algebra is deefined in

terms of the Poisson bracket and the connection γ.

Then, by classifying [5, 7] the vector fields on Q↑, which preserve the quantum
structure and are projectable on Q, we see that their projections on the quantum
bundle constitute a Lie algebra of vectors fields, which is isomorphic to the Lie algebra
of quantisable functions. These fields can be regarded as pre–quantum operators Z[f ]
acting on quantum sections.

The quantum bundle over time is defined [5, 7] to be the bundle S → T , whose fibres
Sτ are constituted by smooth quantum sections at the time τ with compact support.
This infinite dimensional complex vector bundle turns out to be F–smooth in the sense
of Frölicher [2] and inherits a pre–Hilbert structure via integration on the fibres. A
Hilbert bundle can be obtained by completion.

We can prove [5, 7] that there is a unique linear connection χ on S → T , such that
∇[χ] is proportional to the Schrödinger operator.

Eventually, a natural procedure yields [5, 7] the symmetric quantum operator f̂
on the pre–Hilbert bundle associated with every quantisable function f , as a linear
combination of the corresponding pre–quantum operator Z[f ] and ∇[χ]. We have the
coordinate expression

f̂(Ψ) =
(
f0 − i

1

2
∂hf

h − ifh(∂h − i Ah) −
1

2
f 0

o

∆0

)
ψb .
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For example, we have

x̂α(Ψ) = xαΨ , P̂j(Ψ) = −i(∂j +
1

2

∂j

√
|G|

√
|G|

)ψb , Ĥ0(Ψ) = (
1

2

o

∆0 − A0)ψb .

2 Rigid body

Now, we consider a rigid body and show how it can be quantised according to the
scheme of the obove general theory. The procedure consists in three steps:

- we start with a flat “pattern specetime” for the formulation of one–body classical
and quantum mechanics;

- then, we consider the n–fold fibred product of the flat pattern spacetime and
related structures as the framework for n–body classical and quantum mechanics;

- eventually, we consider the rigid constrained fibred submanifold of the above n–
fold fibred product along with the induced structures as the framework for rigid–body
classical and quantum mechanics.

Each of the above steps fits the general setting of the “covariant quantisation”
sketched in the above section. So, that scheme can be applied to these specific cases.

2.1 Rigid body classical mechanics

Pattern one–body mechanics

Following the general scheme, we start by assuming [11] as spacetime t : E → T

for one–body mechanics a flat spacetime, which is called pattern spacetime. All objects
related to this pattern spacetime are called pattern objects and labelled by the subscript
p.

Assumption R.1. We assume as pattern spacetime a 4–dimensional affine space
Ep, equipped with an affine map tp as time map, the connectionK♮

p induced by the affine
structure as gravitational connection, a space–like metric gp and an electromagnetic field
fp. Moreover, we assume dΩ♮

p = 0, dfp = 0.

A motion sp : T → Ep and an observer o : E → J1E are said to be inertial if they
are affine maps.

The affine structure induces some trivialisations. We denote by Ēp the vector space
associated with Ep. Let us consider the maps Dtp : Ēp → T⊗IR and idT−1⊗Dtp : Ēp →
(T−1⊗T)⊗IR and the induced vector and affine subspaces Sp :=Dt−1

p (0) ⊂ Ēp and
U p :=(id⊗Dtp)−1(1) ⊂ T

−1⊗Ēp.
Then, tp : Ep → T turns out to be a principal bundle associated with the abelian

group Sp. Moreover, we have the natural isomorphisms VEp ≃ Ep × Sp and J1Ep ≃
Ep × U p.

The axiom dΩ♮
p = 0 implies ∇gp = 0; hence, gp can be regarded as a Euclidean metric

on Sp. Conversely, starting with a Euclidean metric on Sp, we would get dΩ♮
p = 0.
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We stress, that, because of the affine structure of spacetime, Ω is globally exact; in
particular, for each inertial observer o, Θ♮

p[o] :=−K[o] + Q[o] is a distinguished global
potential of Ω♮

p.

Multi-body mechanics

Then, following the general scheme, we continue by assuming [11] as spacetime t : E →
T for n–body mechanics the n–fold fibred product of the pattern spacetime, which
is called multi–spacetime and denoted by tm : Em → T . All objects related to this
multi–spacetime are called multi–objects and labelled by the subscript m.

Thus, we consider a system on n particles with masses m1, . . . ,mn ∈ M and charges
q1, . . . , qn ∈ T

−1⊗L
3/2⊗M

1/2.
We define m0 :=

∑
imi ∈ M to be the total mass and µi :=mi/m0 ∈ IR+ the i-

th weights . For i = 1, . . . , n, we introduce n identical copies of the pattern objects
Ei := Ep, Si := Sp, U i := U p, gi := gp, fi := fp.

Assumption R.2. We assume as multi–spacetime the affine fibred product Em :=
E1 ×

T
· · ·×

T
En, equipped with the associated projection tm as time map, the connection

K♮
m induced by the affine structure as gravitational connection, gm :=(µ1g1, . . . , µngn)

as space–like metric and Fm :=( q1

~
f1, . . . ,

qn

~
fn) as normalised electromagnetic field.

We define the normalised metric as Gm = m0

~
gm.

Of course, we obtain dΩ♮
m = 0 and dFm = 0; tehn, Ωr is globally exact.

Thus, the structure of multi–spacetime is analogous to that of pattern spacetime.
The different dimension of the fibre in the two cases has no importance in many respects;
hence, most concepts and results can be straightfowardly translated from the first case
to the second one. So, we can formulate the classical and quantum mechanics of an
n-body analogously to that of a one–body equipped with the total mass and effected by
the given multi–metric, multi–gravitational field and normalised multi–electromagnetic
field.

On the other hand, the multi–spacetime is equipped with the projections of the
fibred product, which provide the information concerning each particle.

Moreover, due to the affine structure, the multi–spacetime is equipped [11] with
another important splitting, which is related to the center of mass. Namely, the multi–
spacetime splits naturally into the 3–dimensional affine subspace of center of mass and
the (3n−3)–dimensional space of distances relative to the center of mass. This splitting
will effect all geometrical, kinematical and dynamical structures, including the equation
of motion.

In view of the definition of the center of mass and in order to emphasise its role,
we consider a spacetime structure constituted by the copies E0 := Ep of the pattern

spacetime, g0 := gp of the pattern metric and K♮
0 :=K♮

p of the pattern gravitational
connection. Moreover, we refer to the total mass m0 :=

∑
imi, the induced normalised

metric G0 = m0

~
g0 and the total electromagnetic field F0 :=

∑
i Fi. All objects related to

this spacetime structure are labelled by the subscript 0.
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For each τ ∈ T , we define the center of mass of e ∈ E0τ to be the unique element
e0 ∈ E0τ such that

∑
i µi(ei − e0) = 0. We say that E0 is the space of centers of mass

and denote the associated projection by π0 : E → E0.
Moreover, we call Sd :={v ∈ Sm | ∑

i µivi = 0} ⊂ Sm the difference space. Then,
we have the affine splitting E → E0 × Sd : e 7→ (e0, vd) :=(π0(e), e − e0), which is
orthogonal with respect to the multi–metric Gm.

This splitting is reflected on most multi–objects, whose components are accordingly
labelled by the subscripts 0 and d.

Rigid body mechanics

Eventually, we achieve the scheme for a rigid body in the framework of the “covariant
quantisation” by considering a rigid constraint on the multi–spacetime and assuming
as spacetime t : E → T for the rigid body the constrained subbundle of the multi–
spacetime, which is called rigid–body spacetime and denoted by t : R → T . All objects
related to this rigid–spacetime are called rigid–body objects and labelled by the subscript
r.

In order to avoid trivialities, we suppose throughout the rest of the paper that n ≥ 2.
We consider a set {lij ∈ L

2 | i, j = 1, . . . , n, i 6= j, lij = lji, lik ≤ lij + ljk} and define
the subsets

ir : R :={e ∈ E | ‖ei − ej‖ = lij, 1 ≤ i < j ≤ n} →֒ E ,

ia : Ra :={v ∈ Sd | ‖vi − vj‖ = lij , 1 ≤ i < j ≤ n} →֒ Sd .

The affine splitting Em → E0 ×Sd restricts to a splitting R → E0 ×Ra. Thus, we
obtain a curved fibred manifold t : R → T consisting of the cartesian product of the
affine bundle t : E0 → T with the (spacelike) submanifold Ra ⊂ Sd.

The metric gm yields an orthogonal projection πa : TSd → TRa. The connection
K♮

d yields a connection K♮
a on the bundle T × Ra → T via pullback i∗r and projection

πa.

Assumption R.3. We assume as rigid–body spacetime the fibred manifold t : R →
T equipped with the induced spacelike metric gr := i∗rgm, the gravitational connection
K♮

r :=K♮
0 ×K♮

a and the normalised electromagnetic field Fr := i∗rFm.

Regarding the rigid body as a one–body with mass m0, we refer to the normalised
metric Gr = m0

~
gr.

The connection γ♮
d yields a connection K♮

a on the bundle Ra → T via pullback i∗a
and projection πa. The connection γ♮

r on the bundle J1R → T induced by K♮
r turns

out to be γ♮
r = γ♮

0 × γ♮
a.

The tensor γe
d yields a tensor γe

a on the bundle J1Ra via pullback i∗a and projection
πa. The tensor γe

r on J1R induced by Fr and Gr coincides with γe
r .

We obtain Ωr = i∗rΩm. Hence, dΩr = 0 and Ωr is globally exact.

The geometry of Ra depends on the initial mutual positions of particles and is time
independent. In particular, particles can either lie on a straight line, or lie on a plane,
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or “fill” the whole space. We say R to be degenerate in the first case, weakly non
degenerate in the second case, non degenerate in the third case. Of course, if n = 2,
then R is degenerate; if n = 3, then R can be degenerate or weakly non degenerate.
It can be easily proved [11] that the choice of a point r ∈ R yields the following
diffeomorphisms:

– if R is degenerate, then Ra ≃ S2, where S2 is the unit sphere in IR2;
– if R is weakly non degenerate, then Ra ≃ SO(3,Sp);
– if R is non degenerate, then Ra ≃ O(3,Sp).
Henceforth, in this section, we shall refer only to the most interesting (weakly) non

degenerate case. Moreover, we shall refer only to one of the two connected components
of Ra (which is diffeomorphic to SO(3,Sp)), for continuity reasons.

The velocity space of R splits as J1R ≃ (E0×U 0)×(T−1⊗TRa). So, to understand
the geometry of J1R we shall concentrate on the space TRa.

According to the classical formula for the velocity of a rigid body [11], for each
(d1, . . . , dn; v1, . . . , vn) ∈ TRa ⊂ TSd, there is a unique ω ∈ L

−1⊗Sp such that vi =
ω × di, where × is the cross product induced by the metric gp. Hence, we obtain the
fibred linear isomorphism over Ra

TRa → Ra × (L−1⊗Sp) : (d1, . . . , dn; v1, . . . , vn) → (d1, . . . , dn; ω) .

This result can also been interpreted in terms of the classical parallelisation of the
tangent space of a Lie group, by recalling the Lie algebra so(3,Sp) ≃ L

2⊗Λ2S∗
p and

the Hodge isomorphism ∗ : L
2⊗Λ2S∗

p → L
−1⊗Sp.

In virtue of the above parallelisation, the metric Ga can be regarded as the in-
ertia tensor Ga : Ra × ((L−1 ⊗Sa) × (L−1 ⊗Sa)) → T⊗ IR given by (Ω, Ω′) 7→∑

i(Gi(di, di)ga(ω, ω
′) −Gi(di, ω)Gi(di, ω

′)).
Just to compare the above scheme to the standard dynamics of a rigid body, we can

prove [11] that the the equation of motion becomes the Euler system of equations

∇[γ♮
0]j1s0 = γe

0◦j1sr , ∇[γ♮
a]j1sa = γe

a◦j1sa ,

where ∇[γ♮
0]j1s0 is the acceleration of the center of mass, ∇[γ♮

a]j1sa is the angular
acceleration, γe

0 ◦j1sr turns out to be the total force and γe
a◦j1sa turns out to be the

total momentum of forces.

2.2 Rigid body quantum mechanics

The setting of the above section shows that we can apply straightfowardly the “covariant
quantisation” scheme to the rigid body.

First, we analyse the existence and classification of quantum structures according
to Proposition 1.1.

The form Ωr is exact, hence the existence condition is fulfilled. So, we have just
to compute all possible inequivalent quantum structures. We recall that [Ωr] = 0 ∈
H2(R, IR) due to the exactness of [Ωr.
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If R is (weakly) non degenerate, then the universal covering π : SU(2) → Ra is a
principal bundle whose group is π1(Ra) = Z2. This group acts on the right on SU(2) via
deck transformations, which, in this case, turn out to be multiplication by the identity
matrix I or by −I. It also acts on the left on C with two representations ρf and ρs,
respectively the trivial representation and the representation via multiplication by +1
or −1. Accordingly, we have two bundles associated with π, namely

Qf = SU(2) ×
ρ0

C and Qs = SU(2) ×
ρ1

C .

Of course, Qf = Ra × C → Ra is the trivial bundle and Qs → Ra is a non trivial
bundle whose cocycle is the same as the cocycle of π. We believe that the second bundle
might be related to spin.

Moreover, both Qf and Qs have a natural flat connection, which we denote by q
‖
f ,

q
‖
s, respectively.

Theorem 2.1. (Classification I) Let R be (weakly) non degenerate. Then,
i. the only inequivalent admissible quantum bundles on R are Qf and Qs;
ii. the only inequivalent quantum structures are (Qf ,qf ) and (Qs,qs), with

qf = q
‖
f + iΘf⊗i , qs = q

‖
s + iΘs⊗i ,

where Θf and Θs are two global potentials of Ω.

Proof. In fact, we have

(i2)−1([Ωr]) = ker i2 ≃ H2(R,Z) ≃ H2(SO(3),Z) = Z2 ;

hence we have only the trivial bundle and a non trivial bundle as representatives of the
two equivalence classes of admissible quantum bundles. These bundles coincide with
Qf and Qs.

The second statement comes from the fact that there is exactly one equivalence class
of quantum connections on Qf and Qs (see Proposition 1.1).

Theorem 2.2. (Classification II) Let R be degenerate. Then,
i. the only (inequivalent) admissible quantum bundle on R is the trivial bundle

Q := R × C;
ii. the only (inequivalent) quantum structure on R is (Q,q), with

q = q
‖ + iΘ⊗i ,

where q
‖ is the natural flat connection on Q → R and Θ is a global potential of Ωr.

Proof. It comes from H2(R, X) = H2(S2, X) = X, with X = IR or X = Z,
H1(S2, IR) = H1(S2,Z) = 0, and i2 : Z → R the inclusion map.

Then, we can choose each one of the above quantum structures and apply the
machinery of the “covariant quantisation”. In particular, we can easily write the
Schrödinger equation and the Hamiltonian operator.
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[5] A. Jadczyk, J. Janyška, M. Modugno: Galilei general relativistic quantum
mechanics revisited , to appear in “Geometria, F́ısica-Matemática e Outros En-
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