
Proc. of the VIII int. conf.
on Diff. Geom. and its Appl.,

Opava (Czech Rep.) (2001), 435–446.
EMS server: http://www.emis.de/

Variational sequences

on finite order jets of submanifolds

Gianni Manno
1

Dept. of Mathematics, King’s College, London

email: Gianni.Manno@kcl.ac.uk

Raffaele Vitolo

Dept. of Mathematics “E. De Giorgi”, Università di Lecce,
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Introduction

Spectral sequences are a well-known tool in Algebraic Topology and Homological
Algebra (see, for example, [10]). The C-spectral sequence was introduced by Vino-
gradov [12, 13]. It arises from a remarkable filtration of the De Rham complex on
jets of fibrings, jets of submanifolds or on differential equations (i. e., submanifolds
of a jet space). The filtration is provided by contact forms. These forms are charac-
terised by their vanishing when pulled back via prolonged sections of the given space.
The C-spectral sequence yields the variational sequence as a by-product. Some terms
of this sequence can be identified in a suitable way with objects from the calculus of
variations, like Lagrangians, Euler-Lagrange morphisms and Helmholtz morphisms.
This is due to the fact that contact forms yield zero contribution to action-like
functionals, .

The above formulation has been first carried out in the case of infinite jets, in or-
der to avoid serious technical difficulties due to the computation of jet order. Then,
after the partial results by Anderson and Duchamps [1] and Duzhin [4], Krupka
provided a finite order formulation on jets of fibrings [8]. After, a finite order formu-
lation of Vinogradov’s C-spectral sequence on jets of fibrings appeared in [15, 16].

Here we provide a formulation of Vinogradov’s C-spectral sequence in the case
of jets of submanifolds of finite order.

In section 1 we recall the basics of jets of order r of submanifolds of dimension
n of a given manifold E [2, 5, 6, 9, 14]. Such spaces arise as the equivalence class
of (embedded) submanifolds of dimension n of E having a contact of order r at a
point. It is easily seen that, locally, jets of submanifolds are diffeomorphic to jets
of fibrings. Thus, jets of submanifolds provide a non-trivial generalization of jets of
fibrings to situations where a fibering is absent.

We also present new structures that turn out to be essential to the computa-
tion of C-spectral sequence. Jets of submanifolds do not have the natural vertical
distribution, as jets of fibrings. But they have the Cartan (or contact) distribution.
We introduce a new version of this distribution in the higher order jet (pseudo-
horizontal bundle), inspired by the work by Modugno and Vinogradov [9]. It plays
the role of horizontal distribution, and a pseudo-vertical bundle can be introduced as
a quotient of the tangent space through the pseudo-horizontal bundle. Such bundles
do not yield a vertical distribution on jets of submanifolds, but provide the same
essential information as the vertical distribution on jets of fibrings to the purposes
of variational sequence.

In section 2 we introduce Cartan (or contact) forms, i. e., forms annihilating
Cartan distribution. Then, we introduce the horizontalization, i. e., the restriction
of forms to the pseudo-horizontal bundle. Of course, Cartan forms are characterized
as the kernel of the horizontalization. This feature is new in the framework of jets of
submanifolds (to our knowledge), and is essential for the computations of C-spectral
sequence.
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In section 3 we introduce the finite order C-spectral sequence, and compute all
of its groups in the case of jets of submanifolds. Results are very close to that of
the infinite order case, and the direct limit of the finite order formulation yields
the infinite order formulation by Vinogradov. Through the Green-Vinogradov for-
mula for adjoint operators in the infinite order case we are able to compute distin-
guished representatives for finite order equivalence classes of some of the most im-
portant quotient spaces of the C-spectral sequence, like Euler–Lagrange morphisms
and Helmholtz morphisms. Locally, these expressions look like the fibred case, but
the spaces where they are defined are quite different.

In our paper we show the possibility to compute Vinogradov’s C-spectral se-
quence in the case of finite order jets of submanifolds. We think that it is possible
to formulate a finite order C-spectral sequence also in the case of differential equa-
tions. These can be regarded as submanifolds of jets of a given order; they act on
C-spectral sequence as a constraint. The technical difficulties coming from the ab-
sence of a fibring can be solved exactly as we did in this paper. We leave this topic
for future research.

1 Jet spaces

In this section we recall basic facts about the geometry of jets of submanifolds (our
sources were [2, 5, 6, 9, 14]) together with some new considerations which are suitable
to our purposes.

Let E be an (n + m)-dimensional manifold. We consider the class [L]rx of n–
dimensional (embedded) submanifolds L ⊂ E having a contact of order r at x ∈ E.
The set of such classes is said to be the r–jet of n–dimensional submanifolds of E,
and is denoted by Jr(E, n). We also set J0(E, n) = E. Any submanifold L ⊂ E can
be prolonged to Jr(E, n) via the map

(1) jrL : L→ Jr(E, n), p→ [L]rp.

We identify L with its image through jrL, denoted by L(r). The set Jr(E, n) has a
natural manifold structure, given as follows. We say a local chart (V, ϕ) on E to be
fibred if V is diffeomorphic to (X × U) ⊂ R

n+m, where X ⊂ R
n and U ⊂ R

m are
open subsets. Obviously, the trivial projection π : V → X makes V a fibred manifold
on X. In this case, we set ϕ = (xλ, ui), where (xλ) are coordinates on X and (ui)
are coordinates on U . Greek indices run from 1 to n and the Latin ones from 1 to m.
We say a submanifold L ⊂ E to be concordant with the above chart at p ∈ V ∩L if L
can be (locally) expressed as ui = si(xλ). Let σ = (σ1, σ2, ..., σr) with 1 ≤ σi ≤ n be

a multi-index and |σ|
def
= r. The fibred charts induce the local chart

(
Jrπ, (xλ, ui

σ
)
)

on Jr(E, n) at [L]rp, where Jrπ is the jet of the fibring π. The functions ui
σ

are

determined by ui
σ
◦ jrL = ∂|σ|si/∂xσ, where ∂xσ stands for ∂xσ1 ...∂xσr .
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The natural projections πr,h : Jr(E, n) −→ Jh(E, n), r ≥ h, have a fibre bundle
structure. In particular, it is known [2, 6] that πr+1,r are affine bundles for r ≥ 1.
Of course, if r = 0 then π1,0 is the Grassmann bundle of n–dimensional subspaces
in TE. The infinite order jet J∞(E, n) is just the inverse limit of the projections
πr+1,r.

Let us consider the following bundles over Jr+1(E, n): the pull-back bundle

T r+1,r def
= Jr+1(E, n) ×

Jr(E,n)
TJr(E, n)

the subbundle Hr+1,r def
={([L]r+1

p , υ) ∈ T r+1,r | υ ∈ T[L]rp
L(r)} and the quotient

bundle V r+1,r def
= T r+1,r/Hr+1,r.

Definition 1. We say Hr+1,r and V r+1,r to be, respectively, the pseudo-horizontal
and the pseudo-vertical bundle of Jr(E, n).

The most important property of the bundles T r+1,r, Hr+1,r and V r+1,r is the
following contact exact sequence

(2) 0 −→ Hr+1,r Dr+1

→֒ T r+1,r ωr+1

−→ V r+1,r −→ 0

and the corresponding sequence of dual morphisms, yielding
(3)

0←− ∧k(Hr+1,r)∗
∧k(Dr+1)∗

←− ∧k(T r+1,r)∗
(ωr+1)∗∧ id
←֓ (V r+1,r)∗ ∧ ∧k−1(T r+1,r)∗ ←− 0

We observe that ∧k(T r+1,r)∗ is a vector subbundle of ∧k(T ∗Jr+1(E, n)).

Now we provide coordinate expressions of main objects. A local basis of the set
of sections of the bundle Hr+1,r is

Dλ =
∂

∂xλ
+ uj

σ,λ

∂

∂uj
σ

,

where the index σ, λ stands for (σ1, . . . , σr, λ); Dλ is said to be total derivative with
respect to xλ. A local chart of Hr+1,r associated with the above basis is (xλ, ui

τ
, zµ),

|τ | ≤ r + 1, zµ([L]r+1
p , υ) = υµ. A local basis of (Hr+1,r)∗ dual to (Dλ) is given

by the restriction of the 1-forms dxλ to Hr+1,r, and is denoted by dxλ. The local
expression of Dr+1 turns out to be

Dr+1 = dxλ ⊗Dλ = dxλ ⊗

(
∂

∂xλ
+ uj

σ,λ

∂

∂uj
σ

)

A local basis of the set of the sections of the bundle V r+1,r is Bj
σ

def
=[∂/∂ui

σ
] ∈ V r+1,r,

|σ| ≤ r. A local chart of V r+1,r associated with the above basis is (xλ, ui
σ
, zj

σ),
zj
σ([υ]) = υj

σ − υλuj
σ,λ. The local expression of ωr+1 is

ωr+1 = ωj
σ
⊗Bj

σ
=

(
duj

σ
− uj

σ,λdxλ
)
⊗Bj

σ
.
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Finally, we have a natural distribution Cr on Jr(E, n) generated by the tangent
spaces TL(r) for any n-dimensional submanifold L ⊂ E, namely the Cartan Distri-
bution (see, for example, [3]). It is generated by the vector fields Dλ and ∂/∂ui

σ
,

with |σ| = r. This distribution has not to be confused with Hr,r−1, which is a
subbundle of a different bundle and is generated by Dλ.

When E is endowed with a fibering π : E → M , the space Jrπ of r-th jets of
sections s : M → E of π is an open dense subset of Jr(E, n) [9], and the vertical

bundle V π
def
= kerTπr+1,r yields a splitting of the contact sequence (2).

2 Forms on jets

Here we introduce distinguished spaces of forms on jet spaces. Then, we give an
isomorphism between spaces of forms and spaces of differential operators. This
allows us to ‘import’ the theory of adjoint operators and Green’s formula in our
setting.

We denote by Fr the algebra C∞(Jr(E, n)). For k ≥ 0 we consider the standard
Fr-module Λk

r of k-forms on Jr(E, n). We set also Λ∗
r = ⊕kΛ

k
r . We introduce the

submodule of Λk
r of the contact forms

C1Λk
r

def
={α ∈ Λk

r | (jrL)∗α = 0 for each submanifold L ⊂ E}.

Clearly, contact forms annihilate Cartan distribution. We set C1Λ∗
r = ⊕kC

1Λk
r .

Moreover, we define CpΛ∗
r as the p-th exterior power of C1Λ∗

r. Next we introduce
the Fr+1-module Λk

r+1,r of the k-forms along πr+1,r, i. e. k-forms on Jr(E, n) with

coefficients in Fr+1. Obviusly, Λk
r ⊂ Λk

r+1,r ⊂ Λk
r+1.

We also consider the Fr+1-module Hk
r+1,r of pseudo-horizontal k-forms, i. e.,

sections α : Jr+1(E, n)→ ∧k(Hr+1,r)∗. It is a submodule of Λk
r+1,r.

Definition 2. We define the horizontalization to be the map

h : Λk
r → H

k
r+1,r, α 7→ (∧k(Dr+1)∗) ◦ π∗

r+1,r(α)

where ∧k(Dr+1)∗ is the map of equation (3).

If α ∈ Λk
r , then we have the coordinate expression

α = ασ1...σh

i1...ih λh+1...λk
dui1

σ1
∧ · · · ∧ duih

σh
∧ dxλh+1 ∧ · · · ∧ dxλk ,

where 0 ≤ h ≤ k. Hence

h(α) = ui1
σ1,λ1

. . . uih
σh,λh

ασ1...σh

i1...ih λh+1...λk
dxλ1 ∧ · · · ∧ dxλk .

Let us introduce the Fr-module Λ
q

r
def
= imh. It is easy to realize from the above

coordinate expressions that, if r ≥ 1, then Λ
q

r is made by sections of ∧q(Hr+1,r)∗ →
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Jr+1(E, n) whose coefficients are polynomial of degree ≤ q in the variables ui
σ
,

with |σ| = r + 1. Note that coefficients are not generic polynomials: they have a
distinguished antisymmetry property on indexes [16]. The case r = 0 needs special
attention. In fact, π1,0 has no affine structure; but the local expression of the
horizontalization in a fibred chart is again polynomial. So, Λ

q

0 is a subspace of the
space of locally polynomial forms of degree ≤ q in ui

λ.
Finally, we study the relationship of contact forms with horizontalization.

Proposition 1. We have

C1Λk
r = kerh if 0 ≤ k ≤ n, C1Λk

r = Λk
r if k > n.

Proof. Let α ∈ Λk
r . Then, h(α) = 0 if and only if ∧k(Dr+1)∗(α) = 0. But

ker∧k(Dr+1)∗ = im((ωr+1)∗ ∧ id). The second assertion is trivial.

Let p ≤ k and α ∈ CpΛk
r . From the above proposition we have the coordinate

expression

(4) π∗
r+1,r(α) = ωi1

σ1
∧ · · · ∧ ω

ip
σp ∧ α

σ1...σp

i1...ip
, α

σ1...σp

i1...ip
∈ Λk−p

r ,

where |σl| ≤ r for l = 1, . . . , p. Note that derivatives of order r + 1 appear in
the above expression in the forms ωil

σl
with |σl| = r. It is possible to obtain an

expression containing just r-th order derivatives by using contact forms of the type
dωil

σl
with |σl| = r − 1; see [8].

In view of the above considerations, we introduce the subspace CpΛp
r,r+1 ⊂

CpΛp
r+1 of contact forms of order r + 1 with coefficients in Fr.

Now, we establish a correspondence between forms and differential operators.
Let P, Q be projective modules over an R-algebra A . We recall [2] that a linear

differential operator of order k is defined to be an R-linear map ∆ : P → Q such
that

[δa0
, [. . . , [δak

, ∆] . . . ]] = 0

for all a0, . . . , ak ∈ A. Here, square brackets stand for commutators and δai
is the

multiplication morphism by ai. Of course, linear differential operators of order zero
are just morphisms of modules. The A-module of differential operators of order k
from P to Q is denoted by Diffk(P, Q). The A-module of differential operators of
any order from P to Q is denoted by Diff(P, Q). This definition can be generalised
to maps with l arguments in P . The corresponding space is denoted by Diff(l)(P, Q).

Let r ≤ s, P be a Fr-module and Q be a Fs-module. We consider C-differential
operators [3] from P to Q, i. e. differential operators whose expression contains total
derivatives instead of standard ones. In local coordinates, C-differential operators
have the form (aσ

ijDσ), where aσ

ij ∈ Fs, Dσ = Dσ1
◦ · · · ◦ Dσk

. We denote the
Fs-module of C-differential operators of order k from P to Q by CDiffk(P, Q). We
also introduce the Fs-module of differential operators from P to Q of any order
CDiff(P, Q). We generalize the definition to maps with l arguments in P .
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Finally, for r ≥ 1 we denote the Fr-module of bundle morphisms ϕ : Jr(E, n)→
V 1,0 over idJ1(E,n) by κr. We define also κ0 ⊂ κ1 to be the subset of morphisms of
the type ϕ′ = ω1(ϕ ◦ π1,0), with ϕ : E → TE. In coordinates, ϕ ∈ κr has the local
expression ϕ = ϕi[∂/∂ui], where ϕi ∈ Fr. We have κr ⊂ κr+1, so we introduce the
direct limit κ of morphisms on J∞(E, n). Any ϕ ∈ κr can be uniquely prolonged
to a bundle morphism Зϕ : Jr+s(E, n) → V s+1,s., which is said to be evolutionary
morphism. In coordinates, Зϕ = Dσϕi[∂/∂ui

σ].

Proposition 2. We have the natural isomorphism

CpΛp
r,r+1 ⊗ Λ̄q

r → CDiffalt(p) r(κ0, Λ̄
q
r), α→ ∇α

where ∇α(ϕ1, . . . , ϕp) = Зϕ1
y(. . . y(Зϕp y α) . . . ).

The above proposition can be proved by analogy with the infinite order case
(see [3]). Just recall that the isomorphism is realized due to the fact that to any
pseudovertical tangent vector to Jr(E, n) there exists an evolutionary morphism
passing through it.

3 Spectral sequence

The C-spectral sequence was introduced by Vinogradov in the late Seventies [12, 13].
Here, we present a new finite order approach to C-spectral sequence on the jets of
submanifolds of order r.

The module Λk
r is filtered by the submodules CpΛk

r ; namely, we have the obvious
finite chain of inclusions

Λk
r

def
= C0Λk

r ⊃ C
1Λk

r ⊃ · · · ⊃ C
pΛk

r ⊃ · · · ⊃ C
IΛk

r ⊃ C
I+1Λk

r = {0},

where I is the dimension of the contact distribution (see [3]). We say the above
graded filtration of Λk

r to be the C-filtration on the jet space of order r.
The C-filtration gives rise to a spectral sequence (Ep,q

N , eN )N,p,q∈N in a standard
way [10]. We say it to be Vinogradov’s C-spectral sequence of (finite) order r on E.

Our goal is to describe all terms in the C-spectral sequence.

We recall that Ep,q
0 ≡ CpΛp+q

r

/
Cp+1Λp+q

r . The spaces CpΛk
r admit a coordinate

description trough pull-back (proposition 1).
Generalizing h, we introduce the map hp : Λp+q

r → Λp
r+1 ⊗ Λ

q

r such that

(5) α1 ∧ . . . ∧ αp+q 7→
1

p! q!

∑

σ∈Sp+q

|σ|ασ(1) ∧ . . . ∧ ασ(p) ⊗ h(ασ(p+1) ∧ . . . ∧ ασ(p+q))

where Sp+q is the set of permutations of p + q elements.
The following proposition is an immediate consequence of proposition 1 and

equation (4).
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Theorem 1 (Computation of E0). The restriction of hp to CpΛp+q
r yields the iso-

morphism

Ep,q
0 =

CpΛp+q
r

Cp+1Λp+q
r

→ CpΛp
r,r+1 ⊗ Λ

q

r, [α] 7→ hp(α).

We denote the differential e0 (which is the quotient of d) by d̄
def
= e0. Obviously

we have

(6) d̄ : Ep,q
0 → Ep,q+1

0 , hp+1(α)→ hp+2(dα)

Hence, the bigraded complex (E0, e0) is isomorphic to the sequence of complexes

0 0 0 0

Λ̄n
r

d̄

6

CDiffalt(1) r(κ0, Λ̄
n
r )

−d̄

6

CDiffalt(2) r(κ0, Λ̄
n
r )

d̄

6

. . . CDiffalt(I) r(κ0, Λ̄
n
r )

(−1)I d̄

6

. . .

6

. . .

6

. . .

6

. . . . . .

6

Λ̄1
r

d̄

6

CDiffalt(1) r(κ0, Λ̄
1
r)

−d̄

6

CDiffalt(2) r(κ0, Λ̄
1
r)

d̄

6

. . . CDiffalt(I) r(κ0, Λ̄
1
r)

(−1)I d̄

6

Λ0
r

d̄

6

CDiffalt(1) r(κ0,Fr)

−d̄

6

CDiffalt(2) r(κ0,Fr)

d̄

6

. . . CDiffalt(I) r(κ0,Fr)

(−1)I d̄

6

0

6

0

6

0

6

. . . 0

6

The sequence becomes trivial after the I-th column, and the minus signs are put
in order to agree with an analogous convention on infinite order variational bicom-
plexes.

Now we study the term E1. We recall that E1 = H(E0), where the homology
is taken with respect to d̄. We need the following technical result. The proof is
analogous to the case of jets of fibring [16].

Lemma 1. The sequence

0 - CpΛp
r

d- CpΛp+1
r

d- . . .
d- CpΛp+n−1

r

d- . . .

is exact up to the term CpΛp+n−1
r .
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Then, we observe that the C-spectral sequence of order r converges to the de
Rham cohomology of Jr(E, n). So, according to the definition of convergence [10],
there exists n0 ∈ N such that En0

= Es for s > n0, and En0
is isomorphic to the

quotient vector spaces ipH∗(CpΛ∗)/ip+1H∗(Cp+1Λ∗) of the filtration

H∗(Λ∗) ⊃ iH∗(C1Λ∗) ⊃ i2H∗(C2Λ∗) ⊃ · · · ⊃ iIH∗(CIΛ∗) ⊃ 0,

of the de Rham cohomology of Jr(E, n) (i is the natural inclusion). This is due
to the fact that the C-spectral sequence is a first quadrant spectral sequence [10].
Moreover, the de Rham cohomology of Jr(E, n) is equal to H∗(J1(E, n)) because
Jr(E, n) has topologically trivial fibre over J1(E, n).

Theorem 2 (Computation of E∗,n
1 ). The term (E∗,n

1 , e1) is isomorphic to the (short)
complex

0 - Λ̄n
r

/
d̄(Λ̄n−1

r )
e1 - . . .

e1 - CDiffalt(p) r(κ0, Λ̄
n
r )

/
d̄(Ep,n−1

0 )
e1 - . . .

where Ep,n
1 = CDiffalt(p) r(κ0, Λ̄

n
r )

/
d̄(Ep,n−1

0 ), ep,n
1 ([hp+1(α)]) = [hp+2(dα)].

Proof. The identifications of spaces come directly from the definition of E1. As for
the last statement, we have by definition (see, e. g., [10]) e1 = π ◦ δ, where δ is
the Bockstein operator induced by the exact sequence and π is the cohomology map
induced by the corresponding map π of the exact sequence. The proof is completed
by expanding into the above equation the definition of δ.

Theorem 3 (Computation of E1 and E2). We have

E0,q
1 = Hq(J1(E, n)), q 6= n; Ep,q

1 = 0, q 6= n, p 6= 0;

Ep,n
2 = Hp(J1(E, n)), p ≥ 1.

Proof. The first statement follows from the fact that E0,q
0 is the quotient of the

de Rham sequence with an exact sequence (see lemma 1), and analogously for the
second statement.

We can combine the complex E0,∗
0 with the complex E∗,n

1 , producing the complex

. . .
d̄- Λ̄n

r

ẽ1 - CDiffalt(1) r(κ0, Λ̄
n
r )

/
d̄(E1,n−1

0 )
e1 - . . . ,

where ẽ1 is the composition of the quotient projection with e1. Due to the above
theorem, the cohomology of the above complex is equal to the de Rham cohomology
of J1(E, n).

Definition 3. We say the above complex to be the finite order variational sequence
associated with the C-spectral sequence of order r on Jr(E, n).
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The word ‘variational’ comes from the fact that we can identify the objects of the
space Λ̄n

r with (r + 1)-st order Lagrangians [16]. Moreover, next two spaces in the
sequence can be identified with a space of (finite order) Euler–Lagrange morphisms
and a space of (finite order) Helmholtz morphism, and the differential e1 is the
operator sending Lagrangians into corresponding Euler–Lagrange morphism and
Euler–Lagrange type morphisms into Helmholtz morphisms.

Now we show that each equivalence class in the quotient spaces of the variational
sequence can be represented by a distinguished form. To this aim, we observe that
pull-back includes the C-spectral sequence of order r into the C-spectral sequence
of order r + 1. We can evaluate the direct limit of the finite order C-spectral se-
quences: this is equivalent to the C-spectral sequence of infinite order (as formulated
by Vinogradov). Hence, we have the embedding

(7) CDiffalt(p) r(κ0, Λ̄
n
r )

/
d̄(Ep,n−1

0 ) →֒ CDiffalt(p) (κ, Λ̄n)
/
d̂(CDiffalt(p) (κ, Λ̄n−1)),

where CDiffalt(p) is the space of operators of any order, Λ̄k is the space of pseudo-

horizontal forms on the jet space of any order and d̂ is the direct limit of d̄ (which
coincides, in a local chart, with the horizontal differential, see [11]).

We recall Vinogradov’s geometric formulation of Green’s formula for adjoint
operators. Let F be the space of functions on jet spaces of any order, and set

κ̂
def
= HomF (κ, Λ̄n). If ∆: P → Q is a C-differential operator, then [3] there exists

an operator ∆∗ : Q̂→ P̂ fulfilling q̂(∆(p))− (∆∗(q̂))(p) = d̂ωp,bq(∆). In coordinates,
if ∆ = ∆σ

ijDσ, then ∆∗ = (−1)|σ|Dσ ◦∆σ

ji.

Now, the quotient spaces (7) are isomorphic to Kp(κ) ([12, 13]; see also [3, p.
192]) which is the subspace of CDiffalt(p−1)(κ, κ̂) whose elements are skew-adjoint
in each argument, i. e. (∇(ϕ1, . . . , ϕp−2))

∗ = −∇(ϕ1, . . . , ϕp−2) for all ϕ1, . . . ,
ϕp−2 ∈ κ. Note that, if p = 1, then the isomorphism reads as the evaluation of the
adjoint of the given operator at the constant function 1 [3].

The above considerations show that the equivalence class [α] in the quotient
space with contact degree p is represented, through the embedding (7) and the
characterization of Kp(κ), as the operator ∇α obtained after skew-adjoining α in
its first (p− 1)-arguments and adjoining it in its p-th argument.

Locally, α ∈ CDiffalt(p) r(κ0, Λ̄
n
r ) is of the form α

σ1...σp−1τ

i1...ip−1j ωi1
σ1
∧· · ·∧ω

ip−1

σp−1
∧ωj

τ∧dx,

where dx
def
= dx

1
∧ · · · ∧ dx

n
. Hence, if p = 1, then ∇α = (−1)|σ|Dσασ

i ωi ∧ dx. This
clearly shows that the first quotient space in the variational sequence is the space of
Euler–Lagrange type operators. If p = 2, then

∇α =
1

2



α̃σ

ij −

s−|σ|∑

|ρ|=0

(−1)|(σ,ρ)|

(
|(σ, ρ)|

|ρ|

)
Dρα̃

(σ,ρ)
ji





ωi
σ
∧ ωj ∧ dx,

(8)
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where (σ, ρ) denotes the union of the multiindexes σ and ρ, s is the jet order of α̃σ

ij ,
and the factor 1/2 comes from skew-symmetrization. Note that we also used the
Leibniz rule for total derivatives [11] to derive the expression of the C-differential
operator (−1)σDσ ◦ α̃σ

ji, where α̃σ

ji are the coefficients of ∇∗
α(1). This clearly shows

that the second quotient space in the variational sequence is the space of Helmholtz-
type operators.

Through the above expressions it is possible to derive a representation formula
for any p, together with a representation of the differential e1.
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